第二章折射波反射波法
地震勘探的基本方法

反射波时距曲线
t OR RS O*S
V1
V1
4h2 X 2 V1
当炮检距X=0时, t0=2h/V1,是炮点 之下垂直反射波旳 走时。
连续介质情况下 反射波时距曲线
连续介质中波旳射线和等时线方程
p sin (z)
v(z)
定义视速度旳倒数为视慢度,它就是射线参数p.
连续介质情况下 反射波时距曲线
室内数据处理;
地震地质解释;
‥ ‥等。
地震反射波勘探旳基本原理
在地表附近激发旳地震波向下传播,遇到不同介 质(地层)分界面产生向上旳反射波,检测、统 计地下地层界面反射波引起旳地面振动,能够解 释推断地下界面旳埋藏深度,地层介质旳地震波 传播速度、地层岩性、孔隙度、含油气性等。
最简朴旳是根据反射波到达地面旳时间计算地下
如右图 所示,从激发点O 发出旳入射波 到达绕射点A,然后以绕射波形式到达地 面旳任意观察点D,显然,波旳旅行时是 由两部分构成:一部分是入射波旅行OA
所需旳时间,另一部分是绕射波经过AD 旳 传播时间。
OA AD l2 h2 (x d )2 h2
t
v
v
屡次反射波时距曲线
本地下存在强波阻抗界面时(如在水域开展调查时旳水底 界面、浅层基岩面等),往往能够产生屡次反射波。屡次 反射波可分为全程屡次波和层间屡次波等,在地震统计上 出现得最多、也比较轻易辨认旳是全程屡次反射波。
动校正速度选用旳影响
有速度误差,则经过动校正后,还有剩余时差
对速度精度旳要求:
1、叠加次数越高,接受间隔越大,通放带越 窄,对动校正速度要求越高;
2、界面越深旳反射波,速度误差旳影响越小; 3、伴随道间距旳增长,由速度误差引起旳叠
2-4惠更斯原理 波的反射和折射

i i'
平面
三、波的反射
1、波遇到障碍物会返回来继 续传播,这种现象叫做波的 反射. 2、反射规律
1)入射角(i)和反射角(i’):入射波的波线与平面法线的夹 角i叫做入射角.反射波的波线与平面法线的夹角i’ 叫做反射 角. 2)反射定律:入射波线、法线、反射波线在同一平面内,入 射波线与反射波线分居法线两侧,反射角等于入射角。 3)反射波的的波长、频率、波速都跟入射波相同。 4 ) 波遇到两种介质界面时,总存在反射
答案:17 17.9
解析 : 设汽车在接收到P1、P2两个信号时 距测速仪的距离分别为s1、s 2 , 则有 : 2s1 2s 2 vt, (3.5 0.5) (4.4 1.7) 其中t s 0.1s, 3.5 0.5 汽车在接收到P1、P2两个信号的时间间隔内前进的距离为 : vt' 340 0.1 s1 s 2 m 17 m.已知测速仪匀速扫描, 2 2 由图b计录数据可求出汽车前进 s1 s 2 这段距离所用时间为 t' 0.1 t t (1.0 ) s 0.95 s, 2 2 s1 s2 17 汽车运动的速度v m / s 17.9 m / s. " 0.95 t
播速度与在第二种介质中传播速度之比。
sin i v1 sin r v2
(4)在折射中,频率不变,波速和波长都会发生改变。
v1 n12 v2
介质的折射率
关的常数,叫做第一种介质对第二种介质的折射率, 用n12表示。
v1 v2
是只与两种介质的性质有关而与入射角度无
v1 n12 v2
提问:声波1与声波2在同一均匀介质中传播,其波形如下图所示,则( A.2的波速比1的波速小 B.2的波速比1的波速大 C.2的频率比1的频率高 D.2的频率比1的频率低 )
地震折射波法反射波法

二、地震测线的布置 布置测线的原则: 测线为直线,尽量垂直地层或构造线走向; 测线均匀分布于全测区,最好与钻探线重合; 测线间距和疏密程度应根据地质任务、测区勘探程度 及探测对象等因素确定。 三、反射波法观测系统 1、简单连续观测系统 2、间隔连续观测系统 3、多次叠加观测系统
折射法:多用时距平面图表示。 反射法:多用综合平面图表示。形式简单,直观地表示 炮点和排列之间的关系。 1. 如图所示,O1、O2…O5是激发点,A、B、C、D表示互 换点,实线段O1A、AO2、O2B…等在水平直线上的投影正好 连续单次地覆盖了整条测线。
检波器又叫检震器,是把地震波到达引起地面微弱振动 转换成电讯号的换能装置。目前常用的检波器主要由线 圈、弹簧片和永久磁钢架及外壳组成。
检波器输出的信号电压和其振动时的位移初速度有关, 因此又叫速度检波器。
用晶体压电效应特性制成的晶体检波器,固有频率高的 特点,可以测量物体震动加速度,又叫加速度检波器。
如下图示:在O1、O2、O3…激发,在与M点为对称的S1、 S2、S3…接收R界面上同一点A的反射波。
A点:共反射点或共深度点。 M点:A的投影点,共中心点或共地面点。
S1、S2、S3…地震道:共反射点或共深度点)叠加道。 集合称CDP(共深度点)道集。
以炮检距X为横坐标,以反射波到达各叠加道的时间t为 纵坐标,可绘出对应A点的半支时距曲线。将炮点和接收点 互换,得到另半支时距曲线。
观测系统适用条件
单支时距曲线观测系统 适用于地质情况简单,折射界面规则且近水平情况。 特点:施工简单,效率高,界面起伏较大误差大,不适用。
相遇时距曲线观测系统 折射界面起伏明显,不规则。 特点:解释精度高,中间部分重复观测。
追逐时距曲线观测系统 对折射界面连续追踪,曲线形态和折射界面形态相关。 特点:时距曲线平行相似;界面上凸,则不平行
第2章 惠更斯原理 波的反射与折射

2、4惠更斯原理波的反射与折射学习目标知识脉络1、明白什么是波面、波线,明白它们之间的关系。
2、了解惠更斯原理,明白用惠更斯原理描述波的方法、3、明白什么是波的反射,理解波的反射定律、(重点)4。
明白什么是波的折射,理解波的折射定律、(重点)5、应用波的反射定律和折射定律解决有关问题。
(难点)惠更斯原理1、在均匀介质中,质点的振动会向各个方向匀速传播,形成球面波。
2、波在介质中传播时,任一时刻介质振动步调相同的点的包络面叫做波面;最前面的波面又叫波前,垂直于波面并指向波传播方向的直线叫做波线、如图2-4-1所示、图2。
4-13、波面是平面的波叫做平面波。
4。
惠更斯原理的内容是:介质中波前上的各点,都能够看成是一个新的波源(子波源),并发出子波;其后,这些子波的包络面就是新的波面、[再判断]1。
只有平面波的波面才与波线垂直。
(×)2。
任何波的波线与波面都相互垂直、(√)3、任何波的波线都表示波的传播方向、(√)\o([后考虑])波面一定是平面不?依照下图考虑波线与波面的关系是如何的。
图2、4。
2【提示】波面不一定是平面。
波线与波面互相垂直,一定条件下由波面可确定波线,由波线可确定波面、错误!1、惠更斯原理的实质:波面上的每一点(面源)都是一个次级球面波的子波源,子波的波速与频率等于初级波的波速和频率,此后每一时刻的子波波面的包络面就是该时刻总的波动的波面、其核心思想是介质中任一处的波动状态是由各处的波动决定的。
2、惠更斯原理的局限性:光的直线传播、反射、折射等都能用此来进行较好的解释、然而,惠更斯原理是比较粗糙的,用它不能解释衍射现象与狭缝或障碍物大小的关系,而且由惠更斯原理推知有倒退波的存在,而倒退波显然是不存在的。
1。
关于对惠更斯原理的理解,下列说法正确的是( )A、同一波面上的各质点振动情况完全相同B。
同一振源的不同波面上的质点的振动情况一定不同C。
球面波的波面是以波源为中心的一个个球面D。
高中物理第二章机械波第4讲惠更斯原理波的反射与折射

12/10/2021
第三页,共十九页。
二、波的反射 1.定义:波在传播的过程中,遇到两种介质的___分__界__面_时(jiè返mià回n)
到原介质继续传播的现象叫波的反射. 2.反射定律:当波传播到两种介质的交界处发生反射时,入射
线、法线、反射线在____同__一__(_tó_ng内yī)平,面入射线与反射线分别位 于_____法_两线侧(liǎnɡ cè),而且反射角_等__于___入射角;反射波的 波长、频率和波速都与入射波__相__同__.
12/10/2021
第十一页,共十九页。
解析 反射波的波长、频率、波速与入射波都应该(yīnggāi)相 等,故A、B错;折射波的波长、波速与入射波都不等,但 频率相等,故C错,D正确. 答案 D
12/10/2021
第十二页,共十九页。
针对训练 同一音叉发出(fāchū)的声波同时在水和空气中传播, 某时刻的波形曲线如图2所示.以下说法正确的是( )
12/10/2021
第十页,共十九页。
【例 2】 如图 1 所示,1、2、3 分别代 表入射波、反射波、折射波的波线, 则( ) A.2 与 1 的波长、频率相等,波速 不等 B.2 与 1 的波速、频率相等,波长 不等 C.3 与 1 的波速、频率、波长均相等 D.3 与 1 的频率相等,波速、波长均不等
12/10/2021
第六页,共十九页。
一、对惠更斯原理(yuánlǐ)的理解
1.惠更斯原理中,同一波面上的各点都可以看做子波的波 源.波源的频率与子波波源的频率相等.
2.波线的指向表示波的传播方向. 3.在各向同性均匀介质中,波线恒与波面垂直(chuízhí). 4.球面波的波线是沿半径方向的直线,平面波的波线是垂直于
4.惠更斯原理波的反射与折射

i
B
v1t
Ai
v2t r
D
C
r
知识小结
一、惠更斯原理: 1、介质中任一波面上的各点,都可以看做发射子波的波源
(点波源);
2、其后任意时刻,这些子波在波前进方向的包络面就是新
的波面。
二、用惠更斯原理解释球面波及平面波的传播
三、用惠更斯原理解释波的反射和波的折射
法线
法线
i i'
i
介质I
发生折射的原因: 不同介质中波的传播速度不同。
惠更斯原理对波的折射的解释
由惠更斯原理,A、B为同一波面上的两点。
经t 后,B 点发射的子波到达界面处D 点,A点 的到达C 点。
sin i BD v1t AD AD
sin r AC v2t AD AD
所以 sin i v1
波的折射
1、波的折射:波从一种介质进入到 另一种介质,形成折射波的现象。
2、波的折射定律:
(1)折射线、入射线和界面的法线在同一平面内,入射 线与折射线分居法线两侧;
(2)入射角的正弦与折射角的正弦之比等于波在第 一种介质中的波速与波在第二种介质中的波速之比。
3、用惠更斯原理证明波的折射定律 sin i u1 sin r u 213
A
A′
i i'
B′
a′ b′
三、波的反射——4、应用介绍
雷达和隐形飞机:雷达是利用无线电波发现目标,并测定其位置的设 备。由于无线电波具有恒速、定向传播的规律,因此,当雷达波碰到飞 行目标(飞机、导弹)等时,一部分雷达波便会反射回来,根据反射雷达 波的时间和方位便可以计算出飞行目标的位置。由于一般飞机的外形比 较复杂,总有许多部分能够强烈反射雷达波,因此我国新装备空军的歼 20飞机表面涂以特殊的吸收雷达波的涂料。
高中物理第二章机械波第4节惠更斯原理波的反射与折射

某物体发出的声音在空气中的波长为 1m,波速 340 m/s, 在海水中的波长为 4.5 m. (1)该波的频率为________ Hz,在海水中的波速为________ m/s. (2)若物体在海面上发出的声音经 0.5 s 听到回声,则海水深为多 少? (3)若物体以 5 m/s 的速度由海面向海底运动,则经过多长时间 听到回声?
解析:(1)由反射定律可得反射角为 60°,由题图的几何关系可
得折射角为 r=30°.
3
(2) 由 波 的 折 射 定 律 得
v甲Leabharlann =sin sini r
·
v
乙
=
sin sin
60° 30°
·
v
乙=
2 1
2
×1.2×105 km/s≈2.08×105 km/s.
答案:(1)30° (2)2.08×105 km/s
12/12/2021
12/12/2021
12/12/2021
在直角三角形 ABB′与直角三角形 B′A′A 中,AB′是公共边;波 从 B 传播到 B′所用的时间与子波从 A 传播到 A′所用的时间是一 样的,而波在同种介质中的波速不变,所以 B′B=AA′.因此直角 三角形 ABB′≌直角三角形 B′A′A 所以∠A′AB′=∠BB′A. 从图中看出,入射角 i 和反射角 i′分别为∠BB′A 和∠A′AB′的余 角,所以 i′=i.也就是说,在波的反射中,反射角等于入射角.
12/12/2021
2.利用惠更斯原理解释折射定律 如图,一束平面波中的波线 a 首先于时 刻 t 由介质 1 到达界面.波线 a 进入介 质 2 后,又经过时间 Δt,波线 b 也到达 界面.由于是两种不同的介质,其中波的传播速度 v1、v2 不一 定相同,在 Δt 这段时间内,两条波线 a 和 b 前进的距离 AA′和 BB′也不相同.当波线 b 到达界面时,新的波面在 A′B′的位置. 由于∠BAB′=θ1,所以 AB′=sBinBθ′1,又∠A′ B′A=θ2,则 AA′ =AB′sin θ2,即ssiinn θθ12=BABA′′=vv12ΔΔtt=vv12,所以ssiinn θθ12=vv12.
1、2.地震勘探基础及浅层折射、反射波法

振幅谱~(A-f) 相位谱~(φ-f)
一个非周期波动可以由许多不同振幅、 不同频率、不同初相的谐和振动合成。
3、频谱分析的作用
发现地震波特征(振幅、初相位)的频率差异,为 野外工作方法的选择、干扰波的压制、资料的解释
提供依据。
由地震勘探的各 种资料统计得到
某一浅层地震的干扰波调查剖面, 经频谱分析后得到其频谱特征;
•概述
地震勘探的主要内容、基本 原理、方法分类及其特点; 工程地震勘探的主要用途和特点;
•弹性介质与地震波的形成 •地震波的描述、类型及其传播特征
•地震勘探的地质基础
一、地震勘探的主要内容
研究人工激发的地震波 在介质中的传播规律。
即两个特征: 波的运动学特征(v、s、t) 波的动力学特征(波的成因、 振幅、频率和相位)
所以,水下激震可以使地震波的频率丰富、能量增大、 改善勘探效果。 但也给识别界面的真实性增加了难度(水面?基岩面?)
3、地质剖面 的均匀性
断层、溶洞、尖灭层、人工堆积物等都 使地质剖面纵向或横向不均匀,从而影 响地震波的走时、走向,增加了勘探、 解释的难度。
4、地震界面和地质界面的差异
前者是不同波速或波阻抗介质的分界面,后者是不同岩 性或年代介质的分界面;它们有时可能一致、有时可能 不同,要结合多种资料才能识别。
流体静压力
•切变模量(剪切)(Pa)
剪切应力与 切变角之比; 液体 µ=0。 横、纵向应变之比; 在0.05~0.45; 越硬越小,液体为0.5。 PXX~横向拉应力
•泊松比
•拉梅系数(Pa) •互换关系
三、振动与地震波
1、弹性振动
在应力和惯性力的作用下,质点 围绕原平衡位置发生的振动。 质点以弹性振动的形式在介 质中的传播所形成的波动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震资料处理中的核心技术 • 速度分析
速度参数是地震资料处理中最重要的参数之一, 常选用速度扫描及速度谱分析来求取。 当试验速度V(k)与地层反射波的叠加速度相一 致时各道同相叠加,此时平均振幅A(k)最大。
速度分析
地震资料处理中的核心技术 • CDP道集抽取 抽道集也叫共深度点选徘,是把具有相 同炮检中点的记录道排成一组,以共深 度点号次序排在一起。
二、t0法求折射界面
三、折射波法应用实例
PRMB 为珠江口盆地,SWTB为台西南盆地,S2006-3的测线位置,其中的黑点为OBS站位; CSS为潮汕坳陷,CNS为潮南坳陷,BYS为白云坳陷.
第二节 浅层反射波的资料处理和解 释
2、反射波的对比和识别
• (1)、波的对比。 • 同一界面的反射波同相轴特征: • 强振幅特性:处理后的地震剖面上各反射波一般 都有较强的能量 • 波形相似性和同相性:时间相近,波形相似 • (2)、多次波和特殊反射波 • 多次波 • 绕射波 • 断面波
3、时间剖面的地质解释
• • • • (1)地层标准层的确定和追踪 (2)断层的识别 反射波同相轴错位---常为中、小型断层的反映。 反射波同相轴突然增减或消失,波组间隔突然变 化---常为基底大断层的反映; • 反射波同相轴产状突变,反射零乱或出现空白带 • 标准反射波同相轴发生分叉、合并、扭曲、强相 位转换等现象---常为小断层的反映 • (3)不整合面
地震资料处理中的核心技术
• 静校正
功能:将所有激发点和接收点校正某一基准面上, 消除地表起伏及低速层的影响。
• 动校正
功能:消除由于源检距不同而引起的正常时差。
地震资料处理中的核心技术
地震资料处理中的核心技术 • 水平叠加
经动、静校正处理以后的地 震记录,已将表层不均匀性 和炮检距变化的影响消除, 成为以规定的基准面为准、 炮检中点自激自收的CDP道 集记录,可以进行叠加处理。
偏移叠加
所谓偏移迭加,就 是先进行偏移,然 后再作叠加,也叫 做叠前偏移。它把 多次覆盖地震记录 的反射波振幅,先 归位到对应的反射 点,然后把同一反 射点上来自不同炮 点和接收点的反射 振幅叠加在一起。
1、时间剖面的表示形式
• 纵轴垂直向下,表示t0时间,在剖面两侧标 有ms为单位的数值,并每隔10ms有一条水 平线为计时线。横坐标的值表示各CDP点 在地面的位置排列,两个CDP点之间的距 离为道间距的二分之一。 • 每个CDP点记录道的振动图形采用波形线 和变面积的显示法来表示(使波形正半周 部分呈黑色),便于波形的对比和同相轴 追踪。
岩土工程物探技术
第二章 浅层折射波法和反射波法资 料处理与解释
探测仪器
美国劳雷 公司
第一节 浅层折射波法数据处理与解 释
• 一、折射波资料处理解释系统 • 二、t0法求折射界面
二、折射观测系统
二、t0法求折射界面
• 令t0=t1 + t2-T和K=V1/2cosi , 则h=K*t0 • K=V1/2cosi=令θ(x)=t1-t2+T • 求得 2 2 V V / 2 V V K=V1/2cosi= 1 2 2 1
4、解释成果图件
• (1)深度剖面图 • (2)地震构造图
反射波探测实例
13线地震时间剖面(上)及地质解释剖面(下)
25线地震时间剖面(上)及地质解释剖面(下)
dx V2 2 cos d ( x)
• 令θ(x)=t1-t2+T • 求得 dx V2 2 cos d ( x)
• 当折射面倾角小于15度时,V2≈2⊿x/⊿θ(x)
步骤:
• 1、在相遇时距曲线图上构制θ(x)曲线, 并求取其斜率的倒数⊿x/⊿θ(x);2、求 V2和K值; • 3、计算各点的界面深度h=K*t0 • 4、以各观测点为圆心,以其对应的界面深 度为半径画弧,可得一系列圆弧,作这些 圆弧的包络线即为折射界面的位置。
• 一、浅层反射波的资料处理系统 • 二、浅层反射波法资料解释
一、浅层反射波的资料处理系统
• • • • • • • • • 1数据资料的输入和显示 2切除 3静校正 4频谱分析 5抽道集、动校正和水平叠加 6速度分析 7数值滤波 8偏移 9时深转换
地震资料处理中的核心技术
• 频谱分析
对地震信号进行傅里叶变换求取频谱,来了解有效 信号与干扰信号的频谱范围