机器人 运动学
第1章 机器人运动学优秀课件

第1章 机器人运动学 (Kinematics of Robots)
➢ 引言 ➢ 机器人位置与姿态的描述 ➢ 机器人运动学正问题 ➢ 机器人运动学逆问题 ➢ 机器人的雅可比矩阵
§1.1 引 言(The Introduction)
➢ 机器人运动学 正问题:定义 逆问题:定义
➢ 机器人动力学
为,
cosφ 0 sinφ
Ry, φ = 0
10
- sinφ 0 cosφ
cosθ -sinθ 0
Rz, θ = sinθ cosθ 0
0
01
矩阵Rx, α、Ry, φ和Rz, φ称为基本旋转矩阵。
任何旋转变换可以由有限个基本旋转变换合成得到。
依次左乘(如果uvw对xyz旋转)
依次右乘(如果uvw绕自己的坐标轴旋转) R=Rz,θRy,φRx,α
ix ˙iu ix ˙jv ix ˙kw 1 0 0
Rx, α = iy˙iu iy ˙jv iy ˙kw = 0 cosα - sinα
iz˙iu iz ˙jv iz ˙kw
0 sinα cosα
向量点乘:a· b=|a|·|b| · cos(a)
类似地,绕Oy 轴转动φ角和绕Oz 轴转θ角的3×3旋转矩阵分别
当Ouvw坐标系绕一轴线转动后,
均可通过一个3x3旋转矩阵R
将原坐标Puvw变换到Oxyz系中 的坐标Pxyz ,
即: Pxyz=R Puvw
由矢量分量的定义有:Puvw= pu iu + pv jv + pw kw
pu、pv、pw分别表示P沿Ou、Ov、Ow 轴的分量
Px = ix˙P = ix ˙iu pu+ ix ˙jv pv+ix ˙kw pw Py = iy˙P = iy˙iu pu+ iy ˙jv pv+iy ˙kw pw Pz = iz˙P = iz˙iu pu+ iz ˙jv pv+iz ˙kw pw
机器人运动学

机器人运动学随着科技的不断发展,机器人已经逐渐成为了人们生活中不可或缺的一部分。
机器人的出现不仅改变了人们生活的方方面面,还为工业、医疗等领域带来了巨大的变革。
作为机器人领域的核心技术之一,机器人运动学是机器人技术中的重要组成部分。
本文将从机器人运动学的基本概念、运动学分析、运动规划等方面进行详细的阐述。
一、机器人运动学的基本概念机器人运动学是研究机器人运动的学科,主要研究机器人的运动规律、运动学模型、运动学分析和运动规划等问题。
机器人运动学的基本概念包括机器人的自由度、坐标系、位姿等。
1. 机器人的自由度机器人的自由度是指机器人能够自由运动的方向和数量。
机器人的自由度通常是由机器人的关节数量决定的。
例如,一个具有6个关节的机器人,其自由度就是6。
机器人的自由度越大,机器人的运动能力就越强。
2. 坐标系坐标系是机器人运动学中的重要概念,用于描述机器人的位置和姿态。
机器人通常使用笛卡尔坐标系或者极坐标系来描述机器人的位置和姿态。
在机器人运动学中,通常使用基座坐标系和工具坐标系来描述机器人的运动。
3. 位姿位姿是机器人运动学中的另一个重要概念,用于描述机器人的位置和姿态。
位姿通常由位置和方向两个部分组成。
在机器人运动学中,通常使用欧拉角、四元数或旋转矩阵来描述机器人的位姿。
二、机器人运动学分析机器人运动学分析是指对机器人的运动进行分析和计算,以确定机器人的运动规律和运动学模型。
机器人运动学分析通常涉及到逆运动学、正运动学和雅可比矩阵等内容。
1. 逆运动学逆运动学是机器人运动学分析中的重要内容,用于确定机器人关节的运动规律。
逆运动学通常包括解析解法和数值解法两种方法。
解析解法是指通过数学公式来计算机器人关节的运动规律,数值解法是指通过计算机模拟来计算机器人关节的运动规律。
2. 正运动学正运动学是机器人运动学分析中的另一个重要内容,用于确定机器人末端执行器的位置和姿态。
正运动学通常包括前向运动学和反向运动学两种方法。
机器人的运动学和动力学模型

机器人的运动学和动力学模型机器人的运动学和动力学是研究机器人运动和力学性质的重要内容。
运动学是研究机器人姿态、位移和速度之间关系的学科,动力学则是研究机器人运动过程中力的产生和作用的学科。
机器人的运动学和动力学模型可以帮助我们理解机器人的运动方式和受力情况,进而指导机器人的控制算法设计和路径规划。
一、机器人运动学模型机器人运动学模型是描述机器人运动方式和位置关系的数学表达。
机器人的运动状态可以用关节角度或末端执行器的位姿来表示。
机器人的运动学模型分为正运动学和逆运动学两种。
1. 正运动学模型正运动学模型是通过机器人关节角度或末端执行器的位姿来确定机器人的位置。
对于串联机器人,可以使用连续旋转和平移变换矩阵来描述机械臂的位置关系。
对于并联机器人,由于存在并联关节,正运动学模型比较复杂,通常需要使用迭代方法求解。
正运动学模型的求解可以通过以下几个步骤:(1) 坐标系建立:确定机器人的基坐标系和各个关节的局部坐标系。
(2) 运动方程描述:根据机器人的结构和连杆长度等参数,建立各个关节的运动方程。
(3) 正运动学求解:根据关节的角度输入,通过迭代计算,求解机器人的末端执行器的位姿。
正运动学模型的求解可以用于机器人路径规划和目标定位。
2. 逆运动学模型逆运动学模型是通过机器人末端执行器的位姿来确定机器人的关节角度。
逆运动学问题在机器人的路径规划和目标定位等任务中起着重要作用。
逆运动学求解的难点在于解的存在性和唯一性。
由于机器人的复杂结构,可能存在多个关节角度组合可以满足末端执行器的位姿要求。
解决逆运动学问题的方法有解析法和数值法两种。
解析法通常是通过代数或几何方法,直接求解关节角度,但是解析法只适用于简单的机器人结构和运动方式。
数值法是通过迭代计算的方式,根据当前位置不断改变关节角度,直到满足末端执行器的位姿要求。
数值法可以用于复杂的机器人结构和运动方式,但是求解时间较长。
二、机器人动力学模型机器人动力学模型是描述机器人运动时受到的力和力矩的模型。
机器人运动学知识要点梳理

机器人运动学知识要点梳理机器人运动学是研究机器人运动规律和姿态变化的学科。
它是机器人学的重要基础,掌握机器人运动学知识对于研究机器人的运动控制、路径规划等方面具有重要意义。
本文将梳理机器人运动学的要点,对其进行全面而简明的阐述。
一、机器人运动学概述机器人运动学是机器人学中的一个重要分支,主要研究机器人的运动规律和姿态变化。
它研究的对象是机器人的关节运动和末端执行器的运动,通过对机器人的结构和运动方式的分析,可以帮助我们了解机器人的运动特性,为机器人的运动控制与路径规划提供理论基础。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指已知机器人关节角度,通过运动链的迭代求解,计算机器人末端执行器的位置和姿态。
逆运动学则是已知机器人末端执行器的位置和姿态,求解机器人关节角度。
二、机器人运动学基础知识1. 坐标系与位姿表示机器人运动学中经常使用的坐标系有世界坐标系(world coordinate system)、基坐标系(base coordinate system)和末端执行器坐标系(end-effector coordinate system)。
世界坐标系是一个固定的参考坐标系,基坐标系是机器人坐标系中的一个相对于世界坐标系的参考坐标系,而末端执行器坐标系则是机器人末端执行器的坐标系。
机器人在三维空间中的位姿表示可以使用欧拉角(Euler angle)或四元数(quaternion)等方式。
2. DH参数与齐次变换矩阵DH参数(Dennavit-Hartenberg parameters)是机器人运动学中常用的参数化方法,用于描述机器人关节之间的姿态和位移关系。
齐次变换矩阵(homogeneous transformation matrix)则是将机器人的坐标系从一个关节变换到下一个关节的变换矩阵。
3. 机器人正运动学机器人正运动学是已知机器人关节角度,求解机器人末端执行器位置和姿态的过程。
机器人运动学

T
o = [ cos120° cos 30° cos 90° 0]
T
T
a = [ 0.000 0.000 1.000 0]
T
P = [ 2 1 0 1]
T
⎡0.866 −0.500 0.000 2.0 ⎤ ⎢0.500 0.866 0.000 1.0 ⎥ ⎥ T =⎢ ⎢0.000 0.000 1.000 0.0 ⎥ ⎢ 0 0 0 1 ⎥ ⎣ ⎦
构件坐标系
全局参考坐标系
3.2 位姿表示和齐次变换
向量计算
设
⎧ A = (a x , a y , a z , aω )T ⎪ ⎪ B = (bx , b y , bz , bω )T ⎨ T ⎪ R = (rx , ry , rz , rω ) ⎪ ⎩α = cont
a ⎞ 则有 αA = ⎛ ⎜ ax , a y , az , ω α ⎟ ⎝ ⎠ ay
3.2 位姿表示和齐次变换
四、复合(旋转加平移)变换
依次左乘变换矩阵,顺序不同,结果不同 将两个旋转变换和平移变换结合起来,矩阵表达式为:
自动化学院
第三章 机器人运动学
第三章 机器人运动学
3.1 引言 3.2 位姿表示和齐次变换 3.3 机器人的正逆运动学方程 3.4 机器人的微分运动和雅可比矩阵
3.1 引言
问题一:已知杆件几何参数和关节
角矢量求机器人末端相对于参考坐 标系的位置和姿态?
问题二:给定机器人末端相对于参
考坐标系的期望位置和姿态,机器 人能否、如何使其末端达到这个位 姿? --实际应用问题
T
T
其中 r = a b − a b x y z z y
ry = a z bx − a x bz rz = a x by − a y bx rω = aω bω
机器人运动学

R3
Z
三个平移自由度 T1, T2, T3
三个旋转自由度 R1, R2, R3
T3
T1
T2
Y R2
X
2019/3/31
R1
2.2 刚体位姿描述
方位描述
第三章
机器人运动学
利用固定于物体的坐标系描述方位 (orientation)。方位又称为姿 态 (pose)。
在刚体 B上设置直角坐标系 {B} ,利用与 {B} 的坐标轴平行 的三个单位矢量表示B的姿态。
A
p R ( x , ) p
B
zB
zA
Bp
P
yB
{A}
1 0 R ( x , ) 0 c 0 s
c R ( y , ) 0 s 0 s 1 0 , 0 c
0 s c
s c 0 0 0 1
2019/3/31
i A iB A jB r11 r12
第三章
机器人运动学
2.2 刚体位姿描述
位置与姿态的表示 相对于参考坐标系{A},坐标系{B}的原点位置和坐标轴的 方位可以由位置矢量和旋转矩阵描述。刚体B在参考坐标 系{A}中的位姿利用坐标系{B}描述。
{ B}
当表示位置时 当表示方位时
zA
iB
jB
A
kA 坐标系{B}的三个单位主矢量在坐标系{A}中的描述:
pBo
kB
yA
{ A iB , A jB , A k B }
坐标系{B}相对于坐标系{A}的姿态描述:
A B
O
R { iB , jB , k B }
A A A
机器人运动学

机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
机器人的运动学和动力学模型是什么

机器人的运动学和动力学模型是什么机器人的运动学和动力学模型是为了描述机器人运动和力学特性而建立的数学模型。
运动学模型描述机器人的位姿、速度和加速度,而动力学模型则描述机器人的力、力矩和力的影响。
本文将详细介绍机器人的运动学和动力学模型,包括其定义、应用和建模方法。
一、运动学模型1. 定义机器人的运动学模型用于描述机器人的位姿、速度和加速度之间的关系。
位姿是机器人在三维空间中的位置和方向,速度是机器人在时间上的位置变化率,加速度是速度的变化率。
运动学模型可以帮助我们理解机器人的运动规律,例如机器人的轨迹、路径和姿态等。
2. 应用运动学模型在机器人领域有广泛的应用。
首先,它可以用于路径规划和轨迹跟踪。
通过建立机器人的运动学模型,我们可以预测机器人在不同环境下的运动轨迹,从而实现有效的路径规划和轨迹跟踪。
其次,运动学模型可以用于机器人的姿态控制。
通过了解机器人的位姿、速度和加速度之间的关系,我们可以设计控制算法,实现机器人在不同姿态下的运动控制。
此外,运动学模型还可以用于机器人的碰撞检测和避障。
通过分析机器人的运动学特性,我们可以预测机器人的碰撞风险,并采取相应的避障策略。
3. 建模方法机器人的运动学模型可以通过几何方法、代数方法和向量方法进行建模。
几何方法是最常用的建模方法之一。
它通过描述机器人的几何特征和运动规律来建立运动学模型。
例如,可以使用笛卡尔坐标系和欧拉角来描述机器人的位姿,使用导数和积分来描述机器人的速度和加速度。
代数方法是另一种常用的建模方法。
它通过代数方程和矩阵运算来描述机器人的位姿、速度和加速度之间的关系。
例如,可以使用坐标变换和雅可比矩阵来描述机器人的运动规律。
向量方法是较新的建模方法之一。
它通过向量运算和微分几何来描述机器人的位姿、速度和加速度之间的关系。
例如,可以使用四元数和向量叉乘来描述机器人的姿态和运动规律。
二、动力学模型1. 定义机器人的动力学模型用于描述机器人的力、力矩和力对机器人的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人运动学
机器人运动学
机器人运动学是研究机器人运动规律和运动控制的学科。
它是机器人技术的重要组成部分,对于机器人的设计、控制和应用具有重要意义。
机器人运动学主要研究机器人在空间中的运动规律,包括位置、速度和加速度等。
通过研究机器人的运动学特性,可以实现对机器人的精确控制和规划。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指根据机器人关节的位置和长度,求解机器人末端执行器的位置。
它通过解析几何、向量运算和矩阵变换等数学方法,将机器人关节的位置参数转化为末端执行器的位置参数,从而实现对机器人的位置控制。
逆运动学是指根据机器人末端执行器的位置,求解机器人关节的位置和长度。
逆运动学是机器人运动学的核心内容,也是机器人控制的关键问题之一。
通过逆运动学,可以实现对机器人末端执行器的精确控制,从而实现机器人在空间中的精确定位和定向。
机器人运动学的研究还包括机器人的姿态和轨迹规划。
姿态是指机器人在空间中的朝向和姿势,轨迹是指机器人在运动过程中的路径
和速度。
通过研究机器人的姿态和轨迹规划,可以实现机器人在复杂环境中的灵活运动和避障控制。
机器人运动学的应用非常广泛。
在工业领域,机器人运动学被应用于自动化生产线的控制和优化,实现了生产效率的提高和生产成本的降低。
在医疗领域,机器人运动学被应用于手术机器人的控制和操作,实现了微创手术和精确手术的目标。
在军事领域,机器人运动学被应用于无人飞机和无人车辆的控制和导航,实现了作战效能的提高和战场风险的降低。
机器人运动学的发展离不开先进的传感器和控制技术的支持。
传感器可以实时感知机器人的位置和环境信息,控制技术可以根据机器人的位置和运动规律,实现对机器人的精确控制和运动规划。
总结起来,机器人运动学是研究机器人运动规律和运动控制的学科,主要包括正运动学、逆运动学、姿态和轨迹规划等内容。
机器人运动学的研究和应用对于机器人技术的发展和应用具有重要意义,将为我们创造更多的便利和机会。