应用光学第一章习题库
应用光学习题

应用光学习题应用光学习题.第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )讨论题:几何光学和物理光学有什么区别它们研究什么内容思考题:汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面一束光由玻璃( n= )进入水( n= ),若以45 ° 角入射,试求折射角。
证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。
为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。
假定坦克壁厚为 200mm ,孔宽为 120mm ,在孔内部安装一块折射率为n= 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多大的角度范围一个等边三角棱镜,若入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。
构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用?共轴理想光学系统具有哪些成像性质第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状是否与物相似为什么思考题:符合规则有什么用处为什么应用光学要定义符合规则有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。
光源高为 10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为600mm ,求该反光镜的曲率半径等于多少试用作图法求位于凹的反光镜前的物体所成的像。
物体分别位于球心之外,球心和焦点之间,焦点和球面顶点之间三个不同的位置。
试用作图法对位于空气中的正透镜()分别对下列物距:求像平面位置。
试用作图法对位于空气中的负透镜()分别对下列物距:求像平面位置。
已知照相物镜的焦距毫米,被摄景物位于距离米处,试求照相底片应放在离物镜的像方焦面多远的地方?设一物体对正透镜成像,其垂轴放大率等于-1 ,试求物平面与像平面的位置,并用作图法验证。
应用光学习题

' 2
)x
(l1'
xF'
dxF'
f
' 2
xF'
f
' 2
2
)
0
当d 21.13时
x
' F
f2
f
' 2
2500 78.87
86.595
x2 58.725x 86.597 0
x1 1.51 x2 57.2115
12. 由两个透镜组成的一个倒像系统,设第一组透 镜的焦距为f1′,第二组透镜的焦距 为f2′, 物平面位于第一组透镜的物方焦面上,求该倒像 系统的垂轴放大率。
5010 1.5163(40 50) _(1.5163 1) 10
50
l'H
n(r1
r2d r2 ) (n 1)d
40
11 1
l
' 2
l2
f
' 2
l2'
L
(d
)
xF'
f
' 2
1
l
' 2
1 l2
1
f
' 2
f
' 2
(l
2
l
' 2
)
l
2
l
' 2
f
' 2
(l1'
d
x
x
应用光学习题(第一章一些例题)

得
l 751.88mm
然后再被照相物镜成像,其x值为
x 1000 751 .88 1751 .88mm
f /x
75 0.0428 1751 .88
x' f ' (0.0428 ) 75 3.21m m
即照相底片在照相物镜像方焦平面外3.21mm处,
垂轴放大率为-0.0428。
编号
A1_001
有一束白光以300的入射角由空气射向ZF6玻璃内,已知ZF6玻璃的折射
率为 n 1.7550 n 1.7550 C D 求 折射后各色光的折射角为多少?
nF 1.7550
答: 根据折射定律
n sin 300 nD sin I D
sin 300 1 sin I D nD 2 1.7550
由图可知,当
f1 所以 l1 那么像点的位置应该是F‘的位置,l1
由单折射球面的焦距公式
nr f n n
f1 l1
nr 1.5 10 30 mm n n 1.5 1
即 经过第一个面之后,成像恰好在第二个面上。 如果把透镜翻转180度,那么
编号
A1_004
离水面1m深处有一条鱼,现用f‘=75mm的照相物镜拍摄该 鱼,照相物镜的物方焦点离水面1m。试求(1)垂轴放大率为 多少?(2)照相底片应离照相物镜像方焦点F’多远?
答: 根据题意,鱼经过水面成像,由
n n n n l l r
1 1.33 0 l 1000
l1 30mm
r
r1 10mm n n n n 1 1.5 1.5 0 l r l 10 30
l'
应用光学作业题答案

第二题: (1)光线由水中射向空气,求在界面处发生全反射的临界角。
解: 全反射的临界角Im arcsin(n '/ n)
光线由水中射向空气,n’=1,n=1.333
则 Im arc sin(n '/ n)=arc sin(1/1.333)=48.61
(2)光线由玻璃内部射向空气,求发生全反射的临界角。
1 l2
'
-
1 130
=
1 120
l2'=-62.4mm
A”成象于透镜2左侧62.4mm处。
(2)等效光组成象的方法:
解: H’
A
F1
F2’
F1’
F2
f1’=120mm f2’=-120mm d=70mm △= d-f1’- f2’=70mm
f ' f1 ' f2 ' 120 (120) 205.714mm
n0sini1=nsini1’ sini1=0.6552 i1=40.93° 由三角形内角和可求出太阳和幻
日之间的夹角
α=180 °-2×(i1-i1’) =158.14 °
第七题:
为了从坦克内部观察外界目标,需要在坦克上开一个孔,假 定坦克壁厚250mm,孔宽150mm,在孔内装一块折射率 n=1.52的玻璃,厚度与装甲厚度相同,问能看到外界多大的 角度范围?
O’
A’
解:(1)对于在球心的气泡,以O作为 球面顶点,根据符号规则,
O L’A=-200mm,n’=1,n=1.52
由 n ' n n ' n l' l r
1 -1.52 = 1-1.52 l=-200mm -200 l -200
应用光学,工程光学经典习题,例题汇总

α+β
40º
αα
β
β
α
2 40 20
180 - 90 - 60
由h1 sin I1 n2 sin I2
1*sin n2 sin
n2
sin
sin
2 sin
50
4、证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远 平行。
解:
n1 1, n1' n2 n, n2' 1
图 1-24
根据题意将 F1,, F1', F2,F2'等表示在图1- 24上 ,由图得到光学筒长为:
d f1' f2 75 100 100 125mm
由下式确定组合焦点位置
xF'
f2 f2'
-100 *100 -125
-80mm
xF
f1 f1'
100 *100 125
80mm
前面已求得组合系统焦距为 f ' 80mm, f 80mm 由组合焦点位置便可得到主
600 300
2
4.两块相距 75mm,焦距都是 100mm(即 f1 f2 100mm )的薄透镜组 合,第一透镜前 50mm 处有一物点 A,求该组合系统的焦距及像的位 置。
解:由组合焦距公式
1 f'
1 f1'
1
f
' 2
d
f1'
f
' 2
,将
f1'
f
' 2
100mm, d
75mm代入,得系
R2
6、人眼垂直看水池深处 1m 的物体,水的折射率为 1.33,试问
该物体的像到水面的距离是多少?
《应用光学》第一章例题

第一章例题1.P20习题1(部分):已知真空中的光速c=3Í108m/s,求光在火石玻璃(n=1.65)和加拿大树胶(n=1.526)中的光速。
解:根据折射率与光速的关系 vcn =可求得 火石玻璃 )/(10818.165.11038811s m n c v ⨯=⨯==加拿大树胶 )/(10966.1526.11038822s m n c v ⨯=⨯==3.P20习题5,解:设水中一点A 发出的光线射到水面。
若入射角为I 0(sinI 0=n 空/ n 水 ),则光线沿水面掠射;据光路可逆性,即与水面趋于平行的光线在水面折射进入水中一点A ,其折射角为I 0(临界角)。
故以水中一点A 为锥顶,半顶角为I 0 的 圆锥范围内,水面上的光线可以射到A 点(入射角不同)。
因此,游泳者向上仰 望,不能感觉整个水面都是明亮的,而只 能看到一个明亮的圆,圆的大小与游泳者 所在处水深有关,如图示。
满足水与空 气分界面的临界角为 75.033.11sin 0==I 即 '36480︒=I , 若水深为H ,则明亮圆的半径 R = H tgI 0 4. ( P20习题7 )解:依题意作图如图按等光程条件有:''''1OA n O G n MA n GM n ⋅+⋅=⋅+⋅即.1)100(5.11221+=+-⋅++O G y x x O G所以x y x -=+-⋅150)100(5.122两边平方得222)150(])100[(25.2x y x -=+-2223002250025.245022500x x y x x +-=++- 025.225.115022=++-y x x0120101822=-+x x y ——此即所求分界面的表达式。
第二章例题1.(P53习题1)一玻璃棒(n =1.5),长500mm ,两端面为半球面,半径分别为50mm 和100mm ,一箭头高1mm ,垂直位于左端球面顶点之前200mm 处的轴线上,如图所示。
《物理光学与应用光学》习题及选解2

《物理光学与应⽤光学》习题及选解2《物理光学与应⽤光学》习题及选解第⼀章习题1-1. ⼀个线偏振光在玻璃中传播时,表⽰为:i E ))65.0(10cos(10152t cz-??=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单⾊平⾯光波的频率为z H 1014=ν,在z = 0 平⾯上相位线性增加的情况如图所⽰。
求f x , f y , f z 。
1-3. 试确定下列各组光波表⽰式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹⾓为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为?。
求证:?αcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988µm 波长光的折射率为n = 1.52546,11m 1026.1/--?-=µλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下⾯两种⾊散规律的群速度(表⽰式中的v 表⽰是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满⾊散介质()(ωεε=,)(ωµµ=)的直波导管中的电磁波,222/a c c v p -=εµωω,其中c 真空中的光速,a 是与波导管截⾯有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
⼊射光是⾃然光,⼊射⾓分别为?0,?20,?45,0456'?,? 90。
1-8. 若⼊射光是线偏振的,在全反射的情况下,⼊射⾓应为多⼤⽅能使在⼊射⾯内振动和垂直⼊射⾯振动的两反射光间的相位差为极⼤?这个极⼤值等于多少?=501θ,n 1 = 1,n 2 = 1.5,则反射光的光⽮量与⼊射⾯成多⼤的⾓度?若?=601θ时,该⾓度⼜为多1-2题⽤图⼤?1-10. 若要使光经红宝⽯(n = 1.76)表⾯反射后成为完全偏振光,⼊射⾓应等于多少?求在此⼊射⾓的情况下,折射光的偏振度P t 。
物理光学与应用光学习题解第一章

《物理光学与应用光学》习题及选解(部分)第一章习题1-1. 一个线偏振光在玻璃中传播时,表示为:i E ))65.0(10cos(10152t cz-⨯⨯=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单色平面光波的频率为z H 1014=ν,在z = 0 平面上相位线性增加的情况如图所示。
求f x , f y , f z 。
1-3. 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹角为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为ϕ。
求证:ϕαcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988μm 波长光的折射率为n = 1.52546,11m 1026.1/--⨯-=μλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下面两种色散规律的群速度(表示式中的v 表示是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满色散介质()(ωεε=,)(ωμμ=)的直波导管中的电磁波,222/a c c v p -=εμωω,其中c 真空中的光速,a 是与波导管截面有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
入射光是自然光,入射角分别为︒0,︒20,︒45,0456'︒,︒90。
1-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面内振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?1-9. 电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角︒=501θ,n 1 = 1,n 2 = 1.5,则反射光的光矢量与入射面成多大的角度?若︒=601θ时,该角度又为多1-2题用图大?1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度P t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 几何光学基本原理
一.典型例题
例1 . 游泳者在水中向上仰望,能否感觉整个水面都是亮的? 解:本题是全反射现象和光路可逆现象的综合运用。
水的折射率n 水 =1.33,空气的折射率n 空 =1.当光线由水进入空气,是
由高折射率介质进入低折射率介质,可以发生全反射,即由水中发出的光线射到水面上时,如果入射角达到临界角,出射光线将掠过分界面。
换一个角度看,和水面趋于平行的光,折射后进入水中一点A,它在水面下的折射角即为临界角0I 。
在以水中一点A 为锥顶,半顶角
为0I 的圆锥范围内,水面上的光线可以射到A 点,所以游泳者在水中
仰望天空,不能感觉整个水面都是明亮的,而只能看到一个明亮的圆,圆当然的大小当然与游泳者所在的水深有关,如图所示。
下面求出临界角I0的大小 sinI0 等于n 空与n 水的比值等于0.75设水深为H ,则明亮圆半径R=0tan H I
例1-2:一速光由玻璃(n=1.5)进入水(n=1.33),若以45°角入射,试求折射角。
解:本题直接应用斯涅耳定律即可。
11sin n i =22sin n i
1n = 1.5 , 2n = 1.33 , 1sin 45i =
1.5sin 45°= 1.33sin 2i
sin 2i = 0.749
I = 52.6°。
折射角为52.6度。
二.习题
1-1 有时看到玻璃窗户上映射的太阳特别耀眼,这是否是由于窗玻璃表面发生了全反射?
1-2 射击水底目标时,是否可以和射击地面目标一样进行瞄准? 1-4 汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面?
1-5 观察清澈见底的河床底部的卵石,看来约在水下半米深处,问实际河水比半米深还是比半米浅?
1-6 人眼垂直看水池1米深处的物体,水的折射率为1.33,试问该物体的像到水面的距离是多少?
1-7平行光速投射到一水槽中,光速的一部分在顶面反射而另一部分在底面反射,如图所示,试证明两束返回到入
射介质的光线是平行的。
1-8 构成透镜的二表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用?
1-9 物体透过透镜成一虚像,用屏幕是否可以接收到这个像?如果用人眼观察,是否可以看到这个像?
1-10 共轴理想光学系统具有哪些成像性质?
1-11 光学系统第一面前面的空间为物空间,最后一面后边的空间是像空间,这种说法对吗?
1-12 什么叫理想光学系统?理想光学系统具有那些性质?
1-13什么叫理想像?理想像有何实际意义?。