生物膜总结
生物膜的结构和功能

生物膜的结构和功能生物膜是一种存在于生物界各类生物体表面或内部的具有特殊结构和功能的薄膜状结构。
它由生物体的细胞膜组成,包括生物大分子和非生物分子。
通过细胞间的相互作用,生物膜维持生物体的完整性,同时参与到许多重要的生物过程中。
本文将从生物膜的结构和功能两个方面进行阐述。
一、生物膜的结构1. 膜脂质层生物膜中最基本的组成部分是膜脂质层。
膜脂质层主要由磷脂、甘油脂和类固醇等有机物组成。
磷脂是膜脂质层中含量最高的成分,它由两个疏水性脂肪酸和一个亲水性磷酸甘油醇通过酯键结合形成。
甘油脂是由甘油和脂肪酸通过酯键结合形成的;而类固醇则存在于膜脂质层内部,起到增强膜的稳定性和流动性的作用。
2. 蛋白质组分生物膜中的其他重要组成部分是蛋白质。
膜脂质层与蛋白质相互作用,两者之间形成了复杂的网络结构。
蛋白质在生物膜中有许多重要的功能,如通道蛋白质负责物质的运输,受体蛋白质用于信号传导,酶蛋白质用于催化反应。
此外,膜蛋白还起到了维持生物膜结构的稳定性和保护功能。
3. 糖类组分糖类是生物膜的另一个重要组成部分。
它们通过与蛋白质和脂质相互作用,形成糖蛋白和糖脂复合物,这些复合物参与了细胞间的相互识别和信号传导。
糖类还能起到保护细胞膜的作用,增强细胞膜的稳定性。
二、生物膜的功能1. 细胞辨识和相互识别生物膜上的特定糖蛋白和糖脂能够识别特定的配体或信号分子,从而实现细胞间的辨识和相互识别。
这种相互作用在细胞信号传导、免疫识别和受精过程中起到重要的作用。
2. 物质运输生物膜中的通道蛋白质可以选择性地允许特定离子或分子通过,从而实现物质的运输。
这种运输过程对细胞内外物质的平衡和代谢活动至关重要。
3. 生物反应的催化和调控生物膜中的酶蛋白质能够催化生物反应的进行,从而参与到细胞代谢和能量转化过程中。
膜蛋白还能够通过信号传导调控细胞内外的生物反应。
4. 细胞结构和稳定性的维持生物膜具有良好的柔韧性和可塑性,可以适应细胞形态的变化。
生物膜的生物化学特性与功能

生物膜的生物化学特性与功能生物膜是由生物体分泌的薄膜,它能够覆盖在生物体的表面,起到保护和调节功能。
生物膜是生命体中的重要组成部分,对于细胞的结构和功能具有重要的影响。
在本文中,我们将探讨生物膜的生物化学特性与功能。
一、生物膜的生物化学特性1. 脂质组分:生物膜的主要成分是脂质,包括磷脂、甘油脂和固醇等。
这些脂质分子以疏水性的脂尾和亲水性的头部结构排列在一起,形成双层结构。
这种结构使得生物膜具有较高的可渗透性和选择性通透性。
2. 蛋白质组分:生物膜中还含有许多蛋白质分子,这些蛋白质主要分为两类:固定蛋白和跨膜蛋白。
固定蛋白负责稳定生物膜的结构和功能,而跨膜蛋白则参与物质的运输和信号传导等过程。
3. 糖类组分:许多生物膜表面覆盖有糖类,形成糖基化膜。
糖基化膜除了具有传统的膜的特点外,还能参与细胞间的相互作用和信号传导。
4. 胺酸组分:生物膜中还含有大量的胺酸,它们是生物膜中的重要组成部分。
胺酸通过成键方式使膜中的分子互相连接形成螺旋、平坦或弯曲的结构。
二、生物膜的功能1. 防护功能:生物膜作为生物体的外界界面,能够起到防护作用,保护生物体免受外界环境的伤害。
生物膜具有较强的物理屏障特性,能够防止有害物质进入细胞内部。
2. 选择性通透性:生物膜具有选择性通透性,它能够选择性地允许某些物质通过,并阻止其他物质的通过。
这种选择性通透性是通过膜上的跨膜蛋白实现的。
3. 信号传导:生物膜中的蛋白质可以通过信号传导途径,将外部信号转化为内部生物学响应。
这种信号传导过程对细胞的生存和发展至关重要。
4. 水平分离:生物膜能够分离细胞内外环境,使得细胞环境得以独立调节。
这种水平分离也使得细胞内各种代谢过程能够有序进行。
5. 稳定性:生物膜能够稳定细胞的内外环境,保持细胞内稳态。
生物膜的双层结构能够稳定膜的结构,防止其受外界环境的影响。
总结:生物膜作为生物体的界面和“保护屏障”,具有复杂而关键的生物化学特性和功能。
脂质、蛋白质、糖类和胺酸是生物膜的主要组成部分,它们通过复杂的相互作用和构型形成生物膜的结构。
高中生物膜的流动镶嵌模型知识总结 新课标 人教版 必修1

高中生物膜的流动镶嵌模型知识总结新课标人教版必修1 (一)对生物膜结构的探索历程1.19世纪末,欧文顿提出:膜是由脂质组成的。
2.20世纪初,荷兰科学家提出:细胞膜中的脂质分子必为连续的两层。
3.1959年,罗伯特森提出生物膜的模型:蛋白质——脂质——蛋白质三层结构构成,并描述为静态结构。
4.1970年,科学家通过实验证明细胞膜具有流动性。
5.1972年,桑格和尼克森提出流动镶嵌模型。
(二)流动镶嵌模型的基本内容1.膜是由蛋白质和脂类组成的。
2.膜的基本支架:磷脂双分子层。
该支架具有流动性。
3.蛋白质分子有的镶嵌在磷脂双分子层表面,有的嵌入其中间,有的横跨整个磷脂双分子层,大多数蛋白质分子是可以运动的。
4.膜的结构特点:流动性。
5.膜的功能特点:选择透过性。
本节内容包括:①对生物膜结构的探索历程②流动镶嵌模型的基本内容。
本节内容充分体现了生物体结构与功能的适应。
(1)细胞膜的成分主要是蛋白质和脂类,其中,蛋白质约占膜干重的20%~70%,脂类约占30%~80%,各种膜所含蛋白质和脂类的比例同膜的功能有密切关系,功能活动较旺盛的细胞,其蛋白质的含量高,因为膜的功能主要由蛋白质来承担,此外,细胞膜中还有10%左右的糖类,它们与蛋白质或脂类结合成糖蛋白或糖脂,分布在细胞膜的外表面,与细胞表面的识别有密切关系。
(2)构成细胞膜的基本骨架是磷脂双分子层,蛋白质分子覆盖在磷脂双分子层表面,或贯穿在磷脂双分子层之间,或镶嵌在磷脂双分子层当中。
(3)结构特点:组成细胞膜的磷脂分子和蛋白质分子大都是可以运动的,这种结构特点,使细胞膜具有一定的流动性。
(4)细胞膜的功能:一是保护作用,包括支持、识别、免疫;二是控制物质进出细胞,包括吸收、分泌、排泄等。
学习本节知识,要注意用“结构与功能相适应”的观点来分析细胞膜的结构与其功能之间的关系。
【例题】根据细胞膜的化学成分和结构特点,分析下列材料并回答问题:(1)1895年,Overton在研究各类未受精卵细胞的透性时,发现脂溶性物质容易透过细胞膜,反之,则比较困难,这表明组成细胞膜的主要成分中有(2)1925年,Gorter Grendel用丙酮提取红细胞膜的类脂,它在空气一水面上展开时,这个单层分子的面积相当于原来红细胞表面积的两倍油此可以认为细胞膜由组成。
生物膜

生物膜的微生物相:细菌:细菌是微生物膜的主体,其种类受基质类型、附着生长状况、pH、温度等的影响;异养菌是生物膜中的主要细菌,可分为好氧异养菌、厌氧呼吸型异养菌、厌氧异养菌、兼性厌氧菌四类。
常见的细菌种类有:球衣菌、动胶菌、硫杆菌属、无色杆菌属、产碱菌属、八叠球菌属、亚硝化单胞菌属、硝化杆菌属等。
真菌:真核生物,大多数具有丝状形态。
当污水中有机物的成分变化、负荷增加、温度下降、pH降低和DO下降时,容易滋生丝状菌。
藻类:受阳光照射的生物膜中藻类为主要成分。
藻类主要限于生物膜反应器中上表层部分、数量少,对污水处理净化作用不大。
原生动物:原生动物在成熟的生物膜中不断捕食生物膜表面的细菌,从而保持生物膜的活性起作用。
后生动物:轮虫类、线虫类、昆虫类等。
观察生物膜中的微生物相可检查、判断生物膜反应器的运转情况及污水处理效果。
不同生物膜反应器生物的分布不同,需进行研究,好氧方面研究较深入一些,厌氧生物膜微生物的分布研究还应深入。
影响微生物附着的因素总结:裁体表面性质:载体的类型、表面化学特性、载体浓度、载体形状大小、载体比表面积、粗糙度和孔隙;微生物的性质:微生物种类、表面化学特性、形状与大小、微生物的浓度、培养时间和条件;环境的性质:pH值、离子强度、水力学特征、竞争物种的存在,温度协调物种的存在、接触时间。
影响微生物在载体表面附着的因素很多,影响机制十分复杂,仍需进一步深入研究。
生物膜反应器的稳定运行方面的研究已取得不少进展。
但厌氧生物膜反应器的启动还处于研究之中并且是经验性的。
对于废水中微生物所需要的有关营养物、环境条件方面的知识的了解有助于选择适宜微生物生长最佳条件。
厌氧微生物其生长速率低,对环境要求严格,难于附着到固体表面等原因使厌氧生物膜反应器的启动比好氧困难。
通过选择合适的载体,采用适宜的接种方式的启动策略,可以加速厌氧生物膜反应器的启动。
生物膜法的不足:需要填料和支撑结构,在不少情况下基建投资超过活性污泥法;出水常常携带较大的脱落的生物膜片,大量非活性细小悬浮物分散在水中使处理水的澄清度降低;活性生物量较难控制,在运行方面灵活性差;载体材料的比表面积小时,BOD容积负荷有限;若采用自然通风供氧,在生物膜内层往往形成厌氧层,从而缩小了具有净化功能的有效容积。
高一生物膜知识点

高一生物膜知识点膜是生命体内的一个重要组成部分,它在维持生命活动、调节物质的进出以及细胞与环境的相互作用中发挥着重要作用。
在高一生物学中,我们将学习关于膜的各个方面的知识,包括膜的组成、结构与功能等。
本文将以膜的结构与功能为主线,在深入探讨的同时,为读者提供一个全面了解膜的知识点。
一、膜的组成与结构细胞膜是由磷脂双层结构组成的,其中的磷脂分子是双层排列形成的,疏水部分朝向内部,亲水部分朝向外部。
此外,膜中还存在着蛋白质、固醇和糖等其他成分。
磷脂双层主要起到了屏障的作用,控制物质的进出。
而蛋白质则通过具有选择性通透性的通道,调节物质的交换。
在细胞膜中,有两种特殊的蛋白质存在,即跨膜蛋白和外周蛋白。
跨膜蛋白直接穿过整个膜层,可以起到信号传导、物质运输等功能。
而外周蛋白则与膜的内、外表面结合,起到支持、传导信号等作用。
固醇在膜中起到了调节作用,可以使膜更加稳定和柔软。
糖则结合在细胞膜的外表面,形成糖蛋白复合物,参与细胞间的粘附和识别。
二、膜的功能膜作为细胞的界限,其最重要的功能之一是选择性通透性。
细胞膜可以根据物质的大小、电荷和溶解度等特征,选择性地将物质进出细胞。
通过蛋白质的通道和运输体,细胞膜可以调节离子的进出,维持正常的离子浓度差和电位差,维持细胞内稳定的环境。
此外,细胞膜还可以通过受体和信号转导系统,接收并传递外界的信号。
当外界刺激到达细胞膜时,相关蛋白质可以被活化,从而激活内部的信号通路,调节细胞的生理状态。
这些信号通路的激活可以引起细胞的分裂、分化和凋亡等重要过程。
膜的另一个重要功能是细胞间的粘附和识别。
细胞膜上的糖蛋白复合物可以与其他细胞的膜结合,形成细胞间黏附结构。
这种结构在细胞的分裂、发育和生物体的组织形成中起着重要的作用。
同时,细胞膜上的糖也可以用作识别分子,通过与其他细胞或病原体上的糖结合,实现细胞间的相互识别,并引发相应的免疫反应。
三、膜的结构与功能的调节细胞膜的结构与功能可以通过多种方式进行调节。
生物膜结构与功能的解析与应用

生物膜结构与功能的解析与应用生物膜是生物体内一种重要的组织结构,它在细胞的分离、保护、传递信息等方面起着关键作用。
本文将探讨生物膜的结构与功能,并介绍其在生物科学和医学领域的应用。
一、生物膜的结构生物膜是由脂质分子和蛋白质组成的双层结构。
脂质分子主要是磷脂,它们具有亲水头部和疏水尾部的特性,使得脂质分子能够在水中形成自组装的双层结构。
蛋白质则嵌入在脂质双层中,起到传递信号、调节通道等功能。
生物膜的结构不仅仅是简单的双层,还包括许多微观结构。
其中,胆固醇是生物膜中的重要成分之一,它能够增加膜的稳定性和流动性。
此外,生物膜还含有许多膜蛋白,这些蛋白质能够形成通道,使得物质能够通过膜进行传递。
二、生物膜的功能生物膜具有多种功能,其中最重要的是细胞的分离和保护。
生物膜能够将细胞内外环境分隔开来,保护细胞内部的结构和功能不受外界环境的干扰。
此外,生物膜还能够调节物质的进出,维持细胞内外物质的平衡。
另外,生物膜还具有传递信息的功能。
生物膜上的膜蛋白能够与外界的信号分子结合,传递信号到细胞内部,从而调节细胞的生理活动。
这种信号传递过程在细胞的生长、分化和凋亡等过程中起到重要作用。
三、生物膜在生物科学中的应用生物膜在生物科学领域有广泛的应用。
首先,生物膜的研究有助于揭示细胞的结构和功能。
通过对生物膜的解析,科学家们可以了解细胞内外环境的交流方式,进而深入研究细胞的生理活动和疾病发生机制。
其次,生物膜的结构和功能也为药物研发提供了重要的参考。
药物需要通过生物膜进入细胞内部才能发挥作用,因此了解生物膜的结构和功能对药物的研发具有重要意义。
科学家们可以通过模拟生物膜的结构,设计出更加适合渗透生物膜的药物。
四、生物膜在医学领域的应用生物膜在医学领域也有广泛的应用。
首先,生物膜的研究有助于诊断和治疗疾病。
许多疾病都与生物膜的结构和功能异常有关,比如癌症、感染等。
通过对生物膜的研究,医生可以更好地理解疾病的发生机制,并开发出更有效的治疗方法。
生物膜

BD
细胞质基质是细胞结构的重要组成部分, 细胞质基质是细胞结构的重要组成部分,下列有关细胞质 基质的叙述正确的是 ( )
A.细胞质基质是活细胞进行新陈代谢的主要场所 . B.细胞质基质为新陈代谢的正常进行提供必要的物质条件, .细胞质基质为新陈代谢的正常进行提供必要的物质条件, 如提供ATP、核苷酸、酶、DNA 、核苷酸、 如提供 C.丙酮酸一定在细胞质基质中分解成二氧化碳和水 . D.细胞质基质是活细胞进行有氧呼吸的主要场所 .
B
C
下图为显微镜下黑藻细胞的细胞质环流示意图, 下图为显微镜下黑藻细胞的细胞质环流示意图,视野中的 叶绿体位于液泡的右方,细胞质环流的方向为逆时针, 叶绿体位于液泡的右方,细胞质环流的方向为逆时针,则 实际上, 实际上,黑藻细胞中叶绿体的位置和细胞质环流的方向分 别为: 别为: A. 叶绿体位于液泡的右方,细胞质环流的方向为顺时针 . 叶绿体位于液泡的右方, B. 叶绿体位于液泡的左方,细胞质环流的方向为逆时针 . 叶绿体位于液泡的左方, C. 叶绿体位于液泡的右方,细胞质环流的方向为逆时针 . 叶绿体位于液泡的右方, D. 叶绿体位于液泡的左方,细胞质环流的方向为顺时针 . 叶绿体位于液泡的左方,
生物膜的结构与功能

生物膜的结构与功能生物膜是生物体内外的一种薄膜状结构,由生物大分子聚集而成。
它在维持生物体内外环境稳定、免受外界环境变化等方面起着重要作用。
本文将从生物膜的结构和功能两方面进行论述。
一、生物膜的结构生物膜的结构主要由脂质双分子层、蛋白质和其他分子组成。
1. 脂质双分子层:脂质双分子层是生物膜的基本结构单元,由磷脂分子构成。
磷脂分子有亲水头部和疏水尾部,因此它们排列成双分子层,使亲水头部面朝水相,尾部面朝膜内。
这样的排列形式实现了膜的隔离和包裹功能。
2. 蛋白质:蛋白质是生物膜中的重要组成部分,可以分为固定蛋白和浮游蛋白。
固定蛋白通过与脂质双分子层相互作用,稳定膜的结构。
浮游蛋白能够在膜上自由运动,并参与信号传递、物质转运等生物过程。
3. 其他分子:除了脂质双分子层和蛋白质外,生物膜还含有一些其他分子,如糖类和胆固醇。
这些分子在生物膜中发挥着重要的生理功能,比如参与细胞识别和信号传导过程。
二、生物膜的功能生物膜具有多种功能,包括隔离、选择性通透、信号传导和细胞识别等。
1. 隔离功能:生物膜通过脂质双分子层的排列形式,将细胞内外环境隔离开来,维持细胞内外环境的稳定。
这种隔离功能保护了细胞的内部结构和功能,使细胞能够在相对稳定的环境中进行生命活动。
2. 选择性通透功能:生物膜具有选择性通透的特性,通过脂质双分子层和蛋白质通道控制物质的进出。
这种选择性通透性使得细胞可以对外界环境做出响应,实现物质的吸收、排泄和交换等生物过程。
3. 信号传导功能:生物膜中的蛋白质和其他分子能够与外界信号相互作用,传递信号到细胞内部,并参与细胞的信号传导过程。
这种信号传导功能使得细胞能够感知和响应外界环境的变化,从而适应不同的生理和生化条件。
4. 细胞识别功能:由于生物膜上的糖类和蛋白质的特异性识别性质,细胞能够通过与其他细胞和分子进行识别和交互,实现细胞间的相互作用和组织形成。
细胞识别功能在生物体内的发育、免疫和疾病等方面起着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物膜1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?2、从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程。
3、何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂相结合?4、比较主动输运与被动输运的特点及其生物学意义。
5、说明Na+-K+泵的工作原理及其生物学意义。
生物膜(bioligical membrane):细胞和细胞器所有膜结构的总称,是镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用,并有大量的酶结合位点,也是与许多能量转化和细胞内通讯有关的重要部位。
流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。
在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。
有的蛋白质“镶”在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。
另外脂和膜蛋白可以进行横向扩散。
生物膜的功能:跨膜运输能量转换信息识别与传递运动和免疫1答:生物的基本结构特征是膜的流动性和不对称性。
生物膜的流动镶嵌模型:膜的共同结构特点是以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构,而具有不同生理功能的蛋白质。
流动镶嵌模型主要强调(1)膜的流动性,膜蛋白和膜脂均可侧向运动;(2)膜蛋白镶嵌在脂类中表现出分布的不对称性,有的镶嵌在膜的内外表面,有的嵌入或横跨脂双分子层。
膜的流动性是表现生物膜正常功能的必要条件,如通过膜的物资运输、细胞识别、细胞免疫、细胞分化及激素的作用等都与膜的流动性密切相关。
膜的不对称性决定了生物膜内外表面功能的特异性。
从生物膜结构模型演化说明人们对生物膜结构的认识过程。
2答:对生物膜的分子结构的认识经历了四个发展阶段:(1)脂质双分子层模型:研究人员通过实验发现易溶于脂类的物质易通过膜,所以推测膜由脂质构成,有通过计算总面积,得出膜的模型是脂质双分子层,极性的亲水基团朝向外侧的水性环境。
(2)Davson-Danielli模型:即“蛋白质-脂质-蛋白质”三明治式的细胞膜分子结构模型,这个模型的提出是建立在人们对于蛋白质在细胞膜中作用有了初步认识的基础上。
(3)单位膜模型:即生物膜由蛋白质-脂质-蛋白质的单位膜构成,该模型继用了前两种模型的合理成分,但未正确解释蛋白质的位置(4)流动镶嵌模型:该模型强调膜的流动性,膜蛋白和膜脂均可侧向运动,膜蛋白镶嵌在脂类中并表现出分布不对称性,而且是通过疏水和亲水相互作用维持膜的结构。
该模型强调膜的流动性。
生物膜的模型还在不断的完善中,从这一演化过程中可以看出,人们是通过不断的研究,不断地从实验中发现新现象,在前人的研究基础上不断地完善对于生物膜结构的认识。
1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?生物膜的组成和特点:膜主要是由脂类(lipid) 和蛋白质以非共价键相互作用结合而成的二维流动体系。
脂类分子呈连续的双分子层(bilayer)排列。
膜具有双亲性。
蛋白质相对于脂双层具有不同镶嵌方式。
生物膜中各种组分的分布是高度不对称的。
生物膜的基本功能:它们是把细胞分割成一个个“小室”(compartment) 的物理屏障。
它们具有选择通透性。
它们是“小室”间传递化学信息和能量的介面。
它们为蛋白质的合成、加工与修饰、分选与定位,提供了工作平台和输运载体。
2、从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程。
(1)片层结构模型此模型的主要内容为:细胞膜是由双层脂分子及内外表面附着的蛋白质所构成的。
即蛋白质-脂-蛋白质的三层结构,脂质分子平行排列并垂直于膜平面。
双层脂质分子的非极性端相对,极性端向着膜的内外表面,在内外表面各有一层蛋白质。
膜上有一些二维伸展的孔,孔的表面也是由蛋白质包被的,这样使孔具有极性,可提高水对膜的通透性。
这一模型将膜结构同所观察到的生物学理化性质联系起来, 对后来的研究有很大的启发。
缺少必要的细节,是对膜结构的一个较粗浅的认识。
(2)单位膜模型此模型是由J.D.Robertson于1959年提出的。
单位膜模型是在片层结构模型的基础上发展起来的另一个重要模型。
它与片层结构模型有许多相同之处,最重要的修改是膜脂双分子层内外两侧蛋白质存在的方式不同。
单位膜模型强调的是蛋白质为单层伸展的β折叠片状, 而不是球形蛋白。
单位膜模型还认为膜的外侧表面的膜蛋白是糖蛋白,而且膜蛋白在两侧的分布是不对称的。
这一模型的直接证据来自电子显微镜的观察。
但这一模型将生物膜描述为三明治式的静态统一结构,解释不了膜的许多生理功能。
把膜看成是静止的无法说明膜如何适应细胞生命活动的变化。
不同的膜其厚度不都是7.5 nm,一般在5~10 nm之间。
如果蛋白质是伸展的, 则不能解释酶的活性同构象的关系。
该模型也不能解释为什么有的膜蛋白很容易被分离,有些则很难。
(3)流动镶嵌模型1970年,Larry Frye等将人和鼠的细胞膜用不同的荧光抗体标记后,让两种细胞融合,杂交细胞的一半发红色荧光、另一半发绿色荧光,放置一段时间后发现两种荧光抗体均匀分布。
提出假说:细胞膜具有流动性认为生物膜是一种流动的、嵌有各种蛋白质的脂质双分子层结构,其中蛋白质犹如一座座冰山漂移在流动脂质的海洋中。
基本内容:磷脂双分子层构成膜的基本支架。
蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层(体现了膜结构内外的不对称性)。
磷脂分子是可以运动的,具有流动性。
大多数的蛋白质分子也是可以运动的。
大多数的蛋白质分子也是可以运动的。
强调了膜的流动性。
强调了膜的不对称性。
忽视了膜蛋白对脂质分子的控制作用。
忽视了膜各部分流动的不均一性。
3、何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂相结合?根据蛋白分离的难易及在膜中分布的位置,膜蛋白基本可分为两大类:膜外在蛋白和膜内在蛋白。
膜内在蛋白通过一段疏水肽链插入脂双层中,从而抛锚在膜上。
膜内在蛋白露出膜外的部分含较多的极性氨基酸,属亲水性,与磷脂分子的亲水头部邻近;嵌入脂双层内部的膜蛋白由一些非极性的氨基酸组成,与脂质分子的疏水尾部相互结合,因此与膜结合非常紧密。
4、比较主动输运与被动输运的特点及其生物学意义。
被动运输方向是沿电化学梯度方向,不需要能量,有的需要载体蛋白介导(协助扩散),有的不需要(简单扩散)。
主动运输方向是逆电化学梯度方向,需要能量,需要载体蛋白介导。
被动运输意义:保证细胞或细胞器从周围环境中或表面摄取必要的营养物质及将分泌物、代谢物以及一些离子排到细胞外。
主动运输意义:(1)保证细胞或细胞器从周围环境中或表面摄取必要的营养物质,即使这些营养物质在周围环境中或表面的浓度低;(2)能够将细胞内的各种物质,如分泌物、代谢物以及一些离子排到细胞外,即使这些营养物质在细胞外的浓度比细胞内的浓度高得多;(3)能够维持一些无机离子在细胞内恒定和最适的浓度,特别是K+、Ca2+和H+的浓度。
5、说明Na+-K+泵的工作原理及其生物学意义。
细胞内K+ 比细胞外高10 -20 倍,细胞外Na+ 比细胞内高10 - 20 倍,这些浓度梯度是由质膜Na-K 泵(Na+ - K+ pump)来维持的Na+ - K+ pump 是一个antiporter, 将K+ 泵入,将Na+泵出。
工作机制:输运循环依赖于蛋白的自身磷酸化,ATP末端磷酸转移到一个aspartic acid 残基上自身磷酸化的泵称为P-型输运ATP酶(P-type transport ATPases)质膜Na+- K+ pump 致电(electrogenic):Na+- K+ pump 导致跨膜电位(membrane potential)的产生。
原因: 每一循环泵出3 Na+ 泵入2 K+ ,导致细胞电位内负外正意义:a. 形成跨膜电势。
由于K+由内向外泄露建立跨膜电势,对电压门通道,神经冲动起传递作用。
b. 维持渗透压。
细胞内生物大分子物质水解,产生电离,带负电荷,从而吸引胞外Na+进入;细胞内Na+升高后,使水分进入细胞,由此引起细胞的膨胀,然后再通过Na+-K+泵,泵出Na+,维持渗透压。
c. 可以协助其它物质运输。
(对调节细胞的渗透性(tonicity)起关键作用。
水通过渗透作用可沿浓度梯度慢慢进入细胞(osmosis) ) 6、为什么说蛋白质折叠的研究完善了生物中心法则(第二遗传密码)?按照生物中心法则得到的只是一串肽链,而非具有生物活性的蛋白质。
只有在经过一系列折叠之后,形成天然结构才具有活性,从而完成人体内一系列复杂的工作,所以说他是对生物中心法则的补充。
蛋白质链的盘曲折叠的规律并没有体现在遗传密码DNA中,而分析研究蛋白质链如何折叠成具有活性的天然结构就像之前破解dna密码一样,都包含了组成人体基本结构的重要信息,所以称它为第二套遗传密码。
7、液态镶嵌模型的主要内容是什么,主要强调了哪两个特性?基本内容:磷脂双分子层构成膜的基本支架。
蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层(体现了膜结构内外的不对称性)。
磷脂分子是可以运动的,具有流动性。
大多数的蛋白质分子也是可以运动的。
大多数的蛋白质分子也是可以运动的。
流动性和不对称性膜脂:细胞中含有两种脂类。
一种属非极性脂质,如由脂肪酸与甘油酯化所形成的三酯。
它们是一类疏水的脂质,称为真脂。
另一类属极性脂质,这种脂质分子具有一个亲水的头部(即极性端)和一个疏水的尾部(即非极性端),具有双亲性(amphipathic或amphiphilic)的特点,这种脂质称为类脂。
生物膜中的脂类,大都是极性脂质,主要包括三种类型:磷脂(phosnholipid)、固醇(sterol)和糖脂(glycolipid)。
l微米×l微米面积的类脂双层膜(lipid bilayer)大约有5 ×106个类脂分子。
1磷脂:含有磷酸基团的脂类称为磷脂。
它们是生物膜中最重要的脂类。
磷脂分子都含有亲水的极性头部和疏水尾链。
这两部分通过甘油骨架或神经鞘氨醇(sphingosine)骨架相连接,甘油骨架在原核和真核细胞膜中都广泛存在,而神经鞘氨醇骨架则主要存在于动物中。
2糖脂:糖脂(glycolipids)广泛分布于动物、植物和微生物细胞的膜系中。
它是生物膜中的寡糖与脂质结合形成的一种类脂。
糖脂中类脂的极性头部基团是通过糖苷键与糖分子相连,而不是象磷脂那样通过磷酸酯键相连接。
生物膜中的糖脂只存在于脂双层的外层表面,一般不超过脂分子的10%。
糖脂分为糖鞘脂和甘油醇糖脂两类。
参与许多重要的生物学功能,比如细胞识别,信号转导,维持细胞表面电荷等等3固醇:(1) 动物固醇(zoosterol)胆固醇(cholesterol)是最重要的一种动物固醇。