两角差的余弦公式

合集下载

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式1.两角和的正弦公式:对于任意两个角A和Bsin(A+B) = sinAcosB + cosAsinB证明:利用三角和差化积的公式,我们有:sin(A+B) = sin[(A/2+B/2) + (A/2-B/2)]= sin[(A/2+B/2)]cos[(A/2-B/2)] + cos[(A/2+B/2)]sin[(A/2-B/2)] = 2sin(A/2)cos(B/2) + 2cos(A/2)sin(B/2)= sinAcosB + cosAsinB这就是两角和的正弦公式。

2.两角差的正弦公式:对于任意两个角A和Bsin(A-B) = sinAcosB - cosAsinB证明:利用三角和差化积的公式,我们有:sin(A-B) = sin[(A/2-B/2) + (A/2+B/2)]= sin[(A/2-B/2)]cos[(A/2+B/2)] + cos[(A/2-B/2)]sin[(A/2+B/2)] = 2sin(A/2)cos(B/2) - 2cos(A/2)sin(B/2)= sinAcosB - cosAsinB这就是两角差的正弦公式。

3.两角和的余弦公式:对于任意两个角A和Bcos(A+B) = cosAcosB - sinAsinB证明:利用三角和差化积的公式,我们有:cos(A+B) = cos[(A/2+B/2) + (A/2-B/2)]= cos[(A/2+B/2)]cos[(A/2-B/2)] - sin[(A/2+B/2)]sin[(A/2-B/2)] = cosAcosB - sinAsinB这就是两角和的余弦公式。

4.两角差的余弦公式:对于任意两个角A和Bcos(A-B) = cosAcosB + sinAsinB证明:利用三角和差化积的公式,我们有:cos(A-B) = cos[(A/2-B/2) + (A/2+B/2)]= cos[(A/2-B/2)]cos[(A/2+B/2)] + sin[(A/2-B/2)]sin[(A/2+B/2)] = cosAcosB + sinAsinB这就是两角差的余弦公式。

两角差的余弦公式 课件

两角差的余弦公式  课件
两角差的余弦公式
两角差的余弦公式
公式 简记符号 使用条件
cos(α-β)=_c_o_s_α__c_o_s_β__+_s_i_n_α__s_i_n_β__ _C_(α__-β__)
α,β都是_任__意__角__
【点拨】关于两角差的余弦公式 (1)公式的结构特点 公式的左边是差角的余弦,右边的式子是含有同名函数 之积的和式,可用口诀“余余正正号相反”记忆公式.
(2)公式中的角α,β 公式中的角α,β不仅可以是角,而且可以是任意的整 体,可以根据题目需要进行替换、变形代入,展开式仍 然成立.
(3)公式的灵活应用 首先是公式的逆用,可以把符合公式特点的展开式合并, 其次是角的灵活变化,如cosα=cos[(α+β)-β].
【自我检测】
1.化简cos15°cos45°+cos75°sin45°的值为
B. 6 2 2
D. 6 2 4
【解析】选D.cos(-15°)=cos15°=cos(60°-45°)
=cos60°cos45°+sin60°sin45°
1 2 3 2 2 6.
22 2 2
4
3.若向量a=(cos60°,sin60°),b=(cos15°,sin15°),
则a·b= ( )
2
又cos(α-β)= , 5
5
所以sin(α-β)= 1 cos2( )= 2 5 .
5
又因为0<2α<π,cos2α= 10,
10
所以sin2α= 1 cos2 2=3 10 ,
10
所以cos(α+β)=cos[2α-(α-β)]
=cos2αcos(α-β)+sin2αsin(α-β)

两角和与差的余弦公式

两角和与差的余弦公式

两角和与差的余弦公式余弦公式是三角学中常用的定理,用来计算三角形的角度和边长。

其中,两角和与差的余弦公式是一种特殊形式的余弦公式,用来计算两个角的和与差的余弦值。

在本文中,我们将详细介绍两角和与差的余弦公式,并且给出其证明及应用示例。

一、两角和与差的余弦公式的表述对于任意两个角A和B,其和与差的余弦值分别可以表示为:①余弦和公式:cos(A + B) = cosA * cosB - sinA * sinB②余弦差公式:cos(A - B) = cosA * cosB + sinA * sinB其中,cosA、cosB、sinA、sinB分别表示角A和角B的余弦和正弦值。

二、两角和与差的余弦公式的证明1.证明余弦和公式:我们先来证明余弦和公式cos(A + B) = cosA * cosB - sinA * sinB。

根据三角函数的定义,我们有:cos(A + B) = cos(α + β)= [exp(i(α + β)) + exp(-i(α + β))] / 2 (欧拉公式)= [exp(iα) * exp(iβ) + exp(-iα) * exp(-iβ)] / 2 (指数幂法则)= [(cosα + i * sinα) * (cosβ + i * sinβ) + (cosα - i * sinα) * (cosβ - i * sinβ)] / 2 (令exp(iα) = cosα + i *sinα,同样对于exp(iβ))= [(cosα * cosβ + i * cosα * sinβ + i * sinα * cosβ + i^2 * sinα * sinβ) + (cosα * cosβ - i * cosα * sinβ - i * sinα *cosβ - i^2 * sinα * sinβ)] / 2= [(cosα * cosβ + sinα * sinβ) + i * (cosα * sinβ + sinα * cosβ)] + [- (cosα * cosβ + sinα * sinβ) + i * (cosα * sinβ + sinα * cosβ)] / 2= (cosα * cosβ + sinα * sinβ)= cosA * cosB - sinA * sinB故余弦和公式成立。

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

两角差的正余弦公式

两角差的正余弦公式

两角差的正余弦公式
嘿呀,说到两角差的正余弦公式,那可真是太重要啦!正弦公式就是sin(A-B)=sinAcosB-cosAsinB 呀,比如说,就好像你有两个不同口味的糖果,一个是草莓味的正弦 A,一个是柠檬味的余弦 B,把它们混合起来就得到了一种新的味道!余弦公式呢,就是 cos(A-B)=cosAcosB+sinAsinB。

这就好像是把两个不同的拼图拼在一起,得到了一个全新的图案!
咱举个例子啊,就说在一个三角形里,有个角 A 是 60 度,角 B 是 30 度,那计算 sin(A-B)不就可以用这个公式嘛!你想想,这是不是很神奇?这两角差的正余弦公式不就像一把钥匙,帮我们打开好多数学难题的大门呐!哎呀,真的是太厉害啦!。

两角差的余弦公式

两角差的余弦公式

两角差的余弦公式1. 引言在数学和物理学中,余弦公式是关于三角形边与角之间关系的一种重要公式。

除了计算三角形的边长外,余弦公式还可以用来计算两个向量之间的夹角。

本文将介绍一种特殊情况下的余弦公式,即两角差的余弦公式,它在计算两个角度之间的夹角时非常有用。

2. 两角差的余弦公式余弦公式描述了三角形中某一边和与其相邻的两个角之间的关系。

对于某个三角形 ABC,设边长 BC 为 a,边长 AC 为 b,夹角 BAC 的度数为 A,夹角 ABC 的度数为 B,夹角 ACB 的度数为 C。

那么余弦公式可以表示为以下等式:c^2 = a^2 + b^2 - 2ab * cos(C)其中,c 表示边长 AB。

在计算两个角度之间的夹角时,我们可以利用上述公式进行推导得到两角差的余弦公式:cos(A-B) = cos(A) * cos(B) + sin(A) * sin(B)3. 两角差的余弦公式的推导为了推导两角差的余弦公式,我们首先回顾一下三角函数的定义。

对于某个角度θ,sin(θ) 表示该角度的正弦值,cos(θ) 表示该角度的余弦值。

根据欧拉公式的性质,我们有:e^(iθ) = cos(θ) + i * sin(θ)其中,e 表示自然对数的底,i 表示虚数单位。

利用欧拉公式,我们可以得到以下恒等式:cos(θ) = (e^(iθ) + e^(-iθ)) / 2sin(θ) = (e^(iθ) - e^(-iθ)) / (2i)接下来,我们考虑两个角度 A 和 B 的差,即 A - B。

我们将 A 和 B 视为两个角度θ1 和θ2 的和,其中:θ1 = (A + B) / 2θ2 = (A - B) / 2根据欧拉公式,我们可以用e^iθ1 和e^iθ2来表示cos(θ1) 和cos(θ2):cos(θ1) = (e^(iθ1) + e^(-iθ1)) / 2 = (e^(i(A+B)/2) + e^(-i(A+B)/2)) / 2cos(θ2) = (e^(iθ2) + e^(-iθ2)) / 2 = (e^(i(A-B)/2) + e^(-i(A-B)/2)) / 2将上述两个式子相乘并展开,我们得到:cos(θ1) * cos(θ2) = (e^(i(A+B)/2) + e^(-i(A+B)/2)) * (e^(i(A-B)/2) + e^(-i(A-B)/2)) / 4利用指数的乘法法则和欧拉公式的性质,上式可以简化为:(cos(A) + cos(B)) / 2类似地,我们可以用e^iθ1 和e^iθ2 来表示sin(θ1) 和sin(θ2):sin(θ1) = (e^(i(A+B)/2) - e^(-i(A+B)/2)) / (2i)sin(θ2) = (e^(i(A-B)/2) - e^(-i(A-B)/2)) / (2i)将上述两个式子相乘并展开,我们得到:sin(θ1) * sin(θ2) = (e^(i(A+B)/2) - e^(-i(A+B)/2)) * (e^(i(A-B)/2) - e^(-i(A-B)/2)) / (4i^2)= -(cos(A) - cos(B)) / 2最后,我们将cos(θ1) * cos(θ2) 和sin(θ1) * sin(θ2) 代入两角差的余弦公式,可以得到:cos(A - B) = cos(A) * cos(B) + sin(A) * sin(B)4. 总结两角差的余弦公式是在两个角度之间计算夹角时的重要工具。

两角差余弦公式的推导

两角差余弦公式的推导

两角差余弦公式的推导两角差余弦公式(DifferenceofCosinesFormula,简称DOCF)是一个经典的三角函数公式,它可以用来求解两个向量之间的夹角。

这种公式受到几何学、物理学、数学和工程学等学科的广泛应用,而且这个公式可以通过简单的数学推导来证明。

本文将对两角差余弦公式进行详细的推导。

二、正式推导1.假设有两个向量A和B,它们之间的夹角为θ。

2.设OA和OB为两个向量A和B的分量,则有:OA=|A|cosθ,OB=|B|cosθ(其中|A|和|B|分别表示A、B的模) 3.设向量A+B和A-B的分量分别为OA+OB和OA-OB,根据向量和的定义,此时可得:OA+OB=|A+B|cosΦ,OA-OB=|A-B|cosΦ(其中|A+B|和|A-B|分别表示A+B、A-B的模,Φ表示A+B、A-B的夹角)4.将式(2)和式(3)进行联立,可得:OA+OB=|A+B|cosΦ=|A|cosθ+|B|cosθOA-OB=|A-B|cosΦ=|A|cosθ-|B|cosθ5.合并式(4),可得:|A+B|cosΦ=2|A|cosθ,|A-B|cosΦ=2|B|cosθ6.式(5)可化为:|A+B|cosΦ=2|A|cosθ=2|B|cosθ=|A-B|cosΦ7.由此可得:|A+B|cosΦ=|A-B|cosΦ,即可得到两角差余弦公式:cos =|A + B|/|A - B|8.根据此结论可以推导出笛卡尔余弦公式:cosΦ=cosαcosβ+sinαsinβ三、总结在本文中,我们对两角差余弦公式的推导进行了详细的分析。

从本文的推导可以看出,该公式可以用来求解两个向量之间的夹角,在几何学、物理学、数学和工程学等学科中有着广泛的应用。

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式

的两个根为tan , tan , 求 tan( )的值.


S ( ) 以 代 S ( ) C ( ) C ( )
相除 相除
T( )
以 代
T( )
公式的特点:
(1)公式中, 、 、 、 的取值要使正切值有意义;
tan tan (2)注意公式的变形运用.如公式 : tan( ) , 1 tan tan 可以变形为 : tan tan tan( )(1 tan tan )
( )
( )
)
注:(1)α,β任意;从s开头,sccs,中间不变号.
(2)抓住公式的结构特征, 能灵活运用;
探究: 如何推导tan( ) ?
sin( ) tan( ) cos( )
(这里有什么要求?)
k (k Z ) 2

(4) sin(A B ) cos B cos(A B ) sinB ? (5) sin( 36 ) cos(54 ) cos(36 ) sin( 54 ) ?

(6) sin70 cos 25 sin20 sin25 ?
sin cos cos sin cos cos sin sin sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos tan tan 1 tan tan
例5.求值: (1 tan1 )(1 tan2 )(1 tan44 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【反例】:显然上式不成立,比如说:cos(60o 30o) cos 60o cos 30o
【问题3】:又例如:要求 cos15o 的值,我们怎么办?。
可变换为 cos15o cos(45o 30o) =?
我们应该试着去探索得到正确的结果!
二. 探究新知
1.为了求得实例中的旋转角度 的余弦值,我们联系已学过的关于求夹角
uuur
uuur
OA (cos,sin ),OB (cos ,sin )
uuur uuur
cos( ) uOuurAOuuBur cos cos sin sin
OA OB
cos( ) cos cos sin sin
作业:
P 1.书面作业: 142 练习 2,4
2.课外探究作业:预习 §3.1.2由 C( )
公式出发,你能推导出两角和与差的三角函数的其 他公式吗?
谢谢大家!
对于任意角, ,都有cos( ) cos cos sin sin 可以简记为 C( )
四.知识应用:
例1: (1) 求 cos15o cos(45o 30o)
6 2 4
1
(2) 求cos 78o cos18o sin 78o sin18o
31,5s0ino (,求cos) 1的2 值,。求cos(
5
4 13


4
)
的值。
课时小结:
1、运用两角差的余弦公式解决问题时要做好角的文 章,包括角的范围的确定,角的分解或合并等问题;
2、化简问题(一般指公式的逆用),根据被化简式 子的结构,选择三角公式进行化简。
cos( ) cos cos cos sin sin
uuur uuur
若 [ , 2 ) , 则 2 为 OA与OB 的夹角,
cos( ) cos cos(2 ) cos cos sin sin
三. 发现结论:


53,


(
2
, )
,cos

5 13
, 是第三象限角,
求cos( )的值 。
(公式正用)
【变式1】已知 ,
是锐角,cos

1 7
, cos(

)


3
2 ,求 cos
的值。
(公式变用)
【【变式式23】】已已知知s,in(30(o3,)
4
),s53in(,60o )
§3.1.1 两角差的余弦公式
一.导入新课
(一)我们来看这样一个生活中的例子:
进入引例
3
9
【问题1】:可求cos 5 ,cos 10 。
【问题2】:需求角 ,可先求其三角函数值,
如:cos( )
试问:cos( ) cos cos 成立吗?
角度的相关知识,同学们联想到什么知识呢?
可以借助向量的数量积公式。 可以简洁地推导出正确的公式:
如图,在直角坐标系中作单位圆 O ,以 Ox为始边作角 , ,它们的终边分别
交单位圆于点 A, B 。
uuur uuur (Q OA OB r 1, A点坐标为
(cos,sin),B(cos ,sin ) )
2
(公式正用os sin( )sin cos ;
(一)我们来看这样一个生活中的例子:
进入引例
3
9
【问题1】:可求cos 5 ,cos 10 。
求 cos( )
四. 知识应用:
例2.
已知 cos
(以上推导是否有不严谨之处?应如何补充?)
由向量数量积的概念,角 [0, ] ;
由于 , 都是任意角,所以 也是任意角,
但是由诱导公式,总有一个角 [0, 2 ) ,使 2k (k Z)


[0, ]


uuur uuur OA与OB的夹角,
相关文档
最新文档