一道高考数学试题的多种解法

合集下载

一道高考题的多种解法评析及其教学反思

一道高考题的多种解法评析及其教学反思

一道高考题的多种解法评析及其教学反思高考是中国学生们备受关注的重要考试,它在学生们的学业生涯中扮演着至关重要的角色。

高考题是学生们检验知识掌握和思维能力的重要工具,让我们来评析一道高考题的多种解法,并思考如何在教学中提供更好的辅导与指导。

下面,我们将分析一道数学高考题:已知某数列的通项公式为an = n^3 - 2n,求数列的前n项和Sn。

这道题要求求解数列的前n项和,对于学生来说,有多种解法可以得到正确答案。

下面我将列举几种常见的解法,并对这些解法进行评析。

解法一:逐项计算法这种解法是最直观的方式,即从第一项开始逐个计算直到第n项,并将它们求和。

例如,当n=4时,数列的前4项分别为1,6,15,28,将它们求和可得50。

这种解法的优点是容易理解和操作,对于初学者来说较为友好。

然而,当n较大时,手工计算将变得极为繁琐和耗时,容易出错。

解法二:数学归纳法数学归纳法是一种常用的数学证明方法,也可以用来解决这道题。

首先,我们可以通过观察数列的前几项,猜测出数列的前n项和的通项公式为Sn = (n^2)(n-1)^2/4。

接下来,我们可以通过数学归纳法来证明这个猜测。

首先,当n=1时,显然数列的前1项和为1;其次,假设当n=k时,数列的前k项和的通项公式成立。

那么我们只需要证明当n=k+1时,数列的前k+1项和的通项公式也成立。

通过展开数列的前k+1项,并利用归纳假设,我们可以得到Sn+1 = (k^2)(k-1)^2/4 + (k+1)^3 - 2(k+1) = [(k^2)(k-1)^2 + 4(k+1)^3 - 8(k+1)]/4 = [(k-1)^2(k^2 + 4k + 4) + 4(k+1)(k+1)(k+1) - 8(k+1)]/4 = [(k-1)^2(k+2)^2 + 4(k+1)(k+1)(k+1) - 8(k+1)]/4 = [(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1) -8(k+1)]/4 = [(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1) - 8(k+1)(k+1)]/4 =[(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1 - 2(k+1))]/4 = [(k+2)^2(k-1)^2 +4(k+1)(k+1)(k-1)]/4 = (k+2)^2(k-1)^2/4 + (k+1)(k+1)(k-1) =[(k+1)^2(k+2)^2 - (k+1)(k-1) + (k+1)(k-1)]/4 = [(k+1)^2(k+2)^2 - (k+1)(k-1)]/4 = [(k+1)(k+2)(k+1)(k+2) - (k+1)(k-1)]/4 = [(k+1)(k+2)(k+1)(k+2 -k+1)]/4 = [(k+1)(k+2)(k+2)(k+1)]/4 = (k+1)^2(k+2)^2/4 = (k+1)^2((k+1)-1)^2/4。

高考数学解题思路12种

高考数学解题思路12种

高考数学解题思路12种1500字
高考数学解题思路主要包括了以下12种:
1. 定义法:通过明确题目中一些术语或概念的定义,来理解和解答问题。

2. 推理法:根据已知条件和问题要求,运用逻辑推理的方法,得出结论。

3. 构造法:通过构造出特殊的情况或对象,来找出规律或解题思路。

4. 分类讨论法:将题目中涉及的情况进行分类,分别进行讨论和分析。

5. 反证法:先假设问题的反面,然后通过推理推出矛盾的结论,从而证明原命题是正确的。

6. 代入法:将已知的数值代入方程或不等式中,来求解问题。

7. 求极值法:通过求导或其他方法,找出函数的极值点,从而解答问题。

8. 空间变换法:通过对问题中的几何图形进行平移、旋转、缩放等变换,来获得更好的解题角度。

9. 递推法:通过找出数列或几何图形中的规律,推导出后面的项或图形的特征。

10. 数学建模法:将问题抽象化为数学模型,运用数学知识来解决实际问题。

11. 统计法:通过统计已知数据的特征和规律,预测未知数据的情况。

12. 概率法:通过概率的知识和计算,来解决涉及概率的问题。

在解题过程中,根据不同的题目类型和题材,选择合适的解题思路是非常重要的。

以上所列的解题思路可以作为参考,但具体的解题方法还需要根据具体的问题进行调整和应用。

因此,多做题、多思考、多总结是提高数学解题能力的关键。

新高考全国1卷数学(经典版)(全)多种方法解析压轴题

新高考全国1卷数学(经典版)(全)多种方法解析压轴题

新高考全国1卷数学(经典版)(全)多种方法解析压轴题
构造函数,不等式放缩,泰勒展开:两个方法解析2022年高考新全国1卷数学试题第7题
填空压轴题:全方位解析2022年新高考全国1卷数学试题第8题
多角度解析2022年新高考全国1卷数学试题第11题
特殊化,常规推导:从两个不同方向解析2022年新高考全国1卷数学试题第12题
两圆公切线问题——几何法,代数法:两个角度解析2022年新高考全国1卷数学试题第14题
判别式,分离参数:从两个不同角度解析2022年新高考全国1卷数学试题第15题
几何法,代数法,结论秒杀法:三种方法解析2022年新高考全国1卷数学试题第16题
方法三:使用结论
使用前作《圆锥曲线焦半径与焦点弦相关40多个结论在2015-2021年高考数学试题中的应用》中的推论2.1.2 .
2022年高考新全国1卷数学试题第21题(多种方法解析)——探究圆锥曲线张角模型中三角形面积问题以及相关定理应用
注:也可以使用到角公式求直线的斜率.
多种方法解析2022年高考新全国1卷数学试题第22题。

高考数学选择题十大解法总结

高考数学选择题十大解法总结

高考数学选择题十大解法总结高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

对此查字典大学网整理了高考数学选择题十大解法,期望考生在考试中节约时刻取得更多分数。

下面是一些实例:1.特值检验法:关于具有一样性的数学问题,我们在解题过程中,能够将问题专门化,利用问题在某一专门情形下不真,则它在一样情形下不真这一原理,达到去伪存确实目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可明白k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易运算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,如此直截了当确认交点,可将问题简单化,由此可得,故选B。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范畴、解析几何上面,专门多运算步骤繁琐、运算量大的题,一但采纳极端性去分析,那么就能瞬时解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,专门是答案为定值,或者有数值范畴时,取专门点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,通过简单的推理或运算,从而得出答案的方法。

数形结合的好处确实是直观,甚至能够用量角尺直截了当量出结果来。

5.递推归纳法:通过题目条件进行推理,查找规律,从而归纳出正确答案的方法。

高考数学题难题巧解思路与方法

高考数学题难题巧解思路与方法

高考数学题难题巧解思路与方法一、定义法求解所谓定义法,就是直接用数学定义解题。

选择题的命题侧重于对圆锥曲线定义的考查,凡题目中涉及焦半径、通径、准线、离心率及离心率的取值范围等问题,用圆锥曲线的第一和第二定义解题,是一种重要的解题策略。

【例1】(2008年,山东卷,理10)设椭圆C 1的离心率为135,焦点在x 轴上且长轴长为26. 若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )(A )1342222=-y x(B )15132222=-y x(C )1432222=-y x(D )112132222=-y x【巧解】由题意椭圆的半焦距为5=c ,双曲线2C 上的点P 满足|,|8||||||2121F F PF PF <=- ∴点P 的轨迹是双曲线,其中5=c ,4=a ,∴3=b ,故双曲线方程为1342222=-y x ,∴选(A )巧练一:(2008年,陕西卷)双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( )A .6B .3C .2D .33巧练二:(2008年,辽宁卷)已知点P 是抛物线x y 22=上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )(A )217(B )3(C )5(D )29 【例2】(2009年高考福建卷,理13)过抛物线)0(22>=p px y 的焦点F 作倾斜角为450的直线交抛物线于A 、B 两点,线段AB 的长为8,则=p .【巧解】依题意直线AB 的方程为2p x y -=,由⎪⎩⎪⎨⎧=-=pxy p x y 222消去y 得:04322=+-p px x ,设),(11y x A ,),(22y x B ,∴p x x 321=+,根据抛物线的定义。

解答高考数学题的12种方法

解答高考数学题的12种方法

解答高考数学题的12种方法于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。

近年的高考数学解答题多呈现为多问渐难式的梯度题,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。

即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施分段得分,以增加在时间不足前提下的得分。

方法五、一慢一快,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的基础工程,题目本身是怎样解题的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

方法六、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从数量上,而且从性质上影响着后继各步的解答。

所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

方法七、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据。

这就要求不但会而且要对、对且全,全而规范。

会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、感情分也就相应低了,此所谓心理学上的光环效应。

实例解析高考数学选择题十大解法

实例解析高考数学选择题十大解法

实例解析高考数学选择题十大解法高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。

因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项原则;范围较大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的准确度原则。

经过我的培训,很多的学生的选择题甚至1分都不丢。

下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有须要去求解,通过简单的画图,就可取容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

高考数学六大解题方法

高考数学六大解题方法

高考数学六大解题方法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!高考数学六大解题方法高考数学六大解题方法是什么数学中解题方法有很多,例如有特殊值检验法,对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一道高考试题的多种解法
2007年普通高等学校招生全国统一考试卷Ⅰ理科数学19题:
S?ABCDABCD为平行四边形底面,四棱锥中,
CBBCS?A面侧.已知底面2BC?23?SA?SB2?AB45??ABC.
,,,BC?SA;
证明(Ⅰ)SABSD. 与平面所成的角的大小(Ⅱ)求直线下面只列,第一问证法较多,第二问相对作法较少:
举几种第一问的证法AOO?BCSSO. )垂足为证法一:过(如图作,连接1,?SOCDBC?ABS面底得由侧面底面
ABCDSASBCDAOBOAB内的射,、分别是、在底面影.
?OBOASA?SB? ,又45??ABC?ABO?,
形直,角三角又是等腰?OB?OA.
BC?SA.
由三垂线定理得SOOAO?BCA1).
连接如图,垂足为(:证法二过,作?SBCSBCSASOSBC?ABCDAO?且由侧面,在侧面底面内的射
影得是,侧面BO,AO?AO?SO.
45?ABO??SBO????SA?ABO?SBSAOOBOA?.
.,在又,中90SOA???SOB??SOOB?.
即BCSA?.
由三垂线定理得
OBCAC连接,记证法三:连接的中点为,ABCAOSO?中2).、在(如图
2BC?245??ABC?2AB?ABC?,,,?BCAO?)
.(是等腰直角三角形, 下同证法二OACBC连接的中点为,记,证法四:连接
2BC?245ABO???2AB?ABC?SOAO?ABC是等腰直角,中,,2).、(如图在?BC?AO.
三角形,
??SBCSOSASBCSBCABCDAO?.
在侧面,是又侧面底面,内的射影侧面3?cosSBA?SAB?. 在中易得3.
6???SBCcosCBAcos??cos?SBCcos?SBA. 又3?3SC?SO??BCSBC.
中由余弦定理得,在SA?BC.
由三垂线定理得AAO?BCOSO(如图,连接,垂足为过证法五:1).
作?SOSA?SBCSBCSBC?ABCDAO内的射影侧面由侧面,,底面在侧面得且是AO?SO,AO?BO. OA?OB?245??ABC?2AB?ABO?Rt. ,在中,AOS?SORt??12SA?3,AO?. ,在中BOSSO?1?OB?SO?2BO?SB?3,.
中在,,SA?BC.
由三垂线定理得?SBABCDABCDBCSBC?. ,证法六: 侧面在底面内的射影为底面
3??SBAcosSAB?. 中易得在36?cos?SBC?CBA??SBA?cos?SBCcoscos又. 3
SC?3SBC?.
在中由余弦定理得?AO?ABCDBC?SOBCOAOSOSO?是记则的中点为,连接底面、,(如图1),SAABCD内的射影.
在底面BO?245??ABO?2AB?AO??ABOBO.
,中在,,SA?BC.
由三垂线定理得AEFEEF、AC、BCSE?SF?AB,连接:,作、垂足分别为(如图3). 证法七???SEABCSBCD面底,底侧面面DBCA.
?EAEFABCDSFSA内的、、在底面分别是AB?EF.
且射影,ABFABCSB?SA?中在的由中点,得是2?2BC45ABC???2AB?ACAB?,,,,
E??EFBC?BCACAE.
的中点是,∥.从而BCSA?.
由三垂线定理得FAEEEF、AC、BC,?SFABSE?侧面连接,、如图(垂足分别为作:证法八3), ?ABCDABCD?SESBC?.
,底面底面?AB?SAABCDEFEFEASF.
在底面且、内的射影、,分别是45??ABCBC?AE??BF??SABBF?1?ABEAF?EF1 ,在中,中在, BCSA?.
由三垂线定理得45?ABC?2AB?ADESEBBE?得,垂足为由,连接,(如图证法九:过作4),
2BE?AE?,
CSB?BE?BC面底侧面又,?SB?BE?ABCBE?SBC.
侧面,.5?SE SAERt??SBE中在在中,AE?SA2AE?5,SE?SA?3,.
,所以?BCAEBC?SA.
∥又,AOBCSSO?O.
作连接, 过,垂足为证法十:SBABCDAOBOSASBC?ABCDSO?在底面,分别是由侧面底面、底面、得ABCD内的射影.
?OBOASA?SB?又,45ABC???ABO?是等腰直角又,?OBOA?.
, 三角形x OBOAO, 为, 为坐标原点轴正方向以z OSy建立空间直为,轴正方向, 为轴正方向则5),标系(如图角坐2,0)(0,2?1),CB(0,?SA2,0),S(0,0,1)?(?2,0,BA(2,0,0),(0,2,0),C,, 0??SACB?BCSA?.
,3??SBAcosSAB?. 证法十一中易得: 在36??cos?SBCCBASBCcos??cos?SBA?cos又. 3BC?BA)BC?SBBCSB?SABC?(?BA
ABCBCcos?BA??SBBCcos?SBC?
262?22???23???20?32?SA?BC.
ABCD中形四边:在平行十证法二
2?2BC45ABC??DCACAB??2?.,,,x CA、CDy轴正方向建立空间分别以为轴正方向、6). (如图直角坐标系(0,0,0)C(?2,2,0),(2,0,0),DA(0,2,0),B又则
45??BCA?BC?SABCDABCDSBC?,. 在底面又内的射影在底面,上侧面,1?x?
3?SA?SB)xx?,,zS(2,2,0)??),CB(1??AS?(1,?,1. 得.可设由,?1?z?0?AS?CB?BC?SA.
,。

相关文档
最新文档