高弹态高聚物的力学性质.
高弹态高聚物的力学性质

δ—力学损耗角,可以用tanδ表示内耗的大小
动态力学分析
当样品受到变化着的外力作用时,产生相应的应 变。在这种外力作用下,对样品的应力-应变关系 随温度等条件的变化进行分析,即为动态力学分 析。
高弹态高聚物
橡胶高弹性的特点:
形变量大(链段长,具有柔性) 形变可恢复(交联结构) 弹性模量小且随温度升高而增大 形变伴有热效应(分子内摩擦,结晶)
弹性变形
一、弹性变形及其实质
弹性变形及其实质:弹性变形是一种可逆变形(即卸载 后可以恢复变形前形状的变形,热力学意义上的可逆变 形)。
弹性变形
聚合物力学性能
高弹态高聚物的力学性质
高弹态
定义:聚合物达到玻璃态转变温度以后,链 段运动激化,受力后能产生可以回复的大形 变,此时的状态称之为高弹态。
高弹态和玻璃态、粘流态一样,是聚合物特 有的力学状态,它可表现出橡胶的弹性行为
高弹态
高弹性的本质:
高弹性是由熵变引起的,在外力作用下,聚 合物分子链由卷曲状态变为伸展状态,熵减 小;当外力移去后,由于热运动,分子链自 发的趋向熵增大状态,所以形变可逆。
测量过程中通过控制样品炉的升温程序
炉温范围:-150℃~600℃(注意:设置温度禁止超 过材料熔点)
升温速率:0.1℃/min~40℃/min(400℃后 25℃/min)
降温速率:0.1℃/min~20℃/min 或改变频率:频率范围:1.6×10-3~200Hz。最后
可得到,和对温度(T)、频率(HZ)或时间(t) 的图谱。
样品制备:
根据不同的材质进行制样:薄膜、片材等
高弹态
玻璃态和结晶态高聚物的力学性质

继续屈服
弹性变形后继续施加载荷,则产生塑性形变,称为继 续屈服,包括: •应变软化:屈服后,应变增加,应力反而有稍许下 跌的现象,原因至今尚不清楚。 •呈现塑性不稳定性,最常见的为细颈。
•塑性形变产生热量,试样温度升高,变软。
•发生“取向硬化”,应力急剧上升。 •试样断裂。
屈服机理
银纹 银纹屈服 应力发白 脆性材料
分类:应力银纹、环境银纹(内应力)、溶剂银纹。 什么材料中?大多在玻璃态高聚物如PMMA、PS、PC; 也可晶态高聚物如PE、PP、POM中,甚至热固性材料 如PF、EPOXY等也可观察到。 银纹体:产生银纹的区域,其结构?
Microstructure of crazing
银纹体 = 空穴 + 微纤 质量不为零,约是本体密度 的1/2。 微纤连接银纹体的两个面, 由高分子链构成并沿外力方 向高度取向(塑性形变)。
剪切带 剪切屈服
细颈(宏观) 韧性材料
----形变过程都表现为不均匀的局部应变。
①银纹(Craze)屈服
定义:在拉伸应力及环境的作用下材料内部的某些薄弱部 位因局部应力集中而产生的空化条纹状形变区。 位置:在材料表面或内部垂直于应力方向上。
大小:一般长度100µ m、宽度10µ m左右、厚度约1µ m。
小球晶 大球晶
其内部的空隙和结 晶界面的缺陷较多
ε
The Degree of Crystallization 结晶度
高:强度、模量、硬度均提高 太高:韧性及断裂伸长降低
Different types of stress-strain curve
软而弱 硬而脆 硬而强
软而韧 硬而韧
“软”和“硬”用于区分模量的低或高,“弱”和“强” 是指强度的大小,“脆”是指无屈服现象而且断裂伸长很 小,“韧”是指其断裂伸长和断裂应力都较高的情况。
药用高分子材料各章知识点总结

药用高分子材料各章知识点总结第一章一、 高分子材料的基本概念1、什么是高分子:高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子量为104~106的化合物;2、单 体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子;即合成聚合物的起始原料;3、结构单元:在大分子链中出现的以单体结构为基础的原子团;即构成大分子链的基本结构单元;4、单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元;5、重复单元 Repeating unit ,又称链节:聚合物中化学组成和结构均可重复出现的最小基本单元;重复单元连接成的线型大分子,类似一条长链,因此重复单元又称为链节;高分子的三种组成情况1.由一种结构单元组成的高分子此时:结构单元=单体单元=重复单元说明:n 表示重复单元数,也称为链节数, 在此等于聚合度;由聚合度可计算出高分子的分子量:M=n. M0 式中:M 是高分子的分子量 M0 是重复单元的分子量2.另一种情况:结构单元=重复单元 单体单元结构单元比其单体少了些原子氢原子和氧原子,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元;注意:对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致3.由两种结构单元组成的高分子合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元;注意:1对于均聚物,即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的; 聚CH 2 CH CH 2-CH n CH 2 CH n单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +552对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子,其结构单元与重复单元是不同的;二、高 分 子 的 命 名1、 习 惯 命 名 法天然高分子:一般有与其来源、化学性能与作用、主要用途相关的专用名称;如纤维素来源、核酸来源与化学性能、酶化学作用;合成高分子:1由一种单体合成的高分子:“聚”+ 单体名称;如乙烯:聚乙烯; 丙烯:聚丙烯; 氯乙烯:聚氯乙烯2以高分子结构特征来命名. 如聚酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等;尼龙-66:聚己二酰己二胺;尼龙-610:聚癸二酰己二胺;尼龙-6:聚己内酰胺或聚ω-氨基己酸2.商品名称:1树脂类未加工成型的原料都称为树脂2橡胶类 3纤维如丁苯橡胶---丁二烯、苯乙烯聚合物 氯纶 PVC 聚氯乙烯乙丙橡胶---乙烯、丙烯共聚物 丙纶 PP 聚丙烯腈纶 PANC 聚丙烯腈3. IUPAC 系统命名法1 确定重复结构单元;2给重复结构单元命名:按小分子有机化合物的IUPAC 命名规则给重复结构单元命名;3给重复结构单元的命名加括弧括弧必不可少,并冠以前缀“聚”;例: COOCH 3CH 3n C CH 2 重复结构单元为: 聚1-甲氧基羰基-1-甲基乙烯 聚1-氯乙烯三、高 分 子 链 结 构1.聚合物的结构:一级结构近程结构:结构单元的化学组成、连接顺序、立体构型,以及支化、交联等;是反映高分子各种特性的最主要结构层次;二级结构远程结构:通常包括高分子链的形态构象以及高分子的大小分子量;与高分子链的柔性和刚性有直接关系;三级结构聚集态结构:聚集态结构也称三级结构,或超分子结构,它是指单位体积内许多大分子链之间的的排列与堆砌方式;包括晶态、非晶态、取向态、液晶态及织态等;2.高分子链的近程结构:高分子链的构型 :构型:是对分子中的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排列;1.旋光异构:若高分子中含有手性C 原子,则其立体构型可有D 型和L 型,据其连接方式可分为如下三种:以聚丙烯为例:1 全同立构高分子:主链上的C 的立体构型全部为D 型或L 型, 即DDDDDDDDDD 或C H H C Cl H C H H C Cl H C H H C Cl H C H H CC l HLLLLLLLLLLL;2 间同立构高分子:主链上的C的立体构型各不相同, 即D型与L型相间连接,LDLDLDLDLDLD;立构规整性高分子tactic polymer: C的立体构型有规则连接,简称等规高分子;3 无规立构高分子:主链上的C的立体构型紊乱无规则连接;3、高分子链的远程结构:包括分子量及分子量分布和高分子形态构象;书P8分子量:1.数均分子量:按聚合物中含有的分子数目统计平均的分子量;根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定;2重均分子量:是按照聚合物的重量进行统计平均的分子量;根据聚合物溶液对光的散射性质、扩散性质测得的;通过光散射法测定;分子量分布:分子量分布越窄,聚合物排布越好;4.高分子聚集态结构的特点.1.聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的;2.聚合物聚集态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件;四、聚合与高分子化学反应1.自由基聚合特点:1可概括为慢引发、快增长、速终止;2聚合体系中只有单体和聚合物组成;3单体转化率随聚合时间的延长而逐渐增大;4小量阻聚剂足以使自由基聚合终止;2.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行的聚合;3.溶液聚合:单体和引发剂溶于适当溶剂中进行的聚合方法;4.悬浮聚合:单体以小液滴状悬浮在水中的聚合;5.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合;6.缩聚反应由含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应,是合成聚合物的重要反应之一;特点:1.每一高分子链增长速率较慢,增长的高分子链中的官能团和单体中的官能团活性相同,所以每一个单体可以与任何一个单体或高分子链反应,每一步反应的结果,都形成稳定的化合物,因此链逐步增长,反应时间长;2.由于分子链中官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物;四、药用高分子材料通论药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料;第二章一、高分子的分子运动1.高分子运动特点:一运动单元的多重性:1.整链的运动:以高分子链为一个整体作质量中心的移动,即分子链间的相对位移;2.链段的运动:由于主链σ键的内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心不变宏观上不发生塑性形变;高弹性:链段运动的结果拉伸—回复;流动性:链段协同运动,引起分子质心位移;3.链节的运动:指高分子主链上几个化学键相当于链节的协同运动,或杂链高分子的杂链节运动4.侧基、支链的运动:侧基、支链相对于主链的摆动、转动、自身的内旋转;二、分子运动的时间依赖性:物质从一种平衡状态在外场作用下,通过分子运动低分子是瞬变过程,高分子是速度过程需要时间达到与外界相适应的另一种平衡状态;三、分子运动的温度依赖性1.活化运动单元:温度升高,增加了分子热运动的能量,当达到某一运动单元运动所需的能量时,就激发这一运动单元的运动;2.增加分子间的自由空间:温度升高,高聚物发生体积膨胀,自由空间加大;当自由空间增加到某种运动单元所需的大小时,这一运动单元便可自由运动;2、高分子的玻璃化转变玻璃态、高弹态和粘流态称为聚合物的力学三态;温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态;随着温度的升高,形变逐渐增大,当温度升高到某一程度时,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复;这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态;由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度,以Tg表示;当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态;高弹态开始向粘流态转变的温度称为粘流温度,以T f表示,其间的形变突变区域称为粘弹态转变区;二、溶解与高分子溶液一、高聚物的溶解1.非晶态高聚物的溶解条件:足够量的溶剂、一定量的非晶态高聚物溶解过程:溶胀到无限溶胀;溶解过程的关键步骤是溶胀;其中无限溶胀就是溶解,而有限溶胀是不溶解;2.结晶晶态高聚物的溶解非极性结晶高聚物的溶解条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热到熔点附近;溶解过程:加热使结晶熔化,再溶胀、溶解;极性溶解高聚物的溶解条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用加热;溶解过程:通过溶剂化作用溶解;二、溶剂的选择1.极性相似原则2.溶剂化原则3.溶解度参数相近原则三、高聚物的力学性能1.应力:单位面积上的内力为应力,其值与外加的应力相等;2.应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸会发生变化,这种变化称为应变或形变;3.弹性模量:是单位应变所需应力的大小,是材料刚度的表征;4.硬度:是衡量材料抵抗机械压力能力的一种指标;5.强度:是材料抵抗外力破坏的能力;6.高聚物力学性能的最大特点是高弹性和粘弹性:1.高弹性:处于高弹态的高聚物表现出的独特的力学性能;是由于高聚物极大的分子量使得高分子链有许多不同的构象,而构象的改变导致高分子链有其特有的柔顺性;链柔性在性能上的表现就是高聚物的高弹性;橡胶就是具有高弹性的材料;弹性形变的本质也就是高弹性变的本质;2).粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性; 力学松弛:高聚物的力学性能随时间的变化统称力学松弛;最基本的有:蠕变、应力松弛、滞后、力学损耗;蠕变:在一定的温度和恒定的外力作用下拉力,压力,扭力等,材料的形变随时间的增加而逐渐增大的现象;应力松弛:对于一个线性粘弹体来说,在应变保持不变的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松弛;滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象;力学损耗:由于力学滞后而使机械功转换成热的现象;第三章一、凝胶与功能水凝胶1.凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质;影响胶凝作用的因素:浓度、温度、电解质;2.凝胶的性质1触变性 2溶胀性 3脱水收缩性 4透过性3.凝胶的分类1物理凝胶:由非共价键氢键或范德华力相互连接,形成网状结构;由于聚合物分子间的物理交联使其具有可逆性,只要温度等外界条件改变,物理链就会破坏,凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝胶;2化学凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称为不可逆凝胶;3冻胶:指液体含量很多的凝胶,通常在90%以上;多数由柔性大分子构成,具有一定的柔顺性,网络中充满的溶剂不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶;4干凝胶:液体含量少的凝胶,其中大部分是固体成分;在吸收适宜液体膨胀后即可转变为冻胶;4.功能水凝胶:对温度或pH等环境因素的变化所给予的刺激有非常明确或显着的应答; 根据环境变化的类型不同,环境敏感水凝胶可分为:温敏水凝胶、pH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶;二、粒子分散结构:有以下四种类型:1.药物粒子分散在高聚物基材中的复合结构,高聚物为连续相,如速释型固体分散制剂;2.药物粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂3.药物粒子包裹在聚合物囊膜中,再分散在聚合物基材中4.药物粒子分散在高聚物凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯-聚氧丙烯共聚物的水凝胶制成的皮鲁卡品滴眼剂等缓释给药系统;三、缓控释性材料1.缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂;系指口服药物在规定释放介质中,按要求缓慢地非恒速释放;2.控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓度保持相对恒定,体内释药不受pH影响;系指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放;四、分散传质过程药物的扩散过程:1.药物溶出并进入周围的聚合物或孔隙;2.由于浓度梯度,药物分子扩散通过聚合物屏障;3.药物由聚合物解吸附;4.药物扩散进入体液或介质;第四章药用天然高分子材料一、淀粉1.来源淀粉starch广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒而存在;药用淀粉多以玉米淀粉为主;2.化学结构和组成淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物;结构单元:D-吡喃环型葡萄糖淀粉组成可以分为两类,直链淀粉与支链淀粉;自然淀粉中直链,支链淀粉之比一般约为15-28%比72-85%,视植物种类、品种、生长时期的不同而异;1直链淀粉是以α-1,4苷键连接而成的线型聚合物;直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋圈大约有6个葡萄糖单元;2支链淀粉是由D-葡萄糖聚合而成的分支状淀粉,其直链部分也为α-1,4苷键,而分支处则为α-1,6苷键;在各种淀粉中,直链淀粉约占20%-25%,支链淀粉约占75%-85%3.性质1形态与物理常数玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定;2淀粉的溶解性、含水量与氢键作用力溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的吸湿性; 含水量:在常温、常压下,淀粉有一定的平衡水分,但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要是淀粉中的葡萄糖单元存在的众多醇羟基与水分子相互作用形成氢键的缘故;不同淀粉的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致;3淀粉的吸湿与解吸吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称为平衡水分;用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉;解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境的变化而变化,它具有生理活性,可被微生物利用,而结合水则不能;4淀粉的水化、膨胀、糊化水化:淀粉颗粒中的淀粉分子有的处于有序态晶态,有的处于无序态非晶态它们构成淀粉颗粒的结晶相和无定性相,无定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象;膨胀:淀粉在60-80℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以淀粉粒残余的形式保留在水中;糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀粉加热至60~80℃时,则颗粒可逆地吸水膨胀,至某一温度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也都下沉的现象;糊化的本质:水分子加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成为亲水胶体;5淀粉的回升老化、凝沉回生或老化:淀粉糊或淀粉稀溶液再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象;形成的淀粉称为回生淀粉;4、反应1水解反应存在于淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,呈现多糖具备的水解性质;2显色反应淀粉与碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝色,支链淀粉呈紫红色;5.应用淀粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂;淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,1g淀粉含霉菌应在100个以下,杂菌不得多于1000个;可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉;二、糊精1.来源与制法淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精;糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却;2.分类在药剂学中应用的糊精有白糊精和黄糊精;3.性质糊精为白色、淡黄色粉末;不溶于乙醇95℃、乙醚,缓缓溶于水,易溶于热水三、麦芽糖糊精1.来源与制法麦芽糖糊精是由食用淀粉在有水存在的条件下,将淀粉加热,经合适的酸或者酶部分水解而制得;制法:部分地将淀粉水解可得不同链长的葡萄糖单元的聚合物溶液,然后过滤、浓缩、干燥即得麦芽糖糊精;2.性质为无甜味、无臭的白色粉末或颗粒;易溶于水,微溶于乙醇;若其葡萄糖当量提高,则吸湿性、可压性、溶解度、甜度也随之提高,黏度下降;四、羧甲基淀粉钠1.结构为聚α-葡萄糖的羧甲基醚2.性质为白色至类白色自由流动的粉末,能分散于水,形成凝胶,醇中溶解度约2%,不溶于其它有机溶剂,有较大的吸湿性3.应用羧甲淀粉钠作为胶囊剂和片剂的崩解剂广泛应用于口服药物制剂中,在湿法制粒时,将羧甲淀粉钠加入颗粒内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用;是某些口崩片的理想辅料;也可用作助悬剂;五、纤维素1.来源纤维素存在于一切植物中,是构成植物细胞壁的基础物质;2.结构结构单元是D-吡喃葡萄糖基,相互间以-1,4-苷键连接,分子式为C6H10O5n;3.性质1化学反应性纤维素的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在大量羟基有关;2氢键的作用纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在3吸湿性纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后,其平衡含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量; 4溶胀性纤维素的有限溶胀可分为结晶区间溶胀和结晶区内溶胀;纤维素溶胀能力的大小取决于碱金属离子水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随其浓度而增加,至某一浓度,溶胀程度达最高值;5机械降解特性机械降解后的纤维素比氧化、水解或热降解的纤维素具有更大的反应能力;6可水解性纤维素大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是催化剂,可降低贰键破裂的活化能,增加水解速度;纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素也产生碱性水解;六、粉状纤维素1.制法将植物纤维材料纤维浆,用%NaOH溶液在20℃处理,不溶解的部分中包括纤维浆中的纤维素和抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎即得粉状纤维素;2.性质呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的流动性和堆密度不一,具有一定的可压性,流动性较差;3.应用可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可用于降低油性悬浮性内容物的稳定剂,以减轻其沉降作用,也可作口服混悬剂的助悬剂;用作片剂干性粘合剂的浓度为5%;-20%,崩解剂浓度为5%-15%,助流剂浓度为1%-2%,不得用作注射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂;七、微晶纤维素1.制法将结晶度高的纤维经强酸水解除去其中的无定形部分,所得聚合度约为220,相对分子质量约为36000的结晶性纤维即为微晶纤维素;胶态微晶纤维素:纤维素+亲水性分散剂2.性质白色、无臭、无味,多孔、易流动粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂;可压性:具有高度变形性,极具可压性;吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等;分散性:微晶纤维素在水中经匀质器作用,易于分散生成妈油般的凝胶体;反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能;3.应用微晶纤维素PH型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作为倍散的稀释剂和丸剂的赋形剂;微晶纤维素RC型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏的稳定剂;微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的核芯,微晶纤维素AvicelPH-300系列具有快速崩解性、较好的流动性、可减小片重差异等优点;Avice KG-801可以提高片剂硬度、降低磨损性、少量添加适于在低压力下压片等优点;纤维素衍生物具有以下性质:具有玻璃化转变温度、溶度参数和表面能、物理配伍相容性、溶胀性、吸湿性、黏度、生物黏附性、热凝胶化和昙点、液晶的形成;八、醋酸纤维素。
高聚物的分子运动与力学状态

使用价值——是高聚物材料成型加工不能超过的温度。
5)脆化温度
定义——指高聚物材料在受强外力作用时,从韧性断裂转变为脆性断裂时的
温度。
使用价值——是塑料、纤维的最低使用温度。
2 . 晶态高聚物
皮革态
在轻度结晶的聚合物中,少量的晶区起类似交联点
的作用,当温度升高时,其中非晶区由玻璃态转变为高
弹态,可以观察到Tg的存在,但晶区的链段由于受晶格
生急剧变化;
4)应用——
塑料(Tg在室温以上): Tg为使用上限和耐热指标;
橡胶(Tg在室温以上): Tg为使用下限和耐寒指标。
V: Volume
H: Enthalpy
G’: Storage shear modulus
α: Volume coefficient of expansion
运动十分缓慢,体积松弛和构象重排在实验的时间标尺内不可能实现
,体系很难达到真正的热力学平衡状态,因而出现CP、 α和K的不连续
变化,而其体积、焓及熵连续变化,这些现象恰好与二级转变相似。
dF=-SdT+VdP
• 一级转变——以温度和压力作为变量,与自由能的一阶偏导数有关的
性质如体积、焓及熵在此过程中发生突变,这类相转变称为一级转变.
• 1 . 线形非晶态高聚物
• 2 . 晶态高聚物
• 3 . 交联高聚物
当温度在一定范围内变化时,大分子具有不同
的运动状态,高聚物宏观表现出不同的力学状态。
在恒定应力下,高聚物的温度-形变之间的关系
(温度-形变曲线)可反映出分子运动与温度变化的
关系。不同结构高聚物温度-形变曲线不同。
1 . 线形非晶态高聚物
低温度。
高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸
高弹态的力学性能

b.取代基:供电取代基易氧化,吸电子取代基难氧化。 如天然橡胶和丁苯橡胶,取代基是甲基、苯基,耐老 化性能差;而氯丁橡胶、氟橡胶耐热性能好(300oC )
c.交联键的结构:-C-O-C-或 C-C键能大,耐热性能好。
◆降低Tg,避免结晶,改善耐寒性 低温下玻璃化转变或结晶,变硬发脆,失去弹性。故削弱
无水印刷:指不需要润版液,用斥墨的硅橡胶层作为印版的空
白部分,使用特殊油墨, 在一定的温控系统控制下来完成印刷的 一种平版印刷方式。过程操作简单,减少了调节水墨平衡的过程, 印刷质量易于控制。
硅橡胶油墨
附着力佳,立体感强,高亮度,手感柔软,耐摩擦。有优异的 剥离强度,防水,防滑,透气,耐高,低温,流平性能良好。 无毒,无害,环保适用于手机硅胶按键等各种硅橡胶材。 纺织品,无纺布,真皮。仿皮等材质的表面处理。 1:在纺织品方面,服装标牌,装饰图案,运动手套等器具的防滑, 防水,鞋类装饰,防滑,袜子的防滑,手袋,旅行袋,箱包等的 标牌,装饰等; 2:用于真皮及仿皮的表面涂层处理 3:用于高档的电子灌封胶等 4:用于印刷品的图案装饰等。
应用: 飞机上的门、窗;密封、垫圈;高温电器设备的高压线路
(介电强度大,介质损耗低);高温脱模剂;医疗器械(人工 心脏伐,人工胆管,整形外科)等等。
微接触印刷技术
微接触印刷是一种利用高分子弹性印章和自组装单分子
膜技术在基片上印刷图形的新方法,能够形成高质量微结构,
可直接用于制作大面积的简单图案,适用于微米至纳米级图
分子间相互作用,增加分子链的活动性,会降低Tg;降低聚合 物结晶能力和结晶度,可增加聚合物的弹性,提高耐寒性。
4.2.4 硅橡胶
主链均由Si-O组成的一类橡胶,其分子链具有很高的柔顺 性。此外,其键能大,不易氧化,不易老化。如极高的耐热、 耐寒性,在-65~250oC的范围内,可保持其作为弹性体的物理特 性和优良的电介性能;长时间高温处理,硬度基本不增加等等。 缺点:机械强度较低,耐油性稍差。 但如与聚四氟乙烯接枝、镶嵌共聚,回明显提高其性能。
高聚物的力学性能

• 高弹性:小的应力作用下可发生很大
的可逆形变,是由内部构象熵变引起 的,所以也称熵弹性(橡胶具有高弹 性)
• 静态力学性能:在恒应力或恒应变情
况下的力学行为
• 动态力学性能:物体在交变应力下的
粘弹性行为
• 应力松弛:在恒应变情况下,应力随
时间的变化
整理课件
• 蠕变:在恒应力下,物体的形变随时
整理课件
2-2 平衡态高弹形变的热力学分析
• 高弹形变可分为平衡态形变(可逆)
和非平衡态形变(不可逆)两种
• 假设橡胶被拉伸时发生高弹形变,除
去外力后可完全回复原状,即变形是 可逆的,所以可用热力学第一定律和 第二定律来进行分析
整理课件
f (u) T(S)
l T,V
l T,V
• 物理意义:外力作用在橡胶上,一方
整理课件
2-1 高弹性的特点
• 高弹态是高聚物所特有的,是基于链段
运动的一种力学状态,可以通过高聚物 在一定条件下,通过玻璃化转变而达到
• 处于高弹态的高聚物表现出独特的力学
性能——高弹性
• 这是高聚物中一项十分难能可贵的性能
整理课件
• 橡胶就是具有高弹性的材料,高弹性
的特征表现在:
• ①弹性形变大,可高达1000%,而金
两个力。
整理课件
应变 应力
张应变:
l l0 l0
真应变:
l dl i
l l0 i
张应力: F
A0
真应力:
F A
切应变:
压缩应变:
r tg
是偏斜角
V
V0
切应力:
s
F A0
压力P
整理课件
哈工大材料学院硕士研究生招生复试指导

哈尔滨工业大学材料科学与工程学院2012\2013年硕士研究生招生复试指导根据教育部关于加强硕士研究生招生复试工作的指导意见及学校有关要求,硕士研究生入学考试初试合格的考生和推免生均需参加复试,材料科学与工程学科2011年硕士研究生招生复试指导确定如下:复试比例及主要内容,Ⅰ复试由笔试和面试两部分组成,外国语听力考试在面试中进行。
复试的总成绩为280分,其中笔试200分,面试80分。
Ⅱ复试笔试科目(一)报考080501材料物理与化学学科的考生以下共有六套考题供考生选择。
参加复试的考生须从六套题中任选两套考题回答。
每套题100分,共200分。
第一套题:材料X射线与电子显微分析一、X射线物理基础1. 连续X射线2. 特征X射线3. X射线与物质相互作用(包含相干散射、非相干散射、光电子、X射线荧光及俄歇电子)二、X射线衍射方向1. 布拉格方程的推导2. 布拉格方程的讨论(包含反射级数、干涉指数、消光等)三、X射线衍射强度1.原子散射因子2.结构因子(包括含义、推导及如何用结构因子推导晶体消光规律)3.多晶体X射线衍射强度影响因素四、电子光学基础与透射电子显微镜:1. 电磁透镜的像差种类、消除或减少像差的方法;2. 透射电子显微镜结构、成像原理五、电子衍射:1. 爱瓦尔德球图解法2. 晶带定理与零层倒易面3. 电子衍射基本公式参考书目:周玉、武高辉编著,《材料X射线与电子显微分析》,哈尔滨工业大学出版社。
第二套题热力学一、热力学基本规律1.物态方程2.热力学第一定律3.热容量和焓4.热力学第二定律5.熵和热力学基本方程6.熵增加原理的简单应用7.自由能和吉布斯函数二、均匀物质的热力学性质1.麦克斯韦关系及其简单应用2.特性函数3.平衡辐射热力学4.磁介质热力学三、单元系的相变1.热动平衡判据2. 单元系的复相平衡条件3.单元复相系的平衡性质四、多元系的复相平衡和化学性质1.多元系的热力学函数和热力学方程2.多元系的复相平衡条件3.吉布斯相律参考书目:汪志诚,《热力学·统计物理(第二版)》,高等教育出版社。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料的弹性模量主要取决于结合键的本 性和原子间的结合力,而材料的成分和组织 对它的影响不大。
弹性模量的基本类型
F
θ F
F
F
弹性模量的基本类型
l l0 l0 dli l0 l i
l
r tg
V V0
弹性变形
弹性模量
弹性模量可视为衡量材料产生弹性变形难易程 度的指标,其值越大,使材料发生一定弹性变 形的应力也越大,即材料刚度越大,亦即在一 定应力作用下,发生弹性变形越小。 弹性模量E是指材料在外力作用下产生单位弹 性变形所需要的应力。
弹性模量
这个定义对金属来讲是没有任何意义的, 这是因为金属材料所能产生的弹性变形量 是很小的,但是对高聚物来说意义重大。
测量过程中通过控制样品炉的升温程序
炉温范围:-150℃~600℃(注意:设置温度禁止超 过材料熔点) 升温速率:0.1℃/min~40℃/min(400℃后 25℃/min) 降温速率:0.1℃/min~20℃/min 或改变频率:频率范围:1.6×10-3~200Hz。最后 可得到,和对温度(T)、频率(HZ)或时间(t) 的图谱。
交变应力和应变作用下的弹性模量
力学损耗角: E’/E’’= ζo / εo cosδ / ζo / εo sinδ=tan δ
δ—力学损耗角,可以用tanδ表示内耗的大小
动态力学分析
当样品受到变化着的外力作用时,产生相应的应 变。在这种外力作用下,对样品的应力-应变关系 随温度等条件的变化进行分析,即为动态力学分 析。 动态力学分析是研究聚合物结构和性能的重要手 段,它能得到聚合物的储能模量,损耗模量和力 学损耗,这些物理量是决定聚合物使用特性的重 要参数。同时动态力学分析对聚合物分子运动状 态的反映十分灵敏,考察模量和力学损耗随温度、 频率以及其它条件的变化的特性可得聚合物结构 和性能的许多信息,如阻尼特性、相结构及相转 变、分子松弛过程、聚合反应动力学等等。
交变应力和应变作用下的弹性模量
储能模量E’——同相位的应力与应变的比值: E’= ζo cosδsinωt/ εo sinωt = ζo / εo cosδ 反应材料的弹性 损耗模量E”——相差90度相位的应力振幅与 应变振幅的比值: E”= ζo / εo sinδ 反应材料的粘性
聚合物力学性能
高弹态高聚物的力学性质
高弹态
定义:聚合物达到玻璃态转变温度以后,链 段运动激化,受力后能产生可以回复的大形 变,此时的状态称之为高弹态。 高弹态和玻璃态、粘流态一样,是聚合物特 有的力学状态,它可表现出橡胶的弹性行为
高弹态
高弹性的本质: 高弹性是由熵变引起的,在外力作用下,聚 合物分子链由卷曲状态变为伸展状态,熵减 小;当外力移去后,由于热运动,分子链自 发的趋向熵增大状态,所以形变可逆。
聚苯乙烯
聚甲基丙烯酸甲酯 尼龙66
3.2
4.15 3.0
1.2
1.55 0.855
3.0
4.1 3.3
橡胶弹性的影响因素
1、交联与缠结效应 模量会随交联点的功能度增加而增大 2、溶胀效应 体系网链密度降低,平均末端距增加,模量下降 3、网链极限伸长 产生非高斯效应,弹性模量大幅度增加 4、应变诱发结晶 网链沿伸展方向取向,有序化程度提高,利于结晶, 模量下降 5、填料 6、温度
交变应力和应变作用下的弹性模量
在交变的应力(应变)作用下,应力和应变都是 时间的函数,弹性模量的形式也发生相应变化。 应变随时间变化:ε(t)=εo Sinωt 应力随时间变化: ζ(t)=ζo Sin(ωt+δ)= ζo Sinωt Cosδ+ ζo Sinδ Cosωt 应力由两部分组成: 1)与应变同相位的应力ζo CosδSinωt ——弹性形变的动力 2)与应变相差90度相位的应力ζo SinδCosωt ——消耗在克服内摩擦阻力上的力(内耗)
F A
F s A0弹性模量的基本类型E来自 F A0 l l0
G=
s
r
F A0 tg
B
P PV 0 V
m m l l
横向单向单位宽度的 纵向单位宽度的增加
1 D E
J
1 G
1 B
几种高聚物的模量参数
高聚物 聚乙烯(高结晶) 聚乙烯(低结晶) E x 10-9 (Pa) G x 10-9 (Pa) 5.05 1.0 2.0 0.35 B x 10-9(Pa) 5.13 3.3
高弹态高聚物
橡胶高弹性的特点:
形变量大(链段长,具有柔性) 形变可恢复(交联结构) 弹性模量小且随温度升高而增大 形变伴有热效应(分子内摩擦,结晶)
弹性变形
一、弹性变形及其实质
弹性变形及其实质:弹性变形是一种可逆变形(即卸载 后可以恢复变形前形状的变形,热力学意义上的可逆变 形)。
动态力学分析对分子运动特别灵敏。当一定 温度下高分子链段运动频率与仪器施加频率一 致时,由于链段运动而产生的分子间摩擦作用 能最大限度地损耗机械能,此时值达到最大值。 储能模量也随温度上升而大幅度下降。
仪器
动态粘弹谱仪主机炉内结构如图所示。样品通过夹 具(拉伸、压缩、剪切、悬臂梁、三点弯曲等夹 具),T-bar与驱动器,应力传感器和位移检测器相 连接。试样在预张力(最大值:15N)的作用下由驱 动器施加一固定频率的正弦伸缩振动。预张力的作 用是使试样在受到伸缩振动时始终产生张应力。应 力传感器和位移检测器分别检测到同样振动频率的 正弦应力和应变讯号,经仪器信号处理器处理,直 接给出值。
高弹态
高弹性与分子链结构的关系 材料之所以具备高弹性,是由于链段运动能比 较迅速的适应外力而改变分子链的构象。
这要求材料具备什么样的结构呢? 要求常温下分子链段就要充分显示出柔性,且 分子链不易结晶。
高弹态高聚物
橡胶 Rubber is also called elastomer . It is defined as a cross-linked amorphous polymer above its glass transition temperature .