格力空调十六进制红外遥控器编码_2015-02-14
史上最全的红外遥控器编码协议(可编辑)

史上最全的红外遥控器编码协议目录1MIT-C8D8 40k2 MIT-C8D8 33K3SC50560-001003P4M504625M50119P-016M50119L7RECS808M30049LC7464M10LC7461-C1311IRT1250C5D6-0112Gemini-C6-A13Gemini-C614 Gemini-C17 3136K -115KONKA KK-Y26116PD6121G-F17DATA-6BIT18Custum-6BIT19M9148-120SC3010 RC-521 M50560-1 40K22 SC50560-B123C50560-002P24M50119P-0125M50119P-126M50119P27IRT1250C5D6-02 28HTS-C5D6P29Gemini-C1730Gemini-C17 -231data6bit-a32data6bit-c33X-Sat34Philips RECS-80 35Philips RC-MM36Philips RC-637Philips RC-538Sony SIRC39Sharp40Nokia NRC1741NEC42JVC43ITT44SAA3010 RC-536K45SAA3010 RC-538K46NEC2-E247 NEC-E348 RC-5x49 NEC1-X250 _pid006051 UPD1986C52 UPD1986C-A53 UPD1986C-C54 MV500-0155 MV500-0256 Zenith S101 MIT-C8D840KMIT-C8D840K是一种常见的红外遥控编码格式该格式出现在万能遥控器ZC-18A 600-917 中Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波400 KHZ4逻辑位时间com msModulation 调制逻辑0Logical0是由935us的无载波间隔和280us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由280us的40KHZ载波和2156us的无载波间隔组成Protocol 协议从上图中可看到 MIT-C8D840K一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期4478ms进行重复2 MIT-C8D8 33KMIT-C8D8 33K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0138及祝成万能遥控器ZC-18A码组号为644735736Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波33KHZ4逻辑位的时间comsModulation 调制隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由280us的33KHZ载波和2156us的无载波间隔组成Protocol 协议从上图可以看到MIT-C8D8 33K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期501ms进行重复3 SC50560-001003P 分割码未有数据标注SC50560-001003P是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S的062码组ZC-18A600-917ZC-18A400-481RM-301C VT3620AVT3630RM-402C的TV-012码组Features 基本特点1引导码8位地址码分割码未有数据标注 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度隔组成Protocol 协议从上图中可看到 SC50560-001003P一帧码序列是由引导码 8ms 的载波和4ms的间隔 8位地址码分割码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期12002ms进行重复4 M50462M50462是一种常见的红外遥控编码格式该格式出现在RM-123CRM-139SZC-18A600-917RM-301C VT3620AVT3630RM-402C Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波38 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的38KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的38KHZ载波和1799us的无载波间隔组成Protocol 协议从上图中可看到 M50462一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期45ms 进行重复5 M50119P-0142K 分割码未有数据标注M50119P-0142K是一种常见的红外遥控编码格式该格式出现在URC-8910CBL-0009 ZC-18A 600-917 的736码组ZC-18A 400-481 VT3630的SAT-001码组Features 基本特点1数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧用户码相同码结束码2脉宽调制方式PWM3载波418 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由967us的418KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由967us的418KHZ载波和2901us的无载波间隔组成Protocol 协议从上图中可看到 M50119P-0142K两帧码序列是由数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧地址码相同码结束码长按键不放后续发出的波形如下长按键不放发出的码波形序列如下图就是将重复帧波形以周期62855ms进行重复M50119LM50119L是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910VCR-0041INTER DIGI-SATVT3630中Features 基本特点13位地址码7位数据码结束码2脉宽调制方式PWM3载波379 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的379KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的379KHZ载波和1820us的无载波间隔组成Protocol 协议从上图中可看到 M50119L一帧码序列是由3位地址码7位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期255ms 进行重复7 RECS8068RECS8068是一种常见的红外遥控编码格式该格式来源于URC8910的CD-0764码组Features 基本特点12位控制码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波33KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由160us的33KHZ载波和5600us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由160us的33KHZ载波和8480us的无载波间隔组成Protocol 协议从上图中可看到RECS8068一帧码序列是由2位控制码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期1383ms进行重复8 M3004 CarrierM3004 Carrier是一种常见的红外遥控编码格式该格式出现在遥控器CL311 RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIG I-SAT VT3620AVT3630RM-402CTV-060中Features 基本特点1引导码1位翻转码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由141us的38KHZ载波和4919us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由141us的38KHZ载波和7449us的无载波间隔组成Protocol 协议从上图中可看到 M3004 Carrier一帧码序列是由1位引导码 1位翻转码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期121651ms 进行重复9 LC7464M 校验码怎么算的LC7464M是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910 RM-139SZC-18A600-917ZC-18A400-481VT3620AVT3630Features 基本特点1引导码15位地址码4位校验码4位地址码28位数据码8位校验码结束码3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由420us的38KHZ载波和420us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由420us的38KHZ载波和1260us的无载波间隔组成Protocol 协议从上图中可看到 LC7464M一帧码序列是由引导码 com的间隔15位地址码4位校验码4位地址码28位数据码8位校验码结束码组成长按键不放发出的码波形序列如下图整个波形以8297ms的周期进行重复10 LC7461-C13LC7461-C13是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910RM-123CRM-139S101ZC-18A600-917RM-301CVT3630RM-402C的TV-131码组Features 基本特点1数据帧引导码13位地址码13位地址码-反码8位数据码8位数据码反码结束码重复帧3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由560us的38KHZ载波和560us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由560us的38KHZ载波和1680us的无载波间隔组成Protocol 协议数据帧从上图中可看到 LC7461-C13一帧码序列是由引导码 9-ms的载波和45ms的间隔 13位地址码13位地址码-反码 8位数据码8位数据码反码结束码组成重复帧由结束码组成长按键不放发出的后续波形如下图其发出的整个码波形序列如下图由重复帧开始以周期10811ms 进行重复11 IRT1250C5D6-010HzIRT1250C5D6-010Hz是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3620A中Features 基本特点1引导码5位地址码6位数据码结束码3载波00 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由16us的00KHZ载波和160us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由16us的00KHZ载波和368us的无载波间隔组成Protocol 协议从上图中可看到IRT1250C5D6-010Hz一帧码序列是由引导码0016 ms的载波和0545ms的间隔 5位地址码6位数据码结束码16-54316-593136us组成长按键不放发出的码波形序列如下图即将整个波形以周期596208ms进行重复12 Gemini-C6-A40KGemini-C6-A40K是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3630的SAT-034码组Features 基本特点1地址帧引导码7位地址码2结束码数据帧引导码相同码7位数据码结束码地址帧相同帧数据帧相同帧2脉宽调制方式PWM3载波400 KHZ4逻辑位时间长度是105msModulation 调制逻辑0Logical0是由525us的无载波间隔和525us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由525us的40KHZ载波和525us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C6-A40K由四帧码组成地址帧码序列由引导码 coms的间隔 7位地址码和结束码组成数据帧码序列由引导码相同码 coms的间隔 7位数据码和结束码组成地址帧相同帧同地址帧数据帧相同帧同数据帧长按键不放发出的码波形序列如下其整个码波形序列如下图就是将第三第四帧波形以周期693ms 进行重复13 Gemini-C63136Gemini-C63136是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311与VT3620A中Features 基本特点1引导码7位数据码结束码2脉宽调制方式PWM3载波310 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由496us的无载波间隔和496us的31KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由496us的31KHZ载波和496us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C63136一帧码序列是由引导码 053ms 的载波和265ms的间隔 7位和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期90724ms进行重复14 Gemini-C17 3136K -1Gemini-C17 3136K -1是一种常见的红外遥控编码格式该格式来源于CL311Features 基本特点1引导帧引导码10位地址码结束码地址帧引导码相同码10位地址码2结束码引导帧相同帧数据帧引导码相同码10位数据码结束码引导帧相同帧2脉宽调制方式PWM3载波304KHZ4逻辑位时间长度是106msModulation 调制逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由530us的无载波间隔和530us的304KHZ载波组成Protocol 协议从上图中可看到 Gemini-C17 3136K -1帧码其依次为引导帧码序列是由引导码 com的间隔 10位地址码与结束码206ms组成用户帧码序列是由引导码-相同码 com的间隔 10位地址码2与结束码 1025ms 组成引导帧-相同帧码与引导帧码相同数据帧码序列是由引导码-相同码 com的间隔 10位数据码与结束码 11714ms 组成引导帧-相同帧码与引导帧码相同长按键不放后续发出的波形如下其整个码波形序列如下图就是将第四第五帧波形以周期1653ms 进行重复15 KONKA KK-Y261KONKA KK-Y261是一种常见的红外遥控编码格式该格式来源于RM-123CRM-139S的113码组RM-301C RM-402C的204码组Features 基本特点1引导码8位地址码 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间长度是3ms或2msModulation 调制逻辑0Logical0是由500us的38KHZ载波和1500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由500us的38KHZ载波和2500us的无载波间隔组成Protocol 协议从上图中可看到 KONKA KK-Y261一帧码序列是由引导码 3ms的载波和3ms的间隔 8位地址码 8位数据码结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期66ms 进行重复16 PD6121G-FPD6121G-F是一种常见的红外遥控编码格式Features 基本特点1引导码8位地址码8位地址码28位数据码8位数据码反码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由564us的38KHZ载波和564us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由564us的38KHZ载波和1692us的无载波间隔组成Protocol 协议从上图中可看到 PD6121G-F一帧码序列是由引导码 coms的间隔 8位地址码8位地址码2 8位数据码8位数据码反码组成长按键不放发出的码波形序列如下图即将整个波形以周期108ms 进行重复17 DATA-6BITDATA-6BIT是一种常见种常见的红外遥控编码格式该格式来源于RM-301C RM-402C195Features 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由440us的38KHZ载波和1540us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由440us的38KHZ载波和3362us的无载波间隔组成Protocol 协议从上图中可看到DATA-6BIT一帧码序列仅是由6位数据码组成长按键不放发出的码波形序列如下图即将第一帧波形以周期28ms进行重复18 CUSTUM6BITCustum-6BIT是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIGI-SAT VT3620AVT3630RM-402CFeatures 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间com19 M9148-1M9148-1是一种常见的编码格式Features 基本特点13位地址码1位控制码8位数据码2脉宽调制方式PWM3载波38168KHZ4逻辑位的时间长度是1848msModulation 调制1逻辑0Logical0是由462us的38168KHZ载波和1386us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1386us的38168KHZ载波和462us的无载波间隔组成Protocol 协议从上图可以看到M9148-1一帧码序列是由3位地址码1位控制码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期56023ms进行重复20 SC3010RC-5SC3010 RC-5是一种常见的编码格式该格式来源于众合万能遥控器RM-139S码组号为013208215216218及万能遥控器祝成ZC-18A码组号为682684685854691709Features 基本特点12位控制码1为翻转码5位地址码6位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间长度是1688msModulation 调制1逻辑0Logical0是由844us的38 KHZ载波和844us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由844us的38KHZ载波和844us的无载波间隔组成Protocol 协议从上图可以看到SC3010 RC-5一帧码序列是由2位控制码1位翻转码5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期127156ms进行重复21 M50560-1 40KM50560-1 40K 是一种常见的编码格式该格式来源于万能遥控器众合RM139-S码组号为040069076083068125127268及万能遥控器众合RM-33C码组号为0016006700720073Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50560-1 40K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期678ms进行重复22 SC50560-B1SC50560-B1是一种常见的编码格式Features 基本特点15位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和2080us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和4160us的无载波间隔组成Protocol 协议从上图可以看到SC50560-B1一帧码序列是由5位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期120ms进行重复23 C50560-002PC50560-002P是一种常见的编码格式该格式来源于视贝万能DVB遥控器码组号为195Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和1560us的无载波间隔组成Protocol 协议从上图可以看到M50560-002P 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期36006ms进行重复24 M50119P-01 38KM50119P-01 38K 是一种常见的编码格式Features 基本特点14位地址码4位地址码的相同码6位数据码6位数据码的相同码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由967us的38KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由967us的38KHZ载波和2901us的无载波间隔组成Protocol 协议从上图可以看到M50119P-01 38K 一数据帧码序列是由4位地址码6位数据码4位地址码相同码6位数据码相同码一重复帧由4位地址码相同码长按键不放发出的码波形序列如下图就是将第一帧波形以周期385156ms进行重复25 M50119P-1 40KM50119P-1 40K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P-1 40K 一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期275ms进行重复26M50119PM50119P是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0384及众合万能遥控器RM-139S码组号为041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波3791KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的379KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的379KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期30ms进行重复27IRT1250C5D6-02 0HzIRT1250C5D6-02 0Hz 是一种常见的编码格式Features 基本特点15位地址码6位数据码2脉宽调制方式PWM3载波无载波4逻辑位的时间comsModulation 调制1逻辑0Logical0是由16us的无载波和224us的无载波间隔组成图中表示的是无载波和无载波间隔的总长度2逻辑1Logical1是由16us的36KHZ载波和480us的无载波间隔组成Protocol 协议从上图可以看到IRT1250C5D6-02 0Hz 一帧码序列是由引导码0016ms的无载波和0732ms的间隔5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期597251ms进行重复28HTS-C5D6PHTS-C5D6P是一种常见的编码格式该格式来源于OMEGA万能遥控器027*********Features 基本特点15位地址码6位数据码1位校验码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间com4624msModulation 调制1逻辑0Logical0是由136us的38KHZ载波和1360us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由136us的38KHZ载波和2856us的无载波间隔组成3逻辑3Logical3是由136us的38KHZ载波和4488us的无载波间隔组成Protocol 协议从上图可以看到HTS-C5D6P一帧码序列是引导码coms的间隔5位地址码6位用户码1位校验码长按键不放后续发出波形如下长按键不放发出的码波形序列如下图就是将第一帧波形以周期89381ms进行重复29Gemini-C17 3136KGemini-C17 3136K 是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为013402250289032203970400045104580859Features 基本特点110位地址码引导码的相同码10位数据码2脉宽调制方式PWM3载波304KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的304KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K 用户帧码序列是由引导码com的间隔10位地址码数据帧码序列由引导码的相同码10位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期19997ms 进行重复30Gemini-C17 3136K -2Gemini-C17 3136K -2是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为01350376Features 基本特点116位地址码 16位数据码2脉宽调制方式PWM3载波31KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的31KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的31KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K -2用户帧码序列是由引导码com的间隔16位地址码数据帧码序列由引导码com的间隔16位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期21609ms 进行重复31data6bit-adata6bit-a是一种常见的编码格式该格式来源于祝成万能遥控器ZC-18A码组号673Features 基本特点16位数据码2脉宽调制方式PWM3载波333KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由576us的333KHZ载波和1820us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由576us的333KHZ载波和4200us的无载波间隔组成Protocol 协议从上图可以看到data6bit-a一帧码序列是6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期58092ms进行重复32data6bit-cFeatures 基本特点16位数据码2脉宽调制方式PWM3载波20KHZ4逻辑位的时间长度是2 ms或4msModulation 调制1逻辑0Logical0是由1000us的20KHZ载波和1000us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1000us的20KHZ载波和3000us的无载波间隔组成Protocol 协议从上图可以看到data6bit-c一帧码序列是6位数据码构成长按键不放发出的码波形序列如下图就是将第一帧波形以周期725ms进行重复33X-Sat ProtocolX-Sat ProtocolI call this the X-Sat protocol because it is used in the X-Sat CDTV 310 Satellite receiver made by the French company Xcom This protocol is probably also used in other X-Sat receivers but I have no means to verify that I havent seen this protocol anywhere else but that doesnt guarantee that it is unique to the X-Sat brandFeatures8 bit address and 8 bit command lengthPulse distance modulationCarrier frequency of 38kHzBit time of 1ms or 2msModulationThe X-Sat protocol uses pulse distance encoding of the bits Each pulse is a 526祍 long 38kHz carrier burst about 20 cycles A logical "1" takes 20ms to transmit while a logical"0" is only 10ms The recommended carrier duty cycle is 14 or 13ProtocolThe picture above shows a typical pulse train of the X-Sat protocol With this protocol the LSB is transmitted first In this case Address 59 and Command 35 is transmitted A message is started by a 8ms AGC burst which was used to set the gain of the earlier IR receivers This AGC burst is then followed by a 4ms space which is then followed by the Address and Command A peculiar property of the X-Sat protocol is the 4ms gap between the address and the command The total transmission time is variable because the bit times are variableAn IR command is repeated 60ms for as long as the key on the remote is held down34Philips RECS-80 Protocol 38kHz carrierThis protocol is designed by Philips and transmitters are produced by Philips SAA3008 and ST M3004 Personally I have never seen this protocol being used in real applications All information on this page is derived from the data sheet of the Philips SAA3008 and the ST M3004 10624pdfThere are 2 small differences between the two competitor ICs The Philips IC has two modes of operation one which iscompatible with the ST chip and one which can handle up to 20 sub-system addresses The ST chip has the capability of switching the modulation carrier offFeatures7 or 20 sub-system addresses 64 commands per sub-system address1 or2 toggle bits to avoid key bouncePulse distance modulationCarrier frequency of 38kHz or unmodulatedBit time logic "0" is 51ms logic "1" is 76ms 455kHz OscillatorCommand repetition rate 1215ms 55296 periods of the main oscillatorManufacturer Philips STModulation 13 duty cycleNormal Protocol The drawing below shows a typical pulse train of a normal RECS-80 message This example transmits command 36 to address 4Usually the first pulse is a reference pulse with a value of "1" The receiver may use this bit to determine the exact bit lengthThe next bit is a toggle bit Its value is toggled whenever akey is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsOnly the ST chip M3004 can disable its carrier in which case the REF pulse is interpreted as a second toggle bit The 2-bit toggle value is incremented every time a key is released Thus only in this mode there is no real REF pulseThe next 3 pulses S2 to S0 represent the sub-system address bits sent with MSB first This would allow for 8 different sub-system addresses but both the SAA3008 and the M3004 can only generate 7 sub-system addresses in normal mode Next come the 6 command bits F to A also sent with MSB first allowing for 64 different commands per sub-system addressThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol You can not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address valuesExtended Protocol If you need more than 7 sub-system addresses you can use the extended protocol which allows 13 additional sub-system addresses only if you use the SAA3008 The drawing below shows an extended message This example transmits command 36 to address 10The first two pulses are a special start sequence The total duration of these pulses is equal to a normal "1" period The next bit is a toggle bit Its value is toggled whenever a key is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsThe next 4 pulses S3 to S0 represent the sub-system address bits This would allow for an additional 16 different sub-system addresses although the SAA3008 can only generate 13 additional sub-system addresses in this mode Next come the 6 command bits F to A also sent with MSB firstThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol Youcan not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address values35 Philips RC-MM ProtocolRC-MM was defined by Philips to be a multi-media IR protocol to be used in wireless keyboards mice and game pads For these purposes the commands had to be short and have low power requirementsWhether the protocol is actually used for these purposes today is unknown to me What I do know is that some Nokia digital satellite receivers use the protocol 9800 series Features 12 bits or 24 bits per messagePulse position coding sending 2 bits per IR pulseCarrier frequency of 36kHzMessage time ranges from 35 to 65 ms depending on data contentRepetition time 28 ms 36 messages per secondManufacturer PhilipsTransmission timingIn this diagram you see the most important transmission times The message time is the total time of a message counting form the beginning of the first pulse until the end of the lastpulse of the message This time can be 35 to 65 ms depending on the data content and protocol usedThe signal free time is the time in which no signal may be sent to avoid confusion with foreign protocols on the receivers side Philips recommends 1 ms for normal use or 336 ms when used together with RC-5 and RC-6 signals Since you can never tell whether a user has other remote controls in use together with an RC-MM controlled device I would recommend always to use a signal free time of 336 msThe frame time is the sum of the message time and the signal free time which can add up to just about 10 ms per message Finally the repetition time is the recommended repetition time of 27778 ms which allows 36 messages per second This is only a recommendation and is mainly introduced to allow other devices to send their commands during the dead times No provision is made for data collisions between two or more remote controls This means that there is no guarantee that the messages get acrossModulationWith this protocol a 36 kHz carrier frequency is used to transmit the pulses This helps to increase the noise immunity at the receiver side and at the same time it reduces powerdissipated by the transmitter LED The duty cycle of the pulses is 13 or 14Each message is preceded by a header pulse with the duration of 4167 μs 15 pulses of the carrier followed by a space of 2778 μs 10 periods of the carrier This header is followed by 12 or 24 bits of dataBy changing the distance between the pulses two bits of data are encoded per pulse Below you find a table with the encoding timesProtocol RCMM comes in 3 different flavours called modes Each mode is intended for a particular purpose and differs mainly in the number of bits which can be used by the application All data is sent with MSB firstThe 12 bit mode is the basic mode and allows for 2 address bits and 8 data bits per device family There are 3 different device families defined keyboard mouse and game pad The 2 address bits provide for a way to use more than 1 device simultaneously The data bits are the actual payload data The 24 bit mode also know as extended mode allows more data to be transmitted per message For instance for multi-lingual keyboards or a high resolution mouseIn the OEM mode the first 6 bits are always 0 0 0 0 1 1 The。
史上最全的红外遥控器编码协议(可编辑)

史上最全的红外遥控器编码协议目录1MIT-C8D8 40k2 MIT-C8D8 33K3SC50560-001003P4M504625M50119P-016M50119L7RECS808M30049LC7464M10LC7461-C1311IRT1250C5D6-0112Gemini-C6-A13Gemini-C614 Gemini-C17 3136K -115KONKA KK-Y26116PD6121G-F17DATA-6BIT18Custum-6BIT19M9148-120SC3010 RC-521 M50560-1 40K22 SC50560-B123C50560-002P24M50119P-0125M50119P-126M50119P27IRT1250C5D6-02 28HTS-C5D6P29Gemini-C1730Gemini-C17 -231data6bit-a32data6bit-c33X-Sat34Philips RECS-80 35Philips RC-MM36Philips RC-637Philips RC-538Sony SIRC39Sharp40Nokia NRC1741NEC42JVC43ITT44SAA3010 RC-536K45SAA3010 RC-538K46NEC2-E247 NEC-E348 RC-5x49 NEC1-X250 _pid006051 UPD1986C52 UPD1986C-A53 UPD1986C-C54 MV500-0155 MV500-0256 Zenith S101 MIT-C8D840KMIT-C8D840K是一种常见的红外遥控编码格式该格式出现在万能遥控器ZC-18A 600-917 中Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波400 KHZ4逻辑位时间com msModulation 调制逻辑0Logical0是由935us的无载波间隔和280us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由280us的40KHZ载波和2156us的无载波间隔组成Protocol 协议从上图中可看到 MIT-C8D840K一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期4478ms进行重复2 MIT-C8D8 33KMIT-C8D8 33K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0138及祝成万能遥控器ZC-18A码组号为644735736Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波33KHZ4逻辑位的时间comsModulation 调制隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由280us的33KHZ载波和2156us的无载波间隔组成Protocol 协议从上图可以看到MIT-C8D8 33K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期501ms进行重复3 SC50560-001003P 分割码未有数据标注SC50560-001003P是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S的062码组ZC-18A600-917ZC-18A400-481RM-301C VT3620AVT3630RM-402C的TV-012码组Features 基本特点1引导码8位地址码分割码未有数据标注 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度隔组成Protocol 协议从上图中可看到 SC50560-001003P一帧码序列是由引导码 8ms 的载波和4ms的间隔 8位地址码分割码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期12002ms进行重复4 M50462M50462是一种常见的红外遥控编码格式该格式出现在RM-123CRM-139SZC-18A600-917RM-301C VT3620AVT3630RM-402C Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波38 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的38KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的38KHZ载波和1799us的无载波间隔组成Protocol 协议从上图中可看到 M50462一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期45ms 进行重复5 M50119P-0142K 分割码未有数据标注M50119P-0142K是一种常见的红外遥控编码格式该格式出现在URC-8910CBL-0009 ZC-18A 600-917 的736码组ZC-18A 400-481 VT3630的SAT-001码组Features 基本特点1数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧用户码相同码结束码2脉宽调制方式PWM3载波418 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由967us的418KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由967us的418KHZ载波和2901us的无载波间隔组成Protocol 协议从上图中可看到 M50119P-0142K两帧码序列是由数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧地址码相同码结束码长按键不放后续发出的波形如下长按键不放发出的码波形序列如下图就是将重复帧波形以周期62855ms进行重复M50119LM50119L是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910VCR-0041INTER DIGI-SATVT3630中Features 基本特点13位地址码7位数据码结束码2脉宽调制方式PWM3载波379 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的379KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的379KHZ载波和1820us的无载波间隔组成Protocol 协议从上图中可看到 M50119L一帧码序列是由3位地址码7位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期255ms 进行重复7 RECS8068RECS8068是一种常见的红外遥控编码格式该格式来源于URC8910的CD-0764码组Features 基本特点12位控制码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波33KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由160us的33KHZ载波和5600us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由160us的33KHZ载波和8480us的无载波间隔组成Protocol 协议从上图中可看到RECS8068一帧码序列是由2位控制码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期1383ms进行重复8 M3004 CarrierM3004 Carrier是一种常见的红外遥控编码格式该格式出现在遥控器CL311 RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIG I-SAT VT3620AVT3630RM-402CTV-060中Features 基本特点1引导码1位翻转码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由141us的38KHZ载波和4919us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由141us的38KHZ载波和7449us的无载波间隔组成Protocol 协议从上图中可看到 M3004 Carrier一帧码序列是由1位引导码 1位翻转码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期121651ms 进行重复9 LC7464M 校验码怎么算的LC7464M是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910 RM-139SZC-18A600-917ZC-18A400-481VT3620AVT3630Features 基本特点1引导码15位地址码4位校验码4位地址码28位数据码8位校验码结束码3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由420us的38KHZ载波和420us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由420us的38KHZ载波和1260us的无载波间隔组成Protocol 协议从上图中可看到 LC7464M一帧码序列是由引导码 com的间隔15位地址码4位校验码4位地址码28位数据码8位校验码结束码组成长按键不放发出的码波形序列如下图整个波形以8297ms的周期进行重复10 LC7461-C13LC7461-C13是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910RM-123CRM-139S101ZC-18A600-917RM-301CVT3630RM-402C的TV-131码组Features 基本特点1数据帧引导码13位地址码13位地址码-反码8位数据码8位数据码反码结束码重复帧3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由560us的38KHZ载波和560us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由560us的38KHZ载波和1680us的无载波间隔组成Protocol 协议数据帧从上图中可看到 LC7461-C13一帧码序列是由引导码 9-ms的载波和45ms的间隔 13位地址码13位地址码-反码 8位数据码8位数据码反码结束码组成重复帧由结束码组成长按键不放发出的后续波形如下图其发出的整个码波形序列如下图由重复帧开始以周期10811ms 进行重复11 IRT1250C5D6-010HzIRT1250C5D6-010Hz是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3620A中Features 基本特点1引导码5位地址码6位数据码结束码3载波00 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由16us的00KHZ载波和160us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由16us的00KHZ载波和368us的无载波间隔组成Protocol 协议从上图中可看到IRT1250C5D6-010Hz一帧码序列是由引导码0016 ms的载波和0545ms的间隔 5位地址码6位数据码结束码16-54316-593136us组成长按键不放发出的码波形序列如下图即将整个波形以周期596208ms进行重复12 Gemini-C6-A40KGemini-C6-A40K是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3630的SAT-034码组Features 基本特点1地址帧引导码7位地址码2结束码数据帧引导码相同码7位数据码结束码地址帧相同帧数据帧相同帧2脉宽调制方式PWM3载波400 KHZ4逻辑位时间长度是105msModulation 调制逻辑0Logical0是由525us的无载波间隔和525us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由525us的40KHZ载波和525us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C6-A40K由四帧码组成地址帧码序列由引导码 coms的间隔 7位地址码和结束码组成数据帧码序列由引导码相同码 coms的间隔 7位数据码和结束码组成地址帧相同帧同地址帧数据帧相同帧同数据帧长按键不放发出的码波形序列如下其整个码波形序列如下图就是将第三第四帧波形以周期693ms 进行重复13 Gemini-C63136Gemini-C63136是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311与VT3620A中Features 基本特点1引导码7位数据码结束码2脉宽调制方式PWM3载波310 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由496us的无载波间隔和496us的31KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由496us的31KHZ载波和496us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C63136一帧码序列是由引导码 053ms 的载波和265ms的间隔 7位和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期90724ms进行重复14 Gemini-C17 3136K -1Gemini-C17 3136K -1是一种常见的红外遥控编码格式该格式来源于CL311Features 基本特点1引导帧引导码10位地址码结束码地址帧引导码相同码10位地址码2结束码引导帧相同帧数据帧引导码相同码10位数据码结束码引导帧相同帧2脉宽调制方式PWM3载波304KHZ4逻辑位时间长度是106msModulation 调制逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由530us的无载波间隔和530us的304KHZ载波组成Protocol 协议从上图中可看到 Gemini-C17 3136K -1帧码其依次为引导帧码序列是由引导码 com的间隔 10位地址码与结束码206ms组成用户帧码序列是由引导码-相同码 com的间隔 10位地址码2与结束码 1025ms 组成引导帧-相同帧码与引导帧码相同数据帧码序列是由引导码-相同码 com的间隔 10位数据码与结束码 11714ms 组成引导帧-相同帧码与引导帧码相同长按键不放后续发出的波形如下其整个码波形序列如下图就是将第四第五帧波形以周期1653ms 进行重复15 KONKA KK-Y261KONKA KK-Y261是一种常见的红外遥控编码格式该格式来源于RM-123CRM-139S的113码组RM-301C RM-402C的204码组Features 基本特点1引导码8位地址码 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间长度是3ms或2msModulation 调制逻辑0Logical0是由500us的38KHZ载波和1500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由500us的38KHZ载波和2500us的无载波间隔组成Protocol 协议从上图中可看到 KONKA KK-Y261一帧码序列是由引导码 3ms的载波和3ms的间隔 8位地址码 8位数据码结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期66ms 进行重复16 PD6121G-FPD6121G-F是一种常见的红外遥控编码格式Features 基本特点1引导码8位地址码8位地址码28位数据码8位数据码反码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由564us的38KHZ载波和564us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由564us的38KHZ载波和1692us的无载波间隔组成Protocol 协议从上图中可看到 PD6121G-F一帧码序列是由引导码 coms的间隔 8位地址码8位地址码2 8位数据码8位数据码反码组成长按键不放发出的码波形序列如下图即将整个波形以周期108ms 进行重复17 DATA-6BITDATA-6BIT是一种常见种常见的红外遥控编码格式该格式来源于RM-301C RM-402C195Features 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由440us的38KHZ载波和1540us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由440us的38KHZ载波和3362us的无载波间隔组成Protocol 协议从上图中可看到DATA-6BIT一帧码序列仅是由6位数据码组成长按键不放发出的码波形序列如下图即将第一帧波形以周期28ms进行重复18 CUSTUM6BITCustum-6BIT是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIGI-SAT VT3620AVT3630RM-402CFeatures 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间com19 M9148-1M9148-1是一种常见的编码格式Features 基本特点13位地址码1位控制码8位数据码2脉宽调制方式PWM3载波38168KHZ4逻辑位的时间长度是1848msModulation 调制1逻辑0Logical0是由462us的38168KHZ载波和1386us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1386us的38168KHZ载波和462us的无载波间隔组成Protocol 协议从上图可以看到M9148-1一帧码序列是由3位地址码1位控制码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期56023ms进行重复20 SC3010RC-5SC3010 RC-5是一种常见的编码格式该格式来源于众合万能遥控器RM-139S码组号为013208215216218及万能遥控器祝成ZC-18A码组号为682684685854691709Features 基本特点12位控制码1为翻转码5位地址码6位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间长度是1688msModulation 调制1逻辑0Logical0是由844us的38 KHZ载波和844us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由844us的38KHZ载波和844us的无载波间隔组成Protocol 协议从上图可以看到SC3010 RC-5一帧码序列是由2位控制码1位翻转码5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期127156ms进行重复21 M50560-1 40KM50560-1 40K 是一种常见的编码格式该格式来源于万能遥控器众合RM139-S码组号为040069076083068125127268及万能遥控器众合RM-33C码组号为0016006700720073Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50560-1 40K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期678ms进行重复22 SC50560-B1SC50560-B1是一种常见的编码格式Features 基本特点15位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和2080us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和4160us的无载波间隔组成Protocol 协议从上图可以看到SC50560-B1一帧码序列是由5位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期120ms进行重复23 C50560-002PC50560-002P是一种常见的编码格式该格式来源于视贝万能DVB遥控器码组号为195Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和1560us的无载波间隔组成Protocol 协议从上图可以看到M50560-002P 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期36006ms进行重复24 M50119P-01 38KM50119P-01 38K 是一种常见的编码格式Features 基本特点14位地址码4位地址码的相同码6位数据码6位数据码的相同码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由967us的38KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由967us的38KHZ载波和2901us的无载波间隔组成Protocol 协议从上图可以看到M50119P-01 38K 一数据帧码序列是由4位地址码6位数据码4位地址码相同码6位数据码相同码一重复帧由4位地址码相同码长按键不放发出的码波形序列如下图就是将第一帧波形以周期385156ms进行重复25 M50119P-1 40KM50119P-1 40K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P-1 40K 一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期275ms进行重复26M50119PM50119P是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0384及众合万能遥控器RM-139S码组号为041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波3791KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的379KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的379KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期30ms进行重复27IRT1250C5D6-02 0HzIRT1250C5D6-02 0Hz 是一种常见的编码格式Features 基本特点15位地址码6位数据码2脉宽调制方式PWM3载波无载波4逻辑位的时间comsModulation 调制1逻辑0Logical0是由16us的无载波和224us的无载波间隔组成图中表示的是无载波和无载波间隔的总长度2逻辑1Logical1是由16us的36KHZ载波和480us的无载波间隔组成Protocol 协议从上图可以看到IRT1250C5D6-02 0Hz 一帧码序列是由引导码0016ms的无载波和0732ms的间隔5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期597251ms进行重复28HTS-C5D6PHTS-C5D6P是一种常见的编码格式该格式来源于OMEGA万能遥控器027*********Features 基本特点15位地址码6位数据码1位校验码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间com4624msModulation 调制1逻辑0Logical0是由136us的38KHZ载波和1360us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由136us的38KHZ载波和2856us的无载波间隔组成3逻辑3Logical3是由136us的38KHZ载波和4488us的无载波间隔组成Protocol 协议从上图可以看到HTS-C5D6P一帧码序列是引导码coms的间隔5位地址码6位用户码1位校验码长按键不放后续发出波形如下长按键不放发出的码波形序列如下图就是将第一帧波形以周期89381ms进行重复29Gemini-C17 3136KGemini-C17 3136K 是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为013402250289032203970400045104580859Features 基本特点110位地址码引导码的相同码10位数据码2脉宽调制方式PWM3载波304KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的304KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K 用户帧码序列是由引导码com的间隔10位地址码数据帧码序列由引导码的相同码10位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期19997ms 进行重复30Gemini-C17 3136K -2Gemini-C17 3136K -2是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为01350376Features 基本特点116位地址码 16位数据码2脉宽调制方式PWM3载波31KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的31KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的31KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K -2用户帧码序列是由引导码com的间隔16位地址码数据帧码序列由引导码com的间隔16位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期21609ms 进行重复31data6bit-adata6bit-a是一种常见的编码格式该格式来源于祝成万能遥控器ZC-18A码组号673Features 基本特点16位数据码2脉宽调制方式PWM3载波333KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由576us的333KHZ载波和1820us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由576us的333KHZ载波和4200us的无载波间隔组成Protocol 协议从上图可以看到data6bit-a一帧码序列是6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期58092ms进行重复32data6bit-cFeatures 基本特点16位数据码2脉宽调制方式PWM3载波20KHZ4逻辑位的时间长度是2 ms或4msModulation 调制1逻辑0Logical0是由1000us的20KHZ载波和1000us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1000us的20KHZ载波和3000us的无载波间隔组成Protocol 协议从上图可以看到data6bit-c一帧码序列是6位数据码构成长按键不放发出的码波形序列如下图就是将第一帧波形以周期725ms进行重复33X-Sat ProtocolX-Sat ProtocolI call this the X-Sat protocol because it is used in the X-Sat CDTV 310 Satellite receiver made by the French company Xcom This protocol is probably also used in other X-Sat receivers but I have no means to verify that I havent seen this protocol anywhere else but that doesnt guarantee that it is unique to the X-Sat brandFeatures8 bit address and 8 bit command lengthPulse distance modulationCarrier frequency of 38kHzBit time of 1ms or 2msModulationThe X-Sat protocol uses pulse distance encoding of the bits Each pulse is a 526祍 long 38kHz carrier burst about 20 cycles A logical "1" takes 20ms to transmit while a logical"0" is only 10ms The recommended carrier duty cycle is 14 or 13ProtocolThe picture above shows a typical pulse train of the X-Sat protocol With this protocol the LSB is transmitted first In this case Address 59 and Command 35 is transmitted A message is started by a 8ms AGC burst which was used to set the gain of the earlier IR receivers This AGC burst is then followed by a 4ms space which is then followed by the Address and Command A peculiar property of the X-Sat protocol is the 4ms gap between the address and the command The total transmission time is variable because the bit times are variableAn IR command is repeated 60ms for as long as the key on the remote is held down34Philips RECS-80 Protocol 38kHz carrierThis protocol is designed by Philips and transmitters are produced by Philips SAA3008 and ST M3004 Personally I have never seen this protocol being used in real applications All information on this page is derived from the data sheet of the Philips SAA3008 and the ST M3004 10624pdfThere are 2 small differences between the two competitor ICs The Philips IC has two modes of operation one which iscompatible with the ST chip and one which can handle up to 20 sub-system addresses The ST chip has the capability of switching the modulation carrier offFeatures7 or 20 sub-system addresses 64 commands per sub-system address1 or2 toggle bits to avoid key bouncePulse distance modulationCarrier frequency of 38kHz or unmodulatedBit time logic "0" is 51ms logic "1" is 76ms 455kHz OscillatorCommand repetition rate 1215ms 55296 periods of the main oscillatorManufacturer Philips STModulation 13 duty cycleNormal Protocol The drawing below shows a typical pulse train of a normal RECS-80 message This example transmits command 36 to address 4Usually the first pulse is a reference pulse with a value of "1" The receiver may use this bit to determine the exact bit lengthThe next bit is a toggle bit Its value is toggled whenever akey is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsOnly the ST chip M3004 can disable its carrier in which case the REF pulse is interpreted as a second toggle bit The 2-bit toggle value is incremented every time a key is released Thus only in this mode there is no real REF pulseThe next 3 pulses S2 to S0 represent the sub-system address bits sent with MSB first This would allow for 8 different sub-system addresses but both the SAA3008 and the M3004 can only generate 7 sub-system addresses in normal mode Next come the 6 command bits F to A also sent with MSB first allowing for 64 different commands per sub-system addressThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol You can not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address valuesExtended Protocol If you need more than 7 sub-system addresses you can use the extended protocol which allows 13 additional sub-system addresses only if you use the SAA3008 The drawing below shows an extended message This example transmits command 36 to address 10The first two pulses are a special start sequence The total duration of these pulses is equal to a normal "1" period The next bit is a toggle bit Its value is toggled whenever a key is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsThe next 4 pulses S3 to S0 represent the sub-system address bits This would allow for an additional 16 different sub-system addresses although the SAA3008 can only generate 13 additional sub-system addresses in this mode Next come the 6 command bits F to A also sent with MSB firstThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol Youcan not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address values35 Philips RC-MM ProtocolRC-MM was defined by Philips to be a multi-media IR protocol to be used in wireless keyboards mice and game pads For these purposes the commands had to be short and have low power requirementsWhether the protocol is actually used for these purposes today is unknown to me What I do know is that some Nokia digital satellite receivers use the protocol 9800 series Features 12 bits or 24 bits per messagePulse position coding sending 2 bits per IR pulseCarrier frequency of 36kHzMessage time ranges from 35 to 65 ms depending on data contentRepetition time 28 ms 36 messages per secondManufacturer PhilipsTransmission timingIn this diagram you see the most important transmission times The message time is the total time of a message counting form the beginning of the first pulse until the end of the lastpulse of the message This time can be 35 to 65 ms depending on the data content and protocol usedThe signal free time is the time in which no signal may be sent to avoid confusion with foreign protocols on the receivers side Philips recommends 1 ms for normal use or 336 ms when used together with RC-5 and RC-6 signals Since you can never tell whether a user has other remote controls in use together with an RC-MM controlled device I would recommend always to use a signal free time of 336 msThe frame time is the sum of the message time and the signal free time which can add up to just about 10 ms per message Finally the repetition time is the recommended repetition time of 27778 ms which allows 36 messages per second This is only a recommendation and is mainly introduced to allow other devices to send their commands during the dead times No provision is made for data collisions between two or more remote controls This means that there is no guarantee that the messages get acrossModulationWith this protocol a 36 kHz carrier frequency is used to transmit the pulses This helps to increase the noise immunity at the receiver side and at the same time it reduces powerdissipated by the transmitter LED The duty cycle of the pulses is 13 or 14Each message is preceded by a header pulse with the duration of 4167 μs 15 pulses of the carrier followed by a space of 2778 μs 10 periods of the carrier This header is followed by 12 or 24 bits of dataBy changing the distance between the pulses two bits of data are encoded per pulse Below you find a table with the encoding timesProtocol RCMM comes in 3 different flavours called modes Each mode is intended for a particular purpose and differs mainly in the number of bits which can be used by the application All data is sent with MSB firstThe 12 bit mode is the basic mode and allows for 2 address bits and 8 data bits per device family There are 3 different device families defined keyboard mouse and game pad The 2 address bits provide for a way to use more than 1 device simultaneously The data bits are the actual payload data The 24 bit mode also know as extended mode allows more data to be transmitted per message For instance for multi-lingual keyboards or a high resolution mouseIn the OEM mode the first 6 bits are always 0 0 0 0 1 1 The。
红外线遥控器的编码格式

[转]红外线遥控器的编码格式电子杂篇2008-08-20 17:07:14 阅读443 评论0 字号:大中小订阅红外线遥控是目前使用最广泛的一种通信和遥控手段。
由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。
工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。
这里我们以红外线遥控编码芯片为uPD6121G(或者是HT622、7461等芯片)为例来说明红外遥控编码、解码的详细过程:1 红外遥控系统通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。
发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
2 遥控发射器及其编码遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。
当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。
这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。
上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。
然后再通过红外发射二极管产生红外线向空间发射,如图3所示。
UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。
该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。
红外遥控器按键编码

EA = 1;
//允许全局中断
EX0 = 1;
//允许 INT0 中断
PX0 = 0;
//INT0 的中断级别为低
IT0 = 0;
//设定 INT0 上升沿和下降沿都可以中断
/*初始化 T0:16 位自动重装填模式*/
{LED1=ON;LED2=OFF;LED3=OFF;LED4=OFF;LED5=OFF;}
if(temp==IR_2)
{LED1=OFF;LED2=ON;LED3=OFF;LED4=OFF;LED5=OFF;}
if(temp==IR_3)
{LED1=OFF;LED2=OFF;LED3=ON;LED4=OFF;LED5=OFF;}
break;
}
case IR_WordA: {
if((IR_Num%2)==0&&InfraredRayPin==1) {
TH0 = 0x00; TL0 = 0x00; TimeStart; break; } if((IR_Num%2)==1&&InfraredRayPin==0) { TimeStop; IR_Time=TH0; IR_Time<<=8; IR_Time|=TL0; IR_DataA<<=1; if(IR_Time<800) {
1
#define IR_WordB
2
#define IR_End
3
#define TimeStart (TR0=1)
#define TimeStop (TR0=0)
void InfraredRay_Init(void);
史上最全的红外遥控器编码协议(可编辑)

史上最全的红外遥控器编码协议目录1MIT-C8D8 40k2 MIT-C8D8 33K3SC50560-001003P4M504625M50119P-016M50119L7RECS808M30049LC7464M10LC7461-C1311IRT1250C5D6-0112Gemini-C6-A13Gemini-C614 Gemini-C17 3136K -115KONKA KK-Y26116PD6121G-F17DATA-6BIT18Custum-6BIT19M9148-120SC3010 RC-521 M50560-1 40K22 SC50560-B123C50560-002P24M50119P-0125M50119P-126M50119P27IRT1250C5D6-02 28HTS-C5D6P29Gemini-C1730Gemini-C17 -231data6bit-a32data6bit-c33X-Sat34Philips RECS-80 35Philips RC-MM36Philips RC-637Philips RC-538Sony SIRC39Sharp40Nokia NRC1741NEC42JVC43ITT44SAA3010 RC-536K45SAA3010 RC-538K46NEC2-E247 NEC-E348 RC-5x49 NEC1-X250 _pid006051 UPD1986C52 UPD1986C-A53 UPD1986C-C54 MV500-0155 MV500-0256 Zenith S101 MIT-C8D840KMIT-C8D840K是一种常见的红外遥控编码格式该格式出现在万能遥控器ZC-18A 600-917 中Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波400 KHZ4逻辑位时间com msModulation 调制逻辑0Logical0是由935us的无载波间隔和280us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由280us的40KHZ载波和2156us的无载波间隔组成Protocol 协议从上图中可看到 MIT-C8D840K一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期4478ms进行重复2 MIT-C8D8 33KMIT-C8D8 33K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0138及祝成万能遥控器ZC-18A码组号为644735736Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波33KHZ4逻辑位的时间comsModulation 调制隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由280us的33KHZ载波和2156us的无载波间隔组成Protocol 协议从上图可以看到MIT-C8D8 33K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期501ms进行重复3 SC50560-001003P 分割码未有数据标注SC50560-001003P是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S的062码组ZC-18A600-917ZC-18A400-481RM-301C VT3620AVT3630RM-402C的TV-012码组Features 基本特点1引导码8位地址码分割码未有数据标注 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度隔组成Protocol 协议从上图中可看到 SC50560-001003P一帧码序列是由引导码 8ms 的载波和4ms的间隔 8位地址码分割码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期12002ms进行重复4 M50462M50462是一种常见的红外遥控编码格式该格式出现在RM-123CRM-139SZC-18A600-917RM-301C VT3620AVT3630RM-402C Features 基本特点18位地址码8位数据码结束码2脉宽调制方式PWM3载波38 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的38KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的38KHZ载波和1799us的无载波间隔组成Protocol 协议从上图中可看到 M50462一帧码序列是由8位地址码8位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期45ms 进行重复5 M50119P-0142K 分割码未有数据标注M50119P-0142K是一种常见的红外遥控编码格式该格式出现在URC-8910CBL-0009 ZC-18A 600-917 的736码组ZC-18A 400-481 VT3630的SAT-001码组Features 基本特点1数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧用户码相同码结束码2脉宽调制方式PWM3载波418 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由967us的418KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由967us的418KHZ载波和2901us的无载波间隔组成Protocol 协议从上图中可看到 M50119P-0142K两帧码序列是由数据帧4位地址码6位数据码分割码4位地址码相同码6位数据码相同码结束码重复帧地址码相同码结束码长按键不放后续发出的波形如下长按键不放发出的码波形序列如下图就是将重复帧波形以周期62855ms进行重复M50119LM50119L是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910VCR-0041INTER DIGI-SATVT3630中Features 基本特点13位地址码7位数据码结束码2脉宽调制方式PWM3载波379 KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由260us的379KHZ载波和780us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由260us的379KHZ载波和1820us的无载波间隔组成Protocol 协议从上图中可看到 M50119L一帧码序列是由3位地址码7位数据码和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期255ms 进行重复7 RECS8068RECS8068是一种常见的红外遥控编码格式该格式来源于URC8910的CD-0764码组Features 基本特点12位控制码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波33KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由160us的33KHZ载波和5600us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由160us的33KHZ载波和8480us的无载波间隔组成Protocol 协议从上图中可看到RECS8068一帧码序列是由2位控制码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期1383ms进行重复8 M3004 CarrierM3004 Carrier是一种常见的红外遥控编码格式该格式出现在遥控器CL311 RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIG I-SAT VT3620AVT3630RM-402CTV-060中Features 基本特点1引导码1位翻转码 3位地址码6位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由141us的38KHZ载波和4919us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由141us的38KHZ载波和7449us的无载波间隔组成Protocol 协议从上图中可看到 M3004 Carrier一帧码序列是由1位引导码 1位翻转码 3位地址码6位数据码结束码组成的长按键不放发出的码波形序列如下图整个波形以周期121651ms 进行重复9 LC7464M 校验码怎么算的LC7464M是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910 RM-139SZC-18A600-917ZC-18A400-481VT3620AVT3630Features 基本特点1引导码15位地址码4位校验码4位地址码28位数据码8位校验码结束码3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由420us的38KHZ载波和420us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由420us的38KHZ载波和1260us的无载波间隔组成Protocol 协议从上图中可看到 LC7464M一帧码序列是由引导码 com的间隔15位地址码4位校验码4位地址码28位数据码8位校验码结束码组成长按键不放发出的码波形序列如下图整个波形以8297ms的周期进行重复10 LC7461-C13LC7461-C13是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311URC-8910RM-123CRM-139S101ZC-18A600-917RM-301CVT3630RM-402C的TV-131码组Features 基本特点1数据帧引导码13位地址码13位地址码-反码8位数据码8位数据码反码结束码重复帧3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由560us的38KHZ载波和560us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由560us的38KHZ载波和1680us的无载波间隔组成Protocol 协议数据帧从上图中可看到 LC7461-C13一帧码序列是由引导码 9-ms的载波和45ms的间隔 13位地址码13位地址码-反码 8位数据码8位数据码反码结束码组成重复帧由结束码组成长按键不放发出的后续波形如下图其发出的整个码波形序列如下图由重复帧开始以周期10811ms 进行重复11 IRT1250C5D6-010HzIRT1250C5D6-010Hz是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3620A中Features 基本特点1引导码5位地址码6位数据码结束码3载波00 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由16us的00KHZ载波和160us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由16us的00KHZ载波和368us的无载波间隔组成Protocol 协议从上图中可看到IRT1250C5D6-010Hz一帧码序列是由引导码0016 ms的载波和0545ms的间隔 5位地址码6位数据码结束码16-54316-593136us组成长按键不放发出的码波形序列如下图即将整个波形以周期596208ms进行重复12 Gemini-C6-A40KGemini-C6-A40K是一种常见的红外遥控编码格式该格式出现在万能遥控器VT3630的SAT-034码组Features 基本特点1地址帧引导码7位地址码2结束码数据帧引导码相同码7位数据码结束码地址帧相同帧数据帧相同帧2脉宽调制方式PWM3载波400 KHZ4逻辑位时间长度是105msModulation 调制逻辑0Logical0是由525us的无载波间隔和525us的40KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由525us的40KHZ载波和525us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C6-A40K由四帧码组成地址帧码序列由引导码 coms的间隔 7位地址码和结束码组成数据帧码序列由引导码相同码 coms的间隔 7位数据码和结束码组成地址帧相同帧同地址帧数据帧相同帧同数据帧长按键不放发出的码波形序列如下其整个码波形序列如下图就是将第三第四帧波形以周期693ms 进行重复13 Gemini-C63136Gemini-C63136是一种常见的红外遥控编码格式该格式出现在万能遥控器CL311与VT3620A中Features 基本特点1引导码7位数据码结束码2脉宽调制方式PWM3载波310 KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由496us的无载波间隔和496us的31KHZ载波组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由496us的31KHZ载波和496us的无载波间隔组成Protocol 协议从上图中可看到 Gemini-C63136一帧码序列是由引导码 053ms 的载波和265ms的间隔 7位和结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期90724ms进行重复14 Gemini-C17 3136K -1Gemini-C17 3136K -1是一种常见的红外遥控编码格式该格式来源于CL311Features 基本特点1引导帧引导码10位地址码结束码地址帧引导码相同码10位地址码2结束码引导帧相同帧数据帧引导码相同码10位数据码结束码引导帧相同帧2脉宽调制方式PWM3载波304KHZ4逻辑位时间长度是106msModulation 调制逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由530us的无载波间隔和530us的304KHZ载波组成Protocol 协议从上图中可看到 Gemini-C17 3136K -1帧码其依次为引导帧码序列是由引导码 com的间隔 10位地址码与结束码206ms组成用户帧码序列是由引导码-相同码 com的间隔 10位地址码2与结束码 1025ms 组成引导帧-相同帧码与引导帧码相同数据帧码序列是由引导码-相同码 com的间隔 10位数据码与结束码 11714ms 组成引导帧-相同帧码与引导帧码相同长按键不放后续发出的波形如下其整个码波形序列如下图就是将第四第五帧波形以周期1653ms 进行重复15 KONKA KK-Y261KONKA KK-Y261是一种常见的红外遥控编码格式该格式来源于RM-123CRM-139S的113码组RM-301C RM-402C的204码组Features 基本特点1引导码8位地址码 8位数据码结束码2脉宽调制方式PWM3载波38KHZ4逻辑位时间长度是3ms或2msModulation 调制逻辑0Logical0是由500us的38KHZ载波和1500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由500us的38KHZ载波和2500us的无载波间隔组成Protocol 协议从上图中可看到 KONKA KK-Y261一帧码序列是由引导码 3ms的载波和3ms的间隔 8位地址码 8位数据码结束码组成长按键不放发出的码波形序列如下图即将整个波形以周期66ms 进行重复16 PD6121G-FPD6121G-F是一种常见的红外遥控编码格式Features 基本特点1引导码8位地址码8位地址码28位数据码8位数据码反码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comsModulation 调制逻辑0Logical0是由564us的38KHZ载波和564us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由564us的38KHZ载波和1692us的无载波间隔组成Protocol 协议从上图中可看到 PD6121G-F一帧码序列是由引导码 coms的间隔 8位地址码8位地址码2 8位数据码8位数据码反码组成长按键不放发出的码波形序列如下图即将整个波形以周期108ms 进行重复17 DATA-6BITDATA-6BIT是一种常见种常见的红外遥控编码格式该格式来源于RM-301C RM-402C195Features 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间comModulation 调制逻辑0Logical0是由440us的38KHZ载波和1540us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度逻辑1Logical1是由440us的38KHZ载波和3362us的无载波间隔组成Protocol 协议从上图中可看到DATA-6BIT一帧码序列仅是由6位数据码组成长按键不放发出的码波形序列如下图即将第一帧波形以周期28ms进行重复18 CUSTUM6BITCustum-6BIT是一种常见的红外遥控编码格式该格式出现在CL311URC-8910RM-123CRM-139S148ZC-18A600-917ZC-18A400-481RM-301CINTER-DIGI-SAT VT3620AVT3630RM-402CFeatures 基本特点16位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位时间com19 M9148-1M9148-1是一种常见的编码格式Features 基本特点13位地址码1位控制码8位数据码2脉宽调制方式PWM3载波38168KHZ4逻辑位的时间长度是1848msModulation 调制1逻辑0Logical0是由462us的38168KHZ载波和1386us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1386us的38168KHZ载波和462us的无载波间隔组成Protocol 协议从上图可以看到M9148-1一帧码序列是由3位地址码1位控制码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期56023ms进行重复20 SC3010RC-5SC3010 RC-5是一种常见的编码格式该格式来源于众合万能遥控器RM-139S码组号为013208215216218及万能遥控器祝成ZC-18A码组号为682684685854691709Features 基本特点12位控制码1为翻转码5位地址码6位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间长度是1688msModulation 调制1逻辑0Logical0是由844us的38 KHZ载波和844us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由844us的38KHZ载波和844us的无载波间隔组成Protocol 协议从上图可以看到SC3010 RC-5一帧码序列是由2位控制码1位翻转码5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期127156ms进行重复21 M50560-1 40KM50560-1 40K 是一种常见的编码格式该格式来源于万能遥控器众合RM139-S码组号为040069076083068125127268及万能遥控器众合RM-33C码组号为0016006700720073Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50560-1 40K 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期678ms进行重复22 SC50560-B1SC50560-B1是一种常见的编码格式Features 基本特点15位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和2080us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和4160us的无载波间隔组成Protocol 协议从上图可以看到SC50560-B1一帧码序列是由5位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期120ms进行重复23 C50560-002PC50560-002P是一种常见的编码格式该格式来源于视贝万能DVB遥控器码组号为195Features 基本特点18位地址码8位数据码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comModulation 调制1逻辑0Logical0是由520us的38KHZ载波和520us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由520us的38KHZ载波和1560us的无载波间隔组成Protocol 协议从上图可以看到M50560-002P 一帧码序列是由8位地址码8位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期36006ms进行重复24 M50119P-01 38KM50119P-01 38K 是一种常见的编码格式Features 基本特点14位地址码4位地址码的相同码6位数据码6位数据码的相同码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由967us的38KHZ载波和967us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由967us的38KHZ载波和2901us的无载波间隔组成Protocol 协议从上图可以看到M50119P-01 38K 一数据帧码序列是由4位地址码6位数据码4位地址码相同码6位数据码相同码一重复帧由4位地址码相同码长按键不放发出的码波形序列如下图就是将第一帧波形以周期385156ms进行重复25 M50119P-1 40KM50119P-1 40K 是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波40KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的40KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的40KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P-1 40K 一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期275ms进行重复26M50119PM50119P是一种常见的编码格式该格式来源于OMEGA万能遥控器码组号为0384及众合万能遥控器RM-139S码组号为041Features 基本特点13位地址码7位数据码2脉宽调制方式PWM3载波3791KHZ4逻辑位的时间长度是1ms或2msModulation 调制1逻辑0Logical0是由500us的379KHZ载波和500us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由500us的379KHZ载波和1500us的无载波间隔组成Protocol 协议从上图可以看到M50119P一帧码序列是由3位地址码7位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期30ms进行重复27IRT1250C5D6-02 0HzIRT1250C5D6-02 0Hz 是一种常见的编码格式Features 基本特点15位地址码6位数据码2脉宽调制方式PWM3载波无载波4逻辑位的时间comsModulation 调制1逻辑0Logical0是由16us的无载波和224us的无载波间隔组成图中表示的是无载波和无载波间隔的总长度2逻辑1Logical1是由16us的36KHZ载波和480us的无载波间隔组成Protocol 协议从上图可以看到IRT1250C5D6-02 0Hz 一帧码序列是由引导码0016ms的无载波和0732ms的间隔5位地址码6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期597251ms进行重复28HTS-C5D6PHTS-C5D6P是一种常见的编码格式该格式来源于OMEGA万能遥控器027*********Features 基本特点15位地址码6位数据码1位校验码2脉宽调制方式PWM3载波38KHZ4逻辑位的时间com4624msModulation 调制1逻辑0Logical0是由136us的38KHZ载波和1360us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由136us的38KHZ载波和2856us的无载波间隔组成3逻辑3Logical3是由136us的38KHZ载波和4488us的无载波间隔组成Protocol 协议从上图可以看到HTS-C5D6P一帧码序列是引导码coms的间隔5位地址码6位用户码1位校验码长按键不放后续发出波形如下长按键不放发出的码波形序列如下图就是将第一帧波形以周期89381ms进行重复29Gemini-C17 3136KGemini-C17 3136K 是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为013402250289032203970400045104580859Features 基本特点110位地址码引导码的相同码10位数据码2脉宽调制方式PWM3载波304KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的304KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的304KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K 用户帧码序列是由引导码com的间隔10位地址码数据帧码序列由引导码的相同码10位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期19997ms 进行重复30Gemini-C17 3136K -2Gemini-C17 3136K -2是一种常见的编码格式该格式主要来源于OMEGA万能遥控器码组号分别为01350376Features 基本特点116位地址码 16位数据码2脉宽调制方式PWM3载波31KHZ4逻辑位的时间长度是106msModulation 调制1逻辑0Logical0是由530us的31KHZ载波和530us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由530us的31KHZ载波和530us的无载波间隔组成Protocol 协议从上图可以看到Gemini-C17 3136K -2用户帧码序列是由引导码com的间隔16位地址码数据帧码序列由引导码com的间隔16位数据码长按键不放后仍发出如下波形长按键不放出码的波形序列如下图就是将第一帧以周期21609ms 进行重复31data6bit-adata6bit-a是一种常见的编码格式该格式来源于祝成万能遥控器ZC-18A码组号673Features 基本特点16位数据码2脉宽调制方式PWM3载波333KHZ4逻辑位的时间comsModulation 调制1逻辑0Logical0是由576us的333KHZ载波和1820us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由576us的333KHZ载波和4200us的无载波间隔组成Protocol 协议从上图可以看到data6bit-a一帧码序列是6位数据码长按键不放发出的码波形序列如下图就是将第一帧波形以周期58092ms进行重复32data6bit-cFeatures 基本特点16位数据码2脉宽调制方式PWM3载波20KHZ4逻辑位的时间长度是2 ms或4msModulation 调制1逻辑0Logical0是由1000us的20KHZ载波和1000us的无载波间隔组成图中表示的是有载波和无载波间隔的总长度2逻辑1Logical1是由1000us的20KHZ载波和3000us的无载波间隔组成Protocol 协议从上图可以看到data6bit-c一帧码序列是6位数据码构成长按键不放发出的码波形序列如下图就是将第一帧波形以周期725ms进行重复33X-Sat ProtocolX-Sat ProtocolI call this the X-Sat protocol because it is used in the X-Sat CDTV 310 Satellite receiver made by the French company Xcom This protocol is probably also used in other X-Sat receivers but I have no means to verify that I havent seen this protocol anywhere else but that doesnt guarantee that it is unique to the X-Sat brandFeatures8 bit address and 8 bit command lengthPulse distance modulationCarrier frequency of 38kHzBit time of 1ms or 2msModulationThe X-Sat protocol uses pulse distance encoding of the bits Each pulse is a 526祍 long 38kHz carrier burst about 20 cycles A logical "1" takes 20ms to transmit while a logical"0" is only 10ms The recommended carrier duty cycle is 14 or 13ProtocolThe picture above shows a typical pulse train of the X-Sat protocol With this protocol the LSB is transmitted first In this case Address 59 and Command 35 is transmitted A message is started by a 8ms AGC burst which was used to set the gain of the earlier IR receivers This AGC burst is then followed by a 4ms space which is then followed by the Address and Command A peculiar property of the X-Sat protocol is the 4ms gap between the address and the command The total transmission time is variable because the bit times are variableAn IR command is repeated 60ms for as long as the key on the remote is held down34Philips RECS-80 Protocol 38kHz carrierThis protocol is designed by Philips and transmitters are produced by Philips SAA3008 and ST M3004 Personally I have never seen this protocol being used in real applications All information on this page is derived from the data sheet of the Philips SAA3008 and the ST M3004 10624pdfThere are 2 small differences between the two competitor ICs The Philips IC has two modes of operation one which iscompatible with the ST chip and one which can handle up to 20 sub-system addresses The ST chip has the capability of switching the modulation carrier offFeatures7 or 20 sub-system addresses 64 commands per sub-system address1 or2 toggle bits to avoid key bouncePulse distance modulationCarrier frequency of 38kHz or unmodulatedBit time logic "0" is 51ms logic "1" is 76ms 455kHz OscillatorCommand repetition rate 1215ms 55296 periods of the main oscillatorManufacturer Philips STModulation 13 duty cycleNormal Protocol The drawing below shows a typical pulse train of a normal RECS-80 message This example transmits command 36 to address 4Usually the first pulse is a reference pulse with a value of "1" The receiver may use this bit to determine the exact bit lengthThe next bit is a toggle bit Its value is toggled whenever akey is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsOnly the ST chip M3004 can disable its carrier in which case the REF pulse is interpreted as a second toggle bit The 2-bit toggle value is incremented every time a key is released Thus only in this mode there is no real REF pulseThe next 3 pulses S2 to S0 represent the sub-system address bits sent with MSB first This would allow for 8 different sub-system addresses but both the SAA3008 and the M3004 can only generate 7 sub-system addresses in normal mode Next come the 6 command bits F to A also sent with MSB first allowing for 64 different commands per sub-system addressThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol You can not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address valuesExtended Protocol If you need more than 7 sub-system addresses you can use the extended protocol which allows 13 additional sub-system addresses only if you use the SAA3008 The drawing below shows an extended message This example transmits command 36 to address 10The first two pulses are a special start sequence The total duration of these pulses is equal to a normal "1" period The next bit is a toggle bit Its value is toggled whenever a key is released which results in a different code every time a new key is pressed This allows the receiver to discriminate between new key presses and key repetitionsThe next 4 pulses S3 to S0 represent the sub-system address bits This would allow for an additional 16 different sub-system addresses although the SAA3008 can only generate 13 additional sub-system addresses in this mode Next come the 6 command bits F to A also sent with MSB firstThe pulse train is terminated by a last pulse otherwise there is no way to know the duration of bit AThe entire command is repeated with unchanged toggle bits for as long as the key is held down The repetition rate is 1215ms 55296 periods of the oscillatorAddress assignments are a bit odd with this protocol Youcan not simply convert the binary value to a decimal value Below you see a table explaining the relationship between the binary and decimal sub-system address values35 Philips RC-MM ProtocolRC-MM was defined by Philips to be a multi-media IR protocol to be used in wireless keyboards mice and game pads For these purposes the commands had to be short and have low power requirementsWhether the protocol is actually used for these purposes today is unknown to me What I do know is that some Nokia digital satellite receivers use the protocol 9800 series Features 12 bits or 24 bits per messagePulse position coding sending 2 bits per IR pulseCarrier frequency of 36kHzMessage time ranges from 35 to 65 ms depending on data contentRepetition time 28 ms 36 messages per secondManufacturer PhilipsTransmission timingIn this diagram you see the most important transmission times The message time is the total time of a message counting form the beginning of the first pulse until the end of the lastpulse of the message This time can be 35 to 65 ms depending on the data content and protocol usedThe signal free time is the time in which no signal may be sent to avoid confusion with foreign protocols on the receivers side Philips recommends 1 ms for normal use or 336 ms when used together with RC-5 and RC-6 signals Since you can never tell whether a user has other remote controls in use together with an RC-MM controlled device I would recommend always to use a signal free time of 336 msThe frame time is the sum of the message time and the signal free time which can add up to just about 10 ms per message Finally the repetition time is the recommended repetition time of 27778 ms which allows 36 messages per second This is only a recommendation and is mainly introduced to allow other devices to send their commands during the dead times No provision is made for data collisions between two or more remote controls This means that there is no guarantee that the messages get acrossModulationWith this protocol a 36 kHz carrier frequency is used to transmit the pulses This helps to increase the noise immunity at the receiver side and at the same time it reduces powerdissipated by the transmitter LED The duty cycle of the pulses is 13 or 14Each message is preceded by a header pulse with the duration of 4167 μs 15 pulses of the carrier followed by a space of 2778 μs 10 periods of the carrier This header is followed by 12 or 24 bits of dataBy changing the distance between the pulses two bits of data are encoded per pulse Below you find a table with the encoding timesProtocol RCMM comes in 3 different flavours called modes Each mode is intended for a particular purpose and differs mainly in the number of bits which can be used by the application All data is sent with MSB firstThe 12 bit mode is the basic mode and allows for 2 address bits and 8 data bits per device family There are 3 different device families defined keyboard mouse and game pad The 2 address bits provide for a way to use more than 1 device simultaneously The data bits are the actual payload data The 24 bit mode also know as extended mode allows more data to be transmitted per message For instance for multi-lingual keyboards or a high resolution mouseIn the OEM mode the first 6 bits are always 0 0 0 0 1 1 The。
万能空调遥控器代码表

万能空调遥控器代码表
在日常生活中,空调遥控器扮演着重要的角色。
无论是在家中、办公室还是酒
店等场所,我们都可能使用到空调遥控器。
然而,每种空调品牌的遥控器代码不尽相同,这就给我们使用带来了不便。
为了解决这一问题,出现了万能空调遥控器,它能够兼容多种品牌的空调,并提供一个代码表,让用户可以方便地控制不同品牌的空调。
代码表示例
以下是万能空调遥控器的代码表示例,您可以根据空调品牌和型号在代码表中
找到相应的代码,然后设置到遥控器上,即可控制对应的空调。
品牌型号代码
格力KFR-35GW 1234
海尔HSU-09YCN 5678
菲尼克斯PF-24CA 9012
美的MD-18YD 3456
日立RH-28AC 7890
如何设置代码
1.找到对应品牌和型号的代码,如上表所示。
2.打开遥控器,按照说明书上的步骤进入设置模式。
3.输入代码,一般是通过遥控器上的数字键进行输入。
4.设置完毕后,按确定键保存设置。
注意事项
•请确保输入的代码是准确的,否则可能无法成功设置遥控器。
•如果你无法找到对应品牌和型号的代码,可以尝试通用代码或者联系万能遥控器的客服寻求帮助。
•在使用遥控器时,请注意按键是否灵敏,避免频繁按下造成错误操作。
通过以上方法,您可以方便地使用万能空调遥控器来控制各种品牌的空调,带
来更加便捷的使用体验。
现代科技的进步让我们的生活变得更加智能化,让我们享受到科技带来的便利。
史上最全的红外遥控器编码协议

目录1)MIT-C8D8 (40k)2) MIT-C8D8(33K)3)SC50560-001,003P 4)M504625)M50119P-016)M50119L7)RECS808)M30049)LC7464M10)LC7461-C1311)IRT1250C5D6-01 12)Gemini-C6-A13)Gemini-C614) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F17)DATA-6BIT18)Custum-6BIT19)M9148-120)SC3010 RC-521) M50560-1(40K)22) SC50560-B123)C50560-002P24)M50119P-0125)M50119P-126)M50119P27)IRT1250C5D6-02 28)HTS-C5D6P29)Gemini-C1730)Gemini-C17 -231)data6bit-a32)data6bit-c33)X-Sat34)Philips RECS-8035)Philips RC-MM36)Philips RC-637)Philips RC-538)Sony SIRC39)Sharp40)Nokia NRC1741)NEC42)JVC43)ITT44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E247) NEC-E348) RC-5x49) NEC1-X250) _pid:$006051) UPD1986C52) UPD1986C-A53) UPD1986C-C54) MV500-0155) MV500-0256) Zenith S101) MIT-C8D8(40K)MIT-C8D8(40K)是一种常见的红外遥控编码格式。
该格式出现在万能遥控器ZC-18A(600-917)中。
Features 基本特点1,8位地址码,8位数据码,结束码;2,脉宽调制方式(PWM);3,载波:40.0 KHZ;4,逻辑位时间长度是1.215ms或2.436 ms。
格力空调遥控器红外编码讲解学习

格力空调遥控器红外
编码
格力空调遥控器红外编码一、基本格式
起始码(S)+35位数据码+连接码(C)+32位数据码
二、电平规范
起始码:9000us低电平+4500us高电平
连接码:600us低电平+20000us高电平
数据0:600us低电平+600us高电平
数据1:600us低电平+1600us高电平
仅供学习与交流,如有侵权请联系网站删除谢谢2
三、数据编码
3.1 前35位数据码
表一前35位数据码
3.2 后32位数据码
表二后32为数据码仅供学习与交流,如有侵权请联系网站删除谢谢3
3.3 其他定义
需要注意的是,所有数据都按照逆序方式递增。
模式字段定义
表三模式字段定义
四、校验计算
校验码=【(模式-1)取四位二进制逆序+(温度-16)+2+左右扫风+换气+节能】取二进制后四位的逆序。
仅供学习与交流,如有侵权请联系网站删除谢谢4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
格力小王子
一、基本信息:
型号:YB0F2
采用脉冲间距调制。
图1:示波器获取波形
报头脉冲:9ms
报头间距:4.5ms
载波频率:37.9KHz(38KHz)
码段1与码段2间距:20ms
“1”:脉宽,656us。
间距,1640us。
“0”:脉宽,656us。
间距,544us。
二、编码信息:
1-3位:模式
1、送风:
图标:风扇。
代码:110。
2、自动:
图标:循环箭头。
代码:000。
3、除湿:码段2 33位
码段1
36位
报头
脉冲
报头间距
4.5ms
图标:水滴。
代码:010。
4、制冷:
图标:雪花。
代码:100。
5、制热:
图标:太阳。
代码:001。
4位(加68位):开机关机
开机:1。
关机:0。
第68位取反。
5-6位:风速
一级:10
二级:01
三级:11
自动:00
7、37、41位(加65位):扫风
上下扫风:110。
第65位取反
左右扫风:101。
上下左右:111
无扫风:000
8位:睡眠
睡眠:1
不睡眠:0
9-12位与65-68位:温度
制冷模式下:
送风模式:
超强:1
普通:0
22位:灯光
亮:1
灭:0
23位与25位:健康,换气
健康:10
换气:01
健康+换气:11
普通:00
24位:制冷模式下-干燥;制热模式下-辅热;
干燥:1
普通:0
45-46位:显示温度
不显示:00
显示:10
显示室内温度:01
显示室外温度:11
其他位:
除了29、31、34位为“1”外,均为“0”。
其他位功能不详(遥控器无对应项)。
第36位和69位分别是码段1和码段2的最后一位,无所谓“0”“1”。
三、其他说明
在自动模式下只可以设置的项目有:风速1、2、3级、自动;上上下左右扫风;显示温度;灯光;睡眠定时(非睡眠)。
其他项均不可以设置。
此时温度不可设置,温度段的代码为:1001 1101。
在关机状态下,可以设置定时开机,代码与睡眠定时关机一样。
也可以设置灯光。
在制冷模式下,可以设置的项有:温度;扫风;健康换气,节能(仅在此状态下可以设置);风速;定时;超强;睡眠;灯光;温度显示。
在除湿模式下,可以设置的项有:温度;扫风;健康换气;干燥;温度显示;定时;睡眠;灯光。
在送风模式下,可以设置的项有:温度;风速;健康换气;扫风;温度显示;定时;灯光。
在制热模式下,可以设置的项有:温度;风速;扫风;辅热;温度显示;定时;超强;睡眠;灯光。
MGQ 2012-04-14
一、格力YB0F2红外信号命令格式
红外信号主要包括CMD1和CMD2两部分,其中CMD1包括35 位的命令和一位停止位,CMD2包括32位的命令和一位停止位。
表格 1 CMD1
表格 2 CMD2。