八年级数学平均数

合集下载

人教八年级数学下册-平均数(附习题)

人教八年级数学下册-平均数(附习题)

误区 计算加权平均数时漏掉权 二八年级期末考试成绩如下:八(1)班55人,平 均分 81分;八(2)班40人,平均分90分;八(3)45 人,平均分85分;八(4)班60人,平均分84分.求 年级平均分. 错解:x 81 90 85 84 =8(5 分)
4
正解:x 81 55 90 40 85 45 8460 =84.(6 分)
2.加权平均数中的“权”对计算结果 有什么影响?
3.能把这种加权平均数的计算方法推 广到一般吗?
一般地,若n个数x1,x2,…,xn的权分别是w1,
w2,…,wn,则
x=
x1w1+x2w2 + L +xnwn w1+w2+ L +wn
叫做这n个数的加权平均数.
如果这家公司想招一名口语能力较强的翻译, 听、说、读、写成绩按3:3:2:2的比确定,计 算两名应试者的平均成绩(百分制),从他们的 成绩看,应录取谁?
6+4
此时乙将被录取
2.晨光中学规定学生的学期体育成绩满分为100分, 其中早锻炼及体育课外活动占20%,期中考试 成绩占30%,期末考试成绩占50%.小桐的三项 成绩(百分制)依次是95分、90分、85分,小 桐这学期的体育成绩是多少?
解:小桐这学期的体育成绩为:
95 20%+90 30%+8550% =88.5(分) 20% 30% 50%
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
1.例3中各组的“数据”和“权”怎么确定? 2.总结用样本平均数估计总体平均数的一般步骤. 3.某次数学测试成绩统计如图,试根据统计图中
的信息,求这次测试的平均成绩.

八年级数学复习专题一平均数

八年级数学复习专题一平均数

专题一:平均数一、算术平均数在日常生活中,我们常用平均数表示一组数据的“平均水平”.一般地,对于n 个数x 1,x 2,…,x n ,我们把1n(x 1+x 2+…+x n )叫做这n 个数的算术平均数,简称为平均数,这里记为.求一组数据的平均数是考试中经常出现的题目.例1 新港中学“学用杯”竞赛前10名学生的成绩如下(单位:分): 125,120,115,107,109,120,107,115,115,107.计算这10名学生的平均成绩.析解:根据平均数的定义:x =110(125+120+115+…+107)=110×1140=114(分). 根据定义可求任意一组数据的平均数,但是如果这组数据中的每个数都比较大,计算起来就比较麻烦,那么还有一种计算平均数的方法,如上题还可以这样解答:将本组数据都减去115,得一组新数据:10,5,0,-8,-6,5,-8,0,0,-8,求出这组新数据的平均数x '=110[10+5+0+(-8)+(-6)+…+0+(-8)]=-1,则原数据的平均数x =115+(-1)=114.因此,当一组数据都比较大,且都在某一数的附近波动时,可将它的每一个数都减去同一个适当的数,得到一组新的数据,求出这组新数据的平均数,用这个平均数加上都减去的那个数,就是原数据组的平均数.例2 某校八年级共有六个班,在一次数学考试中,参加的人数和成绩如下表:求该校八年级的全体学生在这一次数学考试中的平均成绩(保留三位有效数字). 析解:根据平均数的定义可知,该校八年级的全体学生在这次数学考试中,平均成绩等于所有的数学成绩总和除以总人数,而成绩总和又等于平均成绩乘以学生总人数,这样可求出各班数学成绩总分,再把各班成绩总分的总和求出来即得全年级成绩总和,从而可求出全年级的平均成绩:x =1308(81×52+80×48+84×55+83×51+86×49+82×53)≈82.7(分). 说明:解答本题时有的学生往往会错解为: 81808483868282.76+++++≈≈82.7(分). 二、加权平均数平均数是体现一组数据的平均状态,但是,在实际问题中,一组数据中的各个数据的“重要程度”并不相同,因而在计算这组数据的平均数时,往往给每一个数据一个“权”,求一组数据的加权平均数通常有两种情况:第一种:该组数据中各数据的重要程度不同,所占比例也不同;例如,李刚的平时成绩为89分,单元测验为90分,期末成绩为91分,如果把三项成绩按2∶3∶4的比例计算总评成绩,那么总评成绩为:89290391490.2234⨯+⨯+⨯++≈≈90.2(分). 在这个问题中,2,3,4分别叫做89,90,91的权,而90.2就是加权平均数.第二种:若一组数据中有多个数据出现多次,例如,数据3,5,10,6,5,3,3,6,10,5,10,3的平均数为:x =112(3×4+5×3+10×3+6×2)=5.75. 其中4,3,3,2分别是3,5,10,6出现的次数,同时也是权.例3 某居民小区开展节约用水活动成效显著,据对该小区200户家庭用水情况统计分析,3月份比2月份节约用水情况如下表所示:求3月份平均每户节约用水多少立方米?分析:本题考查直接求一组数据的加权平均数的方法.解:120 1.520260 1.6200x ⨯+⨯+⨯==(m 3). 上题中,数据20,120,60分别是1,1.5,2的权,本题不能解答为:1 1.52 1.53x ++==(m 3).专练一:1.在一次数学考试中,第一小组的14名同学的成绩与全班平均分的差是2,3,-5,10,12,8,-1,2,-5,4,-10,-2,5,5,全班平均成绩为83分,则这个小组的平均成绩是_________分.2.某班在一次数学测试后,成绩统计如下表:该班这次数学测试的平均成绩是( )A.82 B.75 C.65 D.623.甲、乙两篮球队员在以往16场比赛中的得分情况统计如下:则甲、乙两队员的平均每场得分分别是多少(保留整数)?4.在一次运动会上,各队得奖牌情况如下表:现在为了比较各队的综合实力,分别将金、银、铜以每块按1分,0.7分,0.3分来进行计分比较,问哪一队的综合实力最强?5.从鱼池捕得同时放养的鲤鱼230尾,从中任选10尾,称得每尾鱼的质量分别是1.8,1.7,1.2,1.4,1.3,1.6,1.4,1.6,1.5,1.5(单位:千克).(1)这10尾鱼的平均质量是多少千克?(2)你能估计一下这230尾鱼的总质量是多少千克吗?6.某公司去年的广告宣传投资为:电视广告9 000万,报纸广告4 000万,大型活动6 000万.今年该公司为了加大广告宣传力度,三项投资分别比去年增长了10%、5%、15%.该公司今年的广告宣传投资比去年增长的百分数是多少?(保留两位小数)参考答案:1.852.A3.甲:23分,乙:22分4.C队综合实力强5.(1)1.5千克;(2)345千克6.10.53%。

八年级数学上册数学公式

八年级数学上册数学公式

八年级数学上册数学公式八年级数学上册中常见的数学公式包括:
1. 平均数公式:平均数 = 总和 / 数据个数
2. 百分数公式:百分数 = (部分 / 全部) x 100%
3. 比例公式:两个比例相等,即 a / b = c / d
4. 面积公式:
- 矩形面积 = 长 x 宽
- 正方形面积 = 边长 x 边长
- 三角形面积 = 底边长度 x 高 / 2
- 圆面积 = π x 半径²
5. 周长公式:
- 矩形周长 = 2 x (长 + 宽)
- 正方形周长 = 4 x 边长
- 圆周长 = 2 x π x 半径
6. 一次函数公式:y = kx + b
7. 平方公式:(a + b)² = a² + 2ab + b²
8. 勾股定理:c² = a² + b²(其中c为斜边,a和b为直角边)
9. 三角函数公式:
- 正弦定理:sin A / a = sin B / b = sin C / c
- 余弦定理:a² = b² + c² - 2bc*cosA
- 正切定理:tan A = b / c
这些是八年级数学上册中常见的数学公式,希望对你有帮助!。

人教版八年级数学下册20.1:平均数(教案)

人教版八年级数学下册20.1:平均数(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数的基本概念。平均数是指一组数据之和再除以数据的个数,它是表示数据集中趋势的一个重要指标。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算某商品在过去一周内的平均销售量,这个案例展示了平均数在实际中的应用,以及它如何帮助我们解决问题。
举例:在讲解平均数的定义时,可以通过班级学生身高的例子,让学生计算平均身高,强调平均数能反映整体水平。
2.教学难点
-数据的波动性:理解平均数受极端值影响较大的问题,即数据波动对平均数的影响。
-平均数的代表性:分析当数据分布不均匀时,平均数可能无法准确反映数据的一般情况。
-平均数的计算准确性:在处理大量数据时,如何避免计算错误,特别是数据的求和和除法运算。
-解决实际问题中的平均数应用:如何将实际问题转化为平均数的计算问题,以及如何选择合适的数据进行分析。
举例:在解释数据的波动性时,可以比较两组数据,一组数据分布均匀,另一组数据存在极端值,让学生观察平均数的差异,理解极端值对平均数的影响。在解决实际问题时,可以设置一些综合性的练习题,如计算班级学生的平均成绩,同时考虑到请假学生的影响,让学生学会处理这些特殊情况。通过这些方法,帮助学生突破教学难点,确保对平均数的理解透彻。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平均数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
其次,关于平均数的性质和数据的波动性,这是本节课的难点。虽然我通过举例和比较来进行讲解,但仍有部分同学表示这部分内容有些难以理解。在以后的教学中,我需要寻找更直观、生动的方法来解释这个概念,帮助学生更好地突破这个难点。

八年级数学公式总结归纳大全

八年级数学公式总结归纳大全

八年级数学公式总结归纳大全八年级数学公式总结归纳大全如下:
1. 平均数公式:
平均数 = 总和 / 个数
2. 百分数与小数的转换公式:
百分数 = 小数× 100
小数 = 百分数 / 100
3. 百分数之间的转换公式:
百分数A = 百分数B ×百分数C
4. 分数与百分数的转换公式:
百分数 = 分数× 100
分数 = 百分数 / 100
5. 速度公式:
速度 = 路程 / 时间
6. 面积公式:
矩形的面积 = 长×宽
正方形的面积 = 边长×边长
三角形的面积 = 底边×高 / 2
圆的面积 = π×半径×半径
7. 周长公式:
矩形的周长 = (长 + 宽) × 2
正方形的周长 = 边长× 4
三角形的周长 = 边1 + 边2 + 边3
圆的周长 = 2 ×π×半径
8. 三角形内角和公式:
三角形内角和 = 180°
9. 相似三角形的边长比例公式:
两个相似三角形的对应边长的比例 = 两个相似三角形的高度比例 = 两个相似三角形的面积比例 = 两个相似三角形的周长比例
10. 直角三角形的勾股定理公式:
a² + b² = c²
11. 三角形的面积公式(海伦公式):
三角形面积 = √(s × (s - a) × (s - b) × (s - c))
(其中,s为三角形的半周长,a、b、c为三角形的边长)
这些是八年级数学常用的公式,希望对你有帮助。

人教版数学《平均数》_完美课件

人教版数学《平均数》_完美课件

=
有何关系?
总耕地面积 人口总数
人教版初中数学八年级下 平均数
郊 人数 县 (万) A 15
B7 C 10
人均耕地面积 (公顷) 0.15
0.21 0.18
总耕
人均耕
地面积
地面积 =
人口总数
思考2:总耕地面积
三个郊县耕地面积之和
思考3:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 ≈ 0.17(公顷) 15+7+10
人教版初中数学八年级下 平均数
我们就把上面求得的平均数0.17称为三个
数0.15、0.21、0.18的 加权平均数,由于各郊
县的人数不同,各郊县的人均耕地面积对这个市 郊县的人均耕地面积的影响就不同.因此我们把 三个郊县的人数(单位:万)15、7、10分别称
为三个数据的权.
特别提示
这很重要,好好理解哟

7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
人教版初中数学八年级下 平均数
20.1.1平均数
人教版初中数学八年级下 平均数
问题1: 某市三个郊县的人均耕地面积如下表:
郊县 人均耕地面积/公顷
A
0.15
B
0.21
C
0.18
这个市郊县的人均耕地面积如下表示正确吗?
73×3+80×3+85×2+82×2 3+3+2+2
= 79.3.
乙 73 80 85 82
显然甲的成绩比乙的高,所以从成绩看,应该录取甲.
仔细看,要记住正确的书写格式哟
人教版初中数学八年级下 平均数

八年级下册数学课件《平均数》

八年级下册数学课件《平均数》
第二十章 数据的分析 20.1数据的集中趋势 20.1.1平均数
一次数学测验,3名同学的数学成绩 分别是60,80和100分,则他们的平均成 绩是多少?你怎样列式计算?算式中的 分子分母分别表示什么含义?
定义:如果有n个数(用χ1、χ2、
χ3、…χn)那么它们的平均数我们表示

x
1 n
( x1
x2
61≤x<81 71
22
81≤x<101 91
18
101≤x<121 111
15
听课手册69页活动2教材导学
用样本平均数估计总体平均数
当所要考察的对象很多,或者对考察对 象带有破坏性时,统计中一般采用抽样 调查,用样本估计总体的方法获得对总 体的认识。
例题:听课手册例1,例2
算术平均数与加权平均数的联系和区别:
(1)算术平均数实质上是加权平均数 的一种特殊情况,即各项的权相等, 算术平均数也是加权平均数,但加权 平均数不一定是算术平均数。
(2)平均数是统计中的一个重要的特 征量,它描述一组数据的集中变化趋 势。当一组数据较小时,可直接用算 术平均数公式计算;当一组数据重复 出现时,可用加权平均数公式计算, 要灵活运用公式。
解:不同意,这位同学计算平均数的方 法认为每个数据同等重要,由于各班的 人数可能不一样,因此应用每班的平均 成绩乘每班人数再相加,然后除以总人 数,才是全年级学生的平均成绩。只有 当各班人数相等时,这位同学的算法才 合理。
练习:某教育局为了了解本地区八年级学生数学
基本功的情况,从两所不同学校分别抽取一部分
请通过计算说明谁的最后得分高。
例2:在一次数学考试中,抽取了20名学生 的试卷进行分析。这20名学生的数学成绩 (单位:分)分别为 87,85,68,72,58,100,93,97,96,83,51,84, 92,62,83,79,74,72,65,79(注:该试卷 满分100分,60分及其以上为合格) 求这20名学生的平均成绩。

人教版八年级数学下册20.1.1 平均数(二)课件

人教版八年级数学下册20.1.1 平均数(二)课件

某灯泡厂为测量一批灯泡的使用寿命、从中抽查了100 只灯泡,它们的使用 x<1000 1000≤ x<1400 1400≤ x<1800 1800≤ x<2200 2200≤ x<2600
灯泡数(单位:个)
10
19
25
34
12
这批灯泡的平均使用寿命是多少?
20.1.1平均数(2)
知识回顾
概念-:
一般地,对于n 个数 x1, x2 ,, x,n 我们把
x x1 x2 ...... xn n
n 叫做这 个数的算术平均数,简称平均数,
x x 记为 ,读作 拔.
概念二: 一般地,若n个数x1,x2,…,xn的权分别 是w1,w2,…,wn ,则这n个数
也叫做x1,x2,…,xk这k个数的加权 平均数,其中f1,f2,…,fk分别叫做x1, x2,…,xk的权。
解:这天5路公共汽车平均每班的载客量是:
x 11 3 31 5 51 20 71 22 9118 11115 3 5 20 22 18 15
7(3 人) 接下来,同学们请来思考这样的问题: 从上表中,你能知道这…天5路公共汽车大约有多少 班次的载客量在平均载客量以上吗?占全天总班次的 百分比是多少?
由表格可知, 81≤x<101的18个班次 和
101≤x<121的15个班次共有33个班次超过平均载 客量,占全天总班次的百分比为33/83约等于40%。
3、某校为了了解学生做课外作业所用时间的情况,对学生做课
外作业所用时间进行调查,下表是该校初二某班50名学生某一天
做数学课外作业所用时间的情况统计表
所用时间t(分钟) 0<t≤10 10<t≤20 20<t≤30 30<t≤40 40<t≤50 50<t≤60
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章数据的代表
§8.1平均数(一)
教学目标:
(一)知识目标:1、掌握算术平均数,加权平均数的概念。

2、会求一组数据的算术平均数和加权平均数。

(二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。

2、根据有关平均数的问题的解决,培养学生的合作意识和能力。

(三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。

2、通过解决实际问题,让学生体会数学与生活的密切联系。

教学重点:算术平均数,加权平均数的概念及计算。

教学难点:加权平均数的概念及计算。

教学方法:讨论与启发性。

教学过程:
一、引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
二、讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、
87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X= =91(分)
甲小组做得对吗?有不同求法吗?
乙小组:X=
= 91(分)
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a ,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2 求出以上新的一组数的平均数X'=1 所以原数组的平均数为X=X'+90=91 想一想,丙小组的计算对吗?
95+99

30 95×4+99×4+87×4+90×5+86×5+88×2+92
30
2、议一议:问:求平均数有哪几种方法?
(1)X= (X 1+X 2+…+X n ) ——算术平均数
(2)X= (f 1+f 2+…f k =n) ——
利用加权求平均数
(3)X=X'+a ——利用基准求平均数 问:以上几种求法各有什么特点呢? 公式(1)适用于数据较小,且较分散。

公式(2)适用于出现较多重复数据。

公式(3)适用于数据较为接近于某一数据。

3、练习:P213 利用计算器
(1)计算两支球队的平均身高,哪支球队队员的身材更为高大?
(2)计算两支球队的平均年龄,哪支球队队员的年龄更为年轻?
4、加权平均数:
例1,某广告公司欲招聘广告策划人员一名,对A ,B ,C 三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:
n 1
x 1f 1+x 2f 2+x 3f 3+…
f 1+f 2+f 3…+f k
(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?
(2)根据实际需要,公司将创新,综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?
小结:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,如例1中4,3,1分别是创新、综合知识、语
72×4+50×3+88
言三项测试成绩的权,而称为A的三
4+3+1
项测试成绩的加权平均数。

三、练一练:P216 随堂练习
四、小结:通过本节课的学习,你有哪些收获与体会?
五、作业:书P216 习题8.1
§8.1平均数(二)
教学目标:
(一)知识目标:
1、会求加权平均数,并体会权的差异对结果的影响。

2、理解算术平均数和加权平均数的联系与区别,并能利用它们解决一些现实问题。

(二)能力目标:
1、通过利用平均数解决实际问题,发展学生的数学应用能力。

2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异的思维。

(三)情感目标:通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

教学重点:加权平均数中权对结果的影响及与算术平均数的联系与区别。

教学难点:探索算术平均数和加权平均数的联系和区别。

教学方法:探讨教学
教学过程:
一、引入新课:
1、什么是算术平均数?加权平均数?
2、算术平均数与加权平均数有什么联系与区别吗?(引入)
二、讲授新课:
1、例题讲解:
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。

一天,三个班级的各项卫生成绩分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。

解:(1)一班的卫生成绩为:
95×15%+90×10%+90×35%+85×40%=88.75
二班的卫生成绩为:
90×15%+95×10%+85×35%+90×40%=88.75
三班的卫生成绩为:
85×15%+90×10%95×35%+90×40%=91
因此,三班的成绩最高。

(2)分组讨论交流
小结:以上四项所占的比例不同,即权有差异,得出的结果
就会不同,也就是说权的差异对结果有影响。

2、议一议:
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少? 问:如何求今年的总支出比去年总支出的百分比呢? 百分比=今年总支出—去年总支出
去年总支出 以下是小明和小亮的两种解法?谁做得对?
小明: (9%+30%+6%)=15%
小亮: =9.3%
由于小颖家去年的饮食、教育和其他三项支出金额不等,因
此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小美的求法是对的。

三、课堂练习:
1、小明骑自行车的速度是15千米/时,步行的速度是5千米/时。

1
3 9%×3600+30%×1200+6%
3600+1200+7
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?
2、某市七月中旬各天的最高气温统计如下:
求该市七月中旬的最高气温的平均数。

相关文档
最新文档