氟废水处理方法汇总

合集下载

化工项目含氟废水处理方案

化工项目含氟废水处理方案

化工项目含氟废水处理方案随着化工工艺的不断进步,含氟废水处理逐渐成为化工行业中一个重要的环保问题。

含氟废水具有很高的毒性和难降解性,对环境造成了严重的危害。

因此,研究和开发有效的含氟废水处理方案至关重要。

本文将探讨几种常见的含氟废水处理方案,并介绍其原理和应用。

1.生物处理法生物处理法是将含氟废水通过微生物反应器进行处理。

该方法通过利用微生物的代谢活动来降解废水中的氟化物。

常见的生物处理方法包括曝气池法、厌氧消化法等。

曝气池法通过将含氟废水注入曝气池中,通过加入适当的氧气供氧,利用微生物氧化废水中的有机物和氟化物。

厌氧消化法则是通过将含氟废水加入到厌氧消化器中,通过微生物菌群的代谢来分解废水中的有机物和氟化物。

2.化学方法化学方法主要通过化学反应来处理含氟废水。

常见的方法包括氢氧化钙沉淀法、活性炭吸附法等。

氢氧化钙沉淀法是通过加入适量的氢氧化钙,将废水中的氟化物与氢氧化钙反应生成不溶性的氟化钙沉淀物,从而去除废水中的氟化物。

活性炭吸附法则是通过将废水通过活性炭床进行处理,活性炭上的吸附剂可以有效地吸附废水中的氟化物。

3.膜分离法膜分离法是一种通过半透膜来分离溶质和溶剂的方法。

常用的膜分离方法包括反渗透法和纳滤法。

反渗透法是通过半透膜的高压或浓度差来实现溶质的分离和浓缩,从而去除废水中的氟离子。

纳滤法则是利用纳滤膜的孔径特性,通过筛选分子尺寸较大的溶质,将废水中的氟离子过滤掉。

综上所述,针对含氟废水的处理,可以选择生物处理法、化学方法和膜分离法等多种处理方案。

根据不同情况的废水水质和处理要求,可以选择合适的处理方法进行处理。

同时,为了取得良好的处理效果,还可以将不同的处理方法进行综合应用,从而提高废水处理的效率和降低成本。

然而,需要特别注意的是,在进行化学方法和膜分离法处理时,需要合理管理和处理废水中产生的废弃物,以免对环境造成二次污染。

含氟废液的处理方法

含氟废液的处理方法

含氟废液的处理方法
含氟废液的处理方法有以下几种:
1. 离子交换法:使用含氟废液经过离子交换树脂床,将废液中的氟离子与树脂中的其他离子进行交换,以实现废液的处理和回收。

2. 蒸发法:将含氟废液进行蒸发,使水分蒸发掉,留下含氟溶液。

然后通过冷凝和结晶方法,将含氟物资从溶液中分离出来。

3. 沉淀法:向含氟废液中加入适量的钙氢氧化物(Ca(OH)2)或钙氟化物(CaF2)等沉淀剂,使废液中的氟离子与沉淀剂反应生成难溶性的氟化钙(CaF2) 沉淀,然后通过过滤、压滤等方法将沉淀物分离出来。

4. 化学法:根据废液中不同的成分进行相应的化学反应处理,以实现废液中氟化物离子的沉淀或转化为无毒或无害物质的方法。

5. 浓缩和固化法:通过浓缩含氟废液,使其体积减小,然后将其固化为无害的固体废物,通常通过添加固化剂或与其它废物混合,制备成块状,便于储存和运输。

这些处理方法可以根据具体的废液成分和处理要求选择合适的方法进行处理和回收。

同时,也需要遵守国家和地方相关的环境法规和标准,确保废液的安全处
理。

工厂含氟废水的处理流程及注意事项

工厂含氟废水的处理流程及注意事项

工厂含氟废水的处理流程通常包括以下几个关键步骤,并且在处理过程中需要注意以下事项:处理流程:1.预处理:o pH值调节:首先,需要根据废水中的氟离子浓度和其它杂质成分,调整废水的pH值至适合后续处理的范围。

例如,可以使用石灰乳(Ca(OH)₂)或硫酸铝(Al₂(SO₄)₃)等化学药剂中和酸性废水,使其趋于中性或偏碱性,以便利于氟离子与钙离子或其他金属离子形成沉淀。

2.化学沉淀法:o沉淀反应:向废水中加入氯化钙(CaCl₂)或其他能与氟离子形成难溶盐的物质,如铝盐或铁盐,使氟离子转化为CaF₂或AlF₃等沉淀物。

o絮凝沉淀:可能还需要加入絮凝剂如聚丙烯酰胺等,促使沉淀物快速聚集长大,易于沉降分离。

3.固液分离:o沉淀池:在沉淀池中让沉淀物自然下沉,然后通过底部刮泥机收集上部清澈的废水。

o过滤:对于细小的悬浮物或未能有效沉淀的氟化物,可进一步通过砂滤、斜板沉淀池或者压滤等方式进行固液分离。

4.深度处理:o吸附法:利用活性炭、沸石或专用的除氟吸附剂,通过物理吸附或离子交换方式进一步去除废水中的氟离子。

o离子交换法:使用特定的离子交换树脂去除剩余的氟离子。

o膜处理技术:如反渗透(RO)、纳滤(NF)等高效分离技术也可用于深度脱氟。

5.最终处理:o中和与pH调整:确保处理后的废水pH值符合排放标准,必要时再次进行中和调节。

o消毒:如果废水还需回用或直接排放,可能需要进行消毒处理,确保无害化。

注意事项:•精确计量:投放化学药剂时要精确控制剂量,防止过量导致药剂浪费或不足导致处理效果不佳。

•pH监控:持续监测废水的pH值变化,以确保最佳反应条件。

•安全防护:处理过程中产生的某些物质可能有毒有害,操作人员需做好个人防护措施。

•沉淀物处置:沉淀出的含氟固废需要按照危险废物管理规定妥善处置,不可随意堆放。

•水质检测:处理后的废水需定期进行氟离子浓度和其他污染物指标的检测,确保达标排放。

•节能与资源回收:考虑在处理过程中如何节约能源,并探索氟资源回收的可能性,如通过热处理得到氟化盐再利用。

含氟废水的多种处理方法

含氟废水的多种处理方法

含氟废水的多种处理方法含氟废水处理有多种方法。

这里整理了化学沉淀法、混凝沉淀法、环瑞GMS 系列除氟药剂法、吸附法、电析法、除氟药剂法、电凝聚法、离子交换树脂法、反渗透法、液膜法、微生物处理法、诱导结晶法。

一、除氟剂法:主要分为液体除氟剂GMS-F4和固体除氟药剂GMS-F6,该产品主要成分为铝铁硅无机聚合盐,特殊的结构设计使其能够在水中快速水解,产生大量带正电荷的聚合胶体,胶体中含有多个羟基配位体,能够在废水中与氟离子实现交换,交换容量大。

在交换以后,胶体半径大幅度降低,与游离氟离子产生强电荷吸附形成共沉淀。

除氟剂是一种专为解决废水中氟去除难题研发的药剂,它适用于各行业污水氟超标治理;反应速度快,去除率可达95%以上。

(1) 相对钙盐,去除过程产生的污泥量极少,形成的氟化物沉淀不会逆转;(2) 环瑞除氟剂是一种多功能高效除氟剂,在强化去除重金属离子、悬浮物等方面具有明显的作用;(3) 沉降速率快,吸附效率快,去除率高。

在相同的条件下除氟效率是活性氧化铝的2-4倍,是沸石分子筛的8-10倍,可大大降低处理成本;(4) 反应快速、投加量少。

除氟混合反应仅需5-10分钟左右,可根据现场实际情况在工艺过程中投加处理,药剂投加成本比钙盐除氟剂、氧化铝离子交换吸附等经济;(5) 产品中不含钙质,不会造成系统管道等组件堵塞;(6) 产品中无游离氯离子,压滤液对生化系统无影响;(7) 处理设备简单,投加即可见效,无需复杂调试;(8) 不含钙质,长期使用不会造成管道、阀体结垢、堵塞现象。

二、化学沉淀法:化学沉淀法是含氟废水最常用的处理方法,普遍应用于高浓度含氟废水中。

是将某些化学药品加入含氟废水中,从而生成难溶性氟化物或者利用共沉淀吸附氟离子,再用自然沉淀或者过滤材料等方法使沉淀物与水溶液分离,以达到除氟的目的。

常用的试剂是石灰和氯化钙。

该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。

含氟废水处理方法

含氟废水处理方法

含氟废水处理方法含氟废水是指含有氟化物的废水,通常来自冶金、化工、电镀、制革等工业生产过程中的废水排放。

含氟废水对环境和人体健康都具有一定的危害性,因此需要进行有效的处理和处理。

下面将介绍几种常见的含氟废水处理方法。

一、物理方法。

物理方法是指利用物理原理对含氟废水进行处理的方法。

其中,吸附法是一种常见的物理方法。

吸附法通过将含氟废水与吸附剂接触,利用吸附剂对氟离子的吸附作用,将废水中的氟离子吸附到吸附剂表面,从而实现含氟废水的处理。

常用的吸附剂包括活性炭、氧化铁等。

此外,膜分离技术也是一种常见的物理方法,通过特定的膜对含氟废水进行过滤,从而实现氟离子的分离和去除。

二、化学方法。

化学方法是指利用化学原理对含氟废水进行处理的方法。

其中,沉淀法是一种常见的化学方法。

沉淀法通过加入适当的沉淀剂,如氢氧化钙、氢氧化钠等,将废水中的氟离子与沉淀剂发生反应生成沉淀物,从而实现含氟废水的处理。

此外,离子交换法也是一种常见的化学方法,通过离子交换树脂对废水中的氟离子进行交换,将氟离子吸附到树脂上,从而实现氟离子的去除。

三、生物方法。

生物方法是指利用生物体对含氟废水进行处理的方法。

其中,生物降解法是一种常见的生物方法。

生物降解法通过将含氟废水中的有机物质转化为无害的物质,利用微生物的代谢活动来去除废水中的氟离子。

此外,植物吸附法也是一种常见的生物方法,通过植物的吸附作用将废水中的氟离子吸附到植物体内,从而实现含氟废水的处理。

四、综合方法。

综合方法是指将物理、化学、生物等多种方法结合起来对含氟废水进行处理的方法。

通过综合利用各种方法的优势,可以更有效地去除含氟废水中的氟离子,实现废水的处理和净化。

总之,针对含氟废水的处理,可以根据实际情况选择合适的处理方法,也可以结合多种方法进行综合处理,以达到净化废水、保护环境的目的。

希望各行各业在生产过程中能够重视含氟废水处理工作,采取有效的措施,共同保护我们的环境。

如何处理含氟废水,四种含氟废水的处理技术介绍

如何处理含氟废水,四种含氟废水的处理技术介绍

如何处理含氟废水,四种含氟废水的处理技术介绍由于含氟化物越来越多被使用,含氟废水产生的问题也越来越严重。

目前,随着含氟矿物的开采和加工,氟合成的快速发展,特别是电子工业和氟化工,含氟废水的排放量急剧上升,严重破坏了周边水环境,威胁着居民的健康。

艾柯含氟废水处理设备采用微生物反应装置,处理含氟废水高效快捷。

从含氟废水的来源入手,在此基础上艾柯酸碱废水处理设备厂家对含氟废水的处理工艺进行了研究,希望能为相关工作人员提供一些参考。

1.含氟废水的来源在工业生产过程中,大部分原料都含有含氟物质,在生产过程中也会添加含氟物质,这就会导致含氟废水的问题。

其来源主要来自氟矿开采、氟合成、稀土金属和有色金属冶炼、铝电解精炼、电镀、焦炭、火力发电、玻璃、氟硅酸盐、农药、水泥、砖瓦、不锈钢酸洗、化肥、陶瓷、硅电气部件洗涤、石油化工等传统行业;此外,在现代工业中,有机合成化学品、电子集成电路工业、原子能等都会产生含氟物质。

氟主要以氟硅酸、氢氟酸等氟盐类的形式存在,不同类型废水中的氟含量也有一定的差异。

因此,由于它包含了许多污染物,增加了处理的难度。

对于高浓度氟化物,一般需要结合多种方法来完成有效处理,并保证其浓度满足工业废水排放标准,即小于10mg/L。

若氟浓度降至饮用水标准的1.0mg/L,则应采用吸附剂进行多级吸附处理。

因此,随着中国含氟废水排放量的不断增加,加强废水处理,实现氟的循环利用显得尤为重要。

2.含氟废水处理方法2.1生物法处理:生物法是一种通过微生物将有机物和无机物转化为可降解物质的废水处理方法。

对于含氟废水,生物法主要是通过微生物将氟离子还原为氟化物,从而达到去除氟离子的目的。

常用的生物法处理技术包括生物接触氧化法、生物膜反应器法等。

2.2化学法处理:化学法处理含氟废水的方法较多,主要包括沉淀法、吸附法、离子交换法等。

其中,沉淀法主要是通过加入适当的化学试剂,使氟离子与其反应生成沉淀物而去除氟离子。

吸附法则是利用吸附剂将废水中的氟离子吸附到吸附剂表面,从而去除氟离子。

含氟废液的处理方法

含氟废液的处理方法

含氟废液的处理方法含氟废液是指在工业生产中产生的含有氟化物的废液。

由于氟化物具有强烈的腐蚀性和毒性,直接排放到环境中会对生态环境和人体健康造成严重危害。

因此,必须对含氟废液进行有效处理,以减少对环境的污染和人类的危害。

一种常见的含氟废液处理方法是氟化物沉淀法。

该方法利用加入适量的沉淀剂,如钙离子、铝离子等,与废液中的氟离子发生反应,生成沉淀物。

沉淀物可以通过过滤或离心等方法分离出来,从而实现对氟离子的去除。

这种方法具有操作简单、成本低廉的优点,但对于高浓度的含氟废液处理效果有限。

另一种常用的处理方法是电化学法。

该方法利用电解池中的阳、阴极对废液进行电解,通过电解过程中产生的化学反应来去除氟离子。

在阳极上,氟离子会被氧化成氟气排放出来;而在阴极上,水分子会被还原成氢气释放出来。

通过这种方式,可以将含氟废液中的氟离子去除,达到处理的目的。

电化学法具有处理效果稳定、能耗低的特点,适用于各种浓度的含氟废液处理。

除了沉淀法和电化学法,还有其他一些物理化学方法可以用于处理含氟废液。

例如,逆渗透法利用半透膜对废液进行过滤,将其中的氟离子等溶质通过半透膜分离出来,从而实现对废液的处理。

另外,还有膜萃取、吸附等方法也可以用于含氟废液的处理。

这些方法在处理含氟废液时,具有高效、环保的特点,但操作复杂度和成本较高。

除了以上的物理化学方法,生物技术也可以应用于含氟废液的处理。

利用某些微生物的代谢特性,可以将废液中的氟离子转化为无害的物质。

例如,某些细菌可以通过代谢作用将氟离子还原成氟化物,从而降低废液中的氟离子浓度。

这种生物处理方法具有操作简单、无需添加大量化学药剂的优点,但对废液中的其他成分有一定的适应性要求。

含氟废液的处理方法有多种选择,包括沉淀法、电化学法、逆渗透法、膜萃取、吸附和生物技术等。

不同的处理方法适用于不同类型和浓度的废液,需要根据具体情况选择合适的方法。

在实际应用中,还可以结合多种方法进行联合处理,以提高处理效果。

废水除氟的方法

废水除氟的方法

废水除氟的方法废水中的氟离子是一种常见的污染物,它对环境和人体健康都有一定的危害。

因此,除氟是废水处理过程中的重要环节。

目前,有多种方法可以用于废水除氟,下面将介绍几种常见的方法。

一、吸附法吸附法是一种常见的废水除氟方法,它利用吸附材料将废水中的氟离子吸附下来。

常用的吸附材料有活性炭、陶瓷颗粒、氧化铝等。

这些吸附材料具有较大的比表面积和丰富的孔隙结构,可以有效地吸附废水中的氟离子。

二、离子交换法离子交换法是一种常用的废水除氟技术,它利用具有交换功能的树脂将废水中的氟离子与树脂上的其他离子进行交换。

常用的离子交换树脂有强碱型树脂和弱碱型树脂。

离子交换法除氟效果好,处理效率高,操作简便,因此被广泛应用于废水处理领域。

三、化学沉淀法化学沉淀法是一种将废水中的氟离子与某种化学试剂反应生成不溶性沉淀物的方法。

常用的化学试剂有钙、铝、铁等。

在适当的条件下,这些化学试剂与废水中的氟离子发生反应,生成不溶性的氟化钙、氟化铝、氟化铁等沉淀物,并通过沉淀或过滤的方式将其分离出来。

四、电化学法电化学法是一种利用电解技术将废水中的氟离子转化为氟气或沉淀物的方法。

通过在电解池中加入适当的电解质和电流,使废水中的氟离子在电极上发生氧化还原反应,生成氟气或沉淀物。

电化学法具有除氟效果好、操作简便等优点,但其设备成本较高,电能消耗较大。

五、膜分离法膜分离法是一种利用膜的选择性渗透性质将废水中的氟离子分离出来的方法。

常用的膜分离技术包括反渗透、纳滤、超滤等。

这些膜具有不同的孔径和分离效果,可以根据废水中氟离子的浓度和要求的除氟效果选择合适的膜分离技术。

除了以上几种常见的废水除氟方法,还有一些新兴的技术正在不断发展和应用,如生物降解法、光催化法等。

这些技术在除氟效果、处理效率、设备成本等方面都有不同的特点,可以根据实际情况选择合适的方法进行废水处理。

废水除氟是一项重要的环保工作,采用适当的除氟方法可以有效地降低废水中的氟离子浓度,保护环境和人类健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含氟废水处理大汇总氟是一种微量元素,饮用水含氟量在0.4~0.6mg/L的水对人体无害有益,而长期饮用含量大于1.5mg/L的高氟水则会给人体带来不利影响,严重的会引起氟斑牙和氟骨病。

我国某些地区特殊的地球化学特征使该区域水源含氟量大于1.0mg/L,从而造成地方性氟中毒。

我国有将近l亿人生活在高氟水地区,目前在我国氟受害者多达几千万人。

除个别地区自然因素外,大量的高氟工业废水的排放是主要因素之一。

随着我国工业的迅猛发展,含氟废水的排放量将会增加,因此.含氟废水的排放必须受到严格控制。

某些高浓度含氟工业废水的排放,更对人们身体健康造成很大威胁,所以必须对含氟工业废水加以处理。

1973年颁布的《工业三废排放试行标准》(GBJ4-73)中规定,氟的无机化合物排放标准为10mg/L(以F-计)。

1988年颁布的《污水综合排放标准》(GB8789-88)中规定,新扩改企业对外排放含氟废水,氟化物不得超过10mg/L(向二级污水处理厂排放除外)。

此废水带出物是以氟化钙计,那么1988年的标准比1973年的标准严格了一倍以上。

目前含氟废水的主要处理方法是化学沉淀法和吸附法,这两种方法存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。

冷冻法、离子交换树脂法、超滤法、电渗析等,因为处理成本高,除氟效率低,多停留在实验阶段,很少推广应用于工业含氟废水治理。

笔者认为,应围绕沉淀法吸附法为主体工艺,后续深处理工艺,提高效率,节约成本,应对含氟废水的特点,开发合理工艺。

化学沉淀法一、Ca(OH)2+PAC+PAM+ 吸收塔法污水处理工艺流程对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。

该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。

氟化钙在18 ℃时于水中的溶解度为16.3 mg/L,按氟离子计为7.9 mg/L,在此溶解度的氟化钙会形成沉淀物。

氟的残留量为10~20 mg/L时形成沉淀物的速度会减慢。

当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。

因此用石灰处理后的废水中氟含量一般不会低于20~30 mg/L。

石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。

投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15 mg/L左右,且水中悬浮物含量很高。

当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。

含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH 为7~8时,废水中的总氟含量可降到10 mg/L左右。

为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。

为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。

在任何pH下,氟离子的浓度随钙离子浓度的增大而减小。

在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。

因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。

这也有利于减少处理后排放的污泥量。

由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。

例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。

这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。

其有效的处理方法是先用无机酸将废水pH调到6~8之间,再与氯化钙等反应就可有效地除去氟离子。

若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。

对于成分复杂的含氟废水,可用加酸反调pH法,即首先在废水中加入过量的石灰,使pH=11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到7.5~8,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。

近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐等工艺,处理效果比单纯加钙盐效果好。

如阎秀芝提出氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.8~11.8,反应0.5 h,然后加入磷酸盐,再调pH为6.3~7.3,反应4~5 h,最后静止澄清4~5 h,出水氟质量浓度为5 mg/L左右。

钙盐、磷酸盐、氟三者的摩尔比大约为(15~20)∶2∶1。

文献中报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至7~8。

沉降15 min后砂滤,出水氟离子浓度为4 mg/L。

氯化钙、三氯化铝和氟的摩尔比为(0.8~1)∶(2~2.5)∶1。

钙盐联合使用镁盐、铝盐、磷酸盐后,除氟效果增加,残氟浓度降低,主要是因为形成了新的更难溶的含氟化合物,剩余污泥和运行费用仅为原来的1/10。

如钙盐与磷酸盐合用时,会生成Ca5(PO4)3F沉淀;氯化钙与三氯化铝合用时形成有钙、铝、氟组成的络合物沉淀,其具体组成和结构尚待进一步研究。

二、吸附剂种类吸收法:1996年,德国的一项专利是利用硅胶来除去水中的氟。

1997年.曰本的另一专利中报道,一种除氟方法是在水中加入ca盐,使得F与Ca形成CaF2,再加入AL(OH)3胶体等。

这也是利用吸附法除氟。

同年.日本又以AL3+与Ca2+共同作用,调整pH至适宜值,可大量除氟。

美国、台湾、印度对此也进行了许多研究,如美国于1991成功的制得多孔微粒氧化锆氟吸附剂。

台湾用一种已用的催化剂作为除氟剂,取得了很好的效果。

I996年,印度同样得到吸附氟离子效果很好的改性氟石。

国内这几年也制得了许多效果很好的氟吸附剂。

如改性氧化铝吸附剂、两性淀粉吸附剂、负载镧改性纤维吸附剂等等,处理台氟废水具有明显优于其他氟处理剂的特点-根据所用的原料,可以将氟吸附剂分为铝吸附剂、天然高分子吸附剂、稀土吸附剂和其他类吸附荆。

吸附是发生在两相界面处的成分浓缩,吸附剂之所以具有良好的吸附特性,主要是由于它有密集的细孔结构和巨大的比表面积,或具有可以与吸附质分子形成化学键的基团,为此,吸附行为可分为物理吸附与化学吸附。

一般吸附剂的吸附机理都是与Langmuir机理有关的。

利用吸附剂表面与吸附质之间的作用力来完成的。

下面就它们的机理作一介绍。

1.含铝类吸附剂吸附机理活性氧化铝之所具有较好的吸附性能,这与它的结构有关。

表面干燥的氧化铝表面第一层由氧离子构成,氧离子与第二铝离子相连接,其量只为第二层氧离子的一半。

因此,有一半的铝离子将暴霹于表面上,第二层的氧离子正好符合AI2O3的AL/O比,与氟离于结合力较强。

X光电子能谱的研究表明,活性氧化铝对F的吸附是通过对NaF的化学吸附米实现的:A12O3 +Na+ F——AL2O3NaF在一些水合的A12O3表面,F-可发生氢键吸附。

在物理吸附中,铝盐水解生成的AL3(OH)4 5+、AL7(oH)174+和AL13O4(oH)177+等高价阳离子,通过静电作用吸附F-。

铝盐除氟常常与钙盐相结台,主要是因形成了难溶的含氟化合物,如CaCI2和ALCL3合用时,形成一种由Ca、AL及F组成的络台物,但是其具件组分和结构尚特进一步研究。

分子筛又称沸石,是一种水合硅酸盐类,分子筛是一种笼形孔洞骨架的晶体,经脱水后空间十分丰富,具有很大的内表面积,可以吸附相当数量的吸附质。

同时内晶表面高度极化,晶体空隙内部具有强大的静电场起作用,微孔分布单一均匀,并且有普通分子般大小,宜于吸附分离不物质的分子筛吸附的显著特征之一就足它具有选择吸附性能。

这种选择吸附性能有两种情况:一种是单纯根据分子的形状与大小来筛分子:另一种是根据分子极性、不饱和度、极化率来选择吸附。

此外分于筛还具有在低分压(低浓度)及较高温度下吸附能力强的优点。

2.天然高分子除氟机理一般高分子型吸附剂是两性的。

两性高分于水处理剂可分为两性淀粉、两性纤维素、两性植物胶。

对于改性原料的选择.世界各国依据各自的自然条件,侧重点不同。

我国目前改性植物胶为主要的水处理剂。

其中两性淀粉的制各是淀粉葡糖糖苷中羟基的反应活性,将其分别与阴、阳离子醚化剂反应得到的。

阴离子一般是有羧基、磷酸基或磺酸基构成的;阳离子基团是季胺基团构成的。

如最早制备的两性淀粉是用低取代度的阳离子淀粉与正磷酸进行热反应制成的。

两性纤维素是以羧甲基纤维紊为原料,在碱性条件先与3-氯-2-羟丙基三甲基氯化铵反应(或与三乙基氯化铵反应),可以得到含有羧甲基又有季铵盐基团的两性纤维素,这些活性基团增加了它的吸附力。

两性型壳聚糖吸附剂足以甲壳素为原料,在碱性条件下,与一氯乙酸反应引入羧甲基,同时进行水解脱乙酰基,制成的两性壳聚糖,有优越的吸附效果的。

含有许多根据壳聚糖的结构进行改性制成的各种两性壳聚糖,在水处理中发挥较好的效果。

至于茶叶质铁吸附剂的制备是利用了酚醛树脂的反应原理,茶叶中台有许多酚基,用甲醛处理后就使得一部分酚基与甲醛反应.生成结构复杂、分子庞大的多酚基、多羧基的化合物。

减少茶多酚在水中的溶解度,茶叶质中的多酚基和多羧基与Fe3+络合,结合力很强的。

F-是一种在无机离子中与Fe3+络台很强的络台剂,可以将茶叶质中的络合力相对较弱的有机物取代了,从而被吸附。

但是在茶叶质中的吸附机理较复杂,仍在进行深入研究中。

3.稀土吸附剂除氟机理锆水合氧化物的离子交换与吸附性质是由其表面羟基相关的质子化反应引起的。

但是太多数的稀土用作吸附剂都是将稀土负载在大表面积纤维状的物质上。

因为纤维状吸附剂具有较大的比表面积和较强的机械强度,而稀土与F-的配位能力强。

所以稀土金属氧化物对水中的氟离子具有较高的吸附容量,较强的吸附选择性。

将它加载到纤维基体上可望得到集纤维本身特点与稀土元素对氟离子的高吸附容量及高选择性于一体的氟吸附剂。

4.其他类吸附剂除氟机理各类吸附剂的踩氟机理与各自的体系有关。

如羟基磷酸钙对氟离子的吸附是通过对CaF2的化学吸附来实现的;氢氧化镁对氟离子的吸附机理与氢氧化铝相似。

由于各种除氟剂除氟机理的复杂性,许多除氟机理还在研究中。

三、铝盐絮凝沉淀法氟离子废水的絮凝沉淀法常用的絮凝剂为铝盐。

铝盐投加到水中后,利用Al3+与F- 的络合以及铝盐水解中间产物和最后生成的Al(OH)3(am)矾花对氟离子的配体交换、物理吸附、卷扫作用去除水中的氟离子。

相关文档
最新文档