2018届高考数学(文)专题复习习题:第1部分 专题八 选考系列4-4、4-5 1-8-1含答案

合集下载

2023-2024学年八年级数学下册 专题08 期中选择填空必刷(压轴18考点53题)(解析版)

2023-2024学年八年级数学下册 专题08 期中选择填空必刷(压轴18考点53题)(解析版)

专题08期中选择填空必刷(压轴18考点53题)一.二次根式有意义的条件(共2小题)1.已知a、b满足,则=()A.4B.8C.2024D.4048【答案】A【解答】解:∵a、b满足,∴,∴c=2025,∴|2023﹣a|+(2024﹣b)=0,∴2023﹣a=0,2024﹣b=0,∴a=2023,b=2024,则===4,故选:A.2.若|2017﹣m|+=m,则m﹣20172=2018.【答案】见试题解答内容【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:2018.二.二次根式的性质与化简(共6小题)3.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.4.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.5.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.6.化简﹣a的结果是()A.﹣2a B.﹣2a C.0D.2a【答案】C【解答】解:﹣a=﹣a﹣a2•=﹣a+a=0.故选:C.7.已知实数a,b在数轴上的位置如图所示,则=()A.2b﹣2a B.﹣2a C.﹣2b﹣2a D.2a【答案】D【解答】解:观察数轴可知:a<0,b>0,|b|>|a|,∴a+b>0,a﹣b<0,∴=a+b﹣(b﹣a)=a+b﹣b+a=2a,故选:D.8.实数a在数轴上的位置如图所示,化简:|a﹣2|+=1.【答案】1.【解答】解:由数轴可知:a﹣2<0,a﹣1>0,原式=|a﹣2|+=|a﹣2|+|a﹣1|=﹣(a﹣2)+(a﹣1)=﹣a+2+a﹣1=1,故答案为:1.三.二次根式的混合运算(共2小题)9.已知a为实数,且与都是整数,则a的值是或.【答案】见试题解答内容【解答】解:∵是正整数,∴a是含有﹣2的代数式;∵是整数,∴化简后为含有2的代数式,∴a=或.故答案为:或.10.利用平方与开平方互为逆运算的关系,可以将某些无理数进行如下操作:当a=+1时,移项得a﹣1=,两边平方得,所以a2﹣2a+1=3,即得到整系数方程:a2﹣2a﹣2=0.仿照上述操作方法,完成下面的问题:当a=时,(1)得到的整系数方程为a2+a﹣1=0;(2)计算:a3﹣2a+2024=2023.【答案】(1)a2+a﹣1=0;(2)2023.【解答】解:(1)∵a=,∴2a+1=,∴(2a+1)2=5,即4a2+4a+1=5,∴a2+a﹣1=0;故答案为:a2+a﹣1=0;(2)∵a2+a﹣1=0,∴a2=﹣a+1,∴a3=a(﹣a+1)=﹣a2+a=﹣(﹣a+1)+a=2a﹣1,∴a3﹣2a+2024=2a﹣1﹣2a+2024=2023.故答案为:2023.四.二次根式的化简求值(共1小题)11.因为,所以,的整数部分为2,小数部分为;设的小数部分为x,的整数部分为y,则=6.【答案】6.【解答】解:∵,∴得小数部分为,∴的小数部分为,即∵,∴的整数部分为3,即:y=3,∴,故答案为:6.五.二次根式的应用(共1小题)12.已知三角形的三边长分别为a、b、c,求其面积.对此问题,中外数学家曾经进行过深入研究.古希腊几何学家海伦(Heron,约公元50年),给出了求其面积的海伦公式:S=,其中p=.①我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式:S=.②若一个三角形的三边长依次为,,,请选用适当的公式求出这个三角形的面积为()A.B.C.D.【答案】B【解答】解:S==,故选:B.六.勾股定理(共8小题)13.如图,网格中的每个小正方形的边长为1,△ABC的顶点A、B、C均在网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.【答案】C【解答】解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=2,AC=,BC=2,即×2×2=××BD,解得:BD=.故选:C.14.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB 的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.16B.18C.20D.22【答案】B【解答】解:连接PF,过点F作FD⊥AM于点D,∵AB=EB,∠ACB=∠ENB=90°,而∠CBA+∠CBE=∠EBN+∠CBE=90°,∴∠CBA=∠EBN,∴△CBA≌△NBE(AAS),故S4=S△ABC;又∵FA=AB,∠FDA=∠ACB=90°,而∠FAD+∠CAB=∠CAB+∠ABC=90°,∴∠FAD=∠ABC,∴△FAD≌△ABC(AAS),同理可证△ACT≌△FDK,∴S2=S△FDA=S△ABC,同理可证△TPF≌△KME,△AQF≌△ABC,∴S1+S3=S△ADF=S△ABC,综上所证:S1+S2+S3+S4=3S△ABC=3×=18.故选:B.15.如图,已知Rt△ABC中,∠ACB=90°.AC=3,BC=4.以AB、BC、AC为直径作半圆围成两月形,则阴影部分的面积为()A.5B.6C.7D.8【答案】B【解答】解:∵∠ACB=90°,∴AB2=AC2+CB2,S阴影=直径为AC的半圆的面积+直径为BC的半圆的面积+S△ABC﹣直径为AB的半圆的面积,=π×+π×+AC×CB﹣π×()2=π(AC2+BC2﹣AB2)+AC×BC=×3×4=6.故选:B.16.如图,在△ABC中,∠ABC=90°,BC=4,AB=8,P为AC边上的一个动点,D为PB上的一个动点,连接AD,当∠CBP=∠BAD时,线段CD的最小值是()A.B.2C.D.【答案】D【解答】解:∵∠ABC=90°,∴∠ABP+∠CBP=90°,∵∠CBP=∠BAD,∴∠ABD+∠BAD=90°,∴∠ADB=90°,取AB的中点E,连接DE,CE,∴DE=AB=4,∴EC=EB=4,∵CD≥CE﹣DE,∴CD的最小值为4﹣4,故选:D.17.图1叫做一个基本的“勾股树”,也叫做第一代勾股树.让图1中两个小正方形各自长出一个新的勾股树(如图2),叫做第二代勾股树.从第二代勾股树出发,又可以长出第三代勾股树(如图3).这样一生二、二生四、四生八,继续生长下去,则第四代勾股树图形中正方形的个数为31.【答案】31.【解答】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),∴第四代勾股树图形中正方形的个数有1+2+22+23+24=31(个).故答案为:31.18.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P=,则PD的作PD⊥AC于点D,交AB于点E.若△BCP为等腰三角形,且S△PBC长为1或.【答案】1或.【解答】解:∵S,∴CD=3,∴AD=AC﹣CD=6,∵∠ACB=90°,PD⊥AC,∴DE∥BC,∴△ADE∽△ACB,∴,∴,∴DE=,过点P作PF⊥BC于点F,①当PB=BC时,如图,∴PF=CD=3,PB=BC=5,在Rt△PBF中,BF==4,∴DP=CF=BC﹣BF=1,∵DP<DE,∴点P在线段DE上,符合题意;②当PC=PB时,如图,∴DP=CF=,∵DP<DE,∴点P在线段DE上,符合题意;③当PC=BC时,如图,∴PF=CD=3,PC=BC=5,在Rt△CDP中,DP==4,∵DP>DE,∴点P不在线段DE上,舍去,综上,PD的长为1或,故答案为:1或.19.如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是.【答案】.【解答】解:如图,∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,∴△FAH≌△ABN(ASA),=S△ABN,∴S△F AH=S四边形FNCH,∴S△ABC在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=7,∴(AC+BC)2=AC2+BC2+2AC•BC=49,∴AB2+2AC•BC=49,=16,∵AB2﹣S△ABC∴AB2﹣AC•BC=16,∴BC•AC=,AB2=,∴AC2+BC2=,∴阴影部分的面积和=AC2+BC2+2S△ABC﹣S白=+2××﹣16=.故答案为:.20.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4= 2.5.【答案】2.5.【解答】解:∵△ABD、△ACE、△BCF均是等腰直角三角形,∴AB=BD,AC=CE,BC=CF,=m,S△ACH=n,设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG∵a2+b2=c2,+S△ACE=S△BCF,∴S△ABD∴S1+m+n+S4=S2+S3+m+n,∴S4=3.5+5.5﹣6.5=2.5故答案为:2.5.七.勾股定理的证明(共6小题)21.如图,四个全等的直角三角形拼成“赵爽弦图”,其中四边形ABCD与四边形EFGH都是正方形.连结DG并延长,交BC于点P,点P为BC的中点.若EF=2,则AE的长为()A.4B.C.D.【答案】C【解答】解:由题意,EF=HG=FG=2,AD∥BC,BG⊥HC,DH⊥HG,∠ADE=∠GBP,∴∠ADG=∠GPC.∵点P为BC的中点,∴PB=PG=PC.∴∠BGP=∠GBP,∠GPC=2∠GBP.∴∠GPC﹣∠ADE=2∠GBP﹣∠ADE,即∠GDH=∠GBP.∴△GDH∽△CBG.∴=,即=.设AE=BF=HD=x,∴=.∴x=1+或x=1﹣(舍去).故选:C.22.如图,在四边形ABDE中,AB∥DE,AB⊥BD,点C是边BD上一点,BC=DE=a,CD=AB=b,AC=CE=c.下列结论:①△ABC≌△CDE;②∠ACE=90°;③ab;④该图可以验证勾股定理.其中正确的结论个数是()A.4B.3C.2D.1【答案】A【解答】解:在△ABC和△CDE中,,∴△ABC≌△CDE(SSS),故①正确;∵△ABC≌△CDE,∴∠BAC=∠DCE,∵AB⊥BD,∴∠B=90°,∴∠BAC+∠ACB=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°,故②正确;∵AB∥DE,AB⊥BD,∠ACE=90°,=(a+b)(a+b)=(a+b)2,∴S四边形ABDES△ACE=c2,S△ABC=S△CDE=ab,∴ab,故③正确;∵ab,整理,得a2+b2=c2,故④正确.正确的结论①②③④.故选:A.23.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab【答案】B【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.24.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.19【答案】A【解答】解:设AC=AD=x,则BD=30﹣5﹣2x=25﹣2x,∵BD2=BC2+CD2,∴52+(2x)2=(25﹣2x)2,∴x=6,∴BD=25﹣2x=13,AD=6,∴这个风车的外围周长是:(13+6)×4=76.故选:A.25.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形的边LM的长为()A.10B.11C.110D.121【答案】B【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵直角△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴LM=4+7=11,故选:B.26.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为25,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论:①x2+y2=25;②x﹣y=2;③2xy=21;④x+y=7.其中正确的结论有①②③.【答案】①②③.【解答】解:给图形注上字母如下:①∵△ABC为直角三角形,∴根据勾股定理:x2+y2=AB2=25,故选项①正确;②由图可知,x﹣y=CE==2,故选项②正确;③由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为4××xy+4=25,即2xy=21;故选项③正确;④由2xy=21①,又∵x2+y2=25②,∴①+②得,x2+2xy+y2=25+21,整理得,(x+y)2=46,x+y=≠7,故选项④错误.∴正确结论有①②③.故答案为:①②③.八.勾股定理的应用(共3小题)27.如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EA的长是()km.A.4B.5C.6D.【答案】C【解答】解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.所以,EA=10﹣4=6(km).故选:C.28.如图,Rt△ABC中,∠ABC=90°,AB=8,D在BC边上,且BD=2,P为三角形内一点,满足AP⊥BP,直线DP交AC于点E,当AE最大时,AP的长是()A.B.C.D.6【答案】C【解答】解:∵P为三角形内一点,满足AP⊥BP,∴P为动点,∠APB始终为直角,∴点P在以AB为直径的圆上,取AB的中点O,连接OP和OD,当AE最大时,线段DP与⊙O相切,∵∠ABC=90°,OP=OD,∴BD=PD,∠BDP=∠BOP=180°,∵∠AOP+∠BOP=180°,∴∠BDP=∠AOP,∵BD=2,AB=8,∴BD=PD=2,OA=OP=4,∴△DBP~△OAP,∴PD:OP=BP:AP=2:4,∴AP=2BP,在Rt△ABP中,BP2+AP2=AB2,∴BP2+(2BP)2=AB2,解得:BP=,∴AP=2BP=.故选:C.29.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),可以计算出两图孔中心B和C的距离为()mm.A.120B.135C.30D.150【答案】D【解答】解:如图,在Rt△ABC中,AC=180﹣60=120(mm),AB=150﹣60=90(mm),∴BC==150(mm),∴两圆孔中心B和C的距离为150mm.故选:D.九.平面展开-最短路径问题(共1小题)30.如图,长方体的高为9dm,底面是边长为6dm的正方形.一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为()A.10dm B.12dm C.15dm D.20dm【答案】C【解答】解:①如图,将长方体的正面和上面展开在同一平面内,AD=6,BD=6+9=15,AB==(dm);②如图,将长方体的正面和右面展开在同一平面内,AC=6+6=12,BC=9,AB==15(dm),③将长方体的正面和左面展开在同一平面内,同理可得AB==15(dm),由于15<3,所以蚂蚁爬行的最短路程为15dm.故选:C.一十.三角形中位线定理(共1小题)31.如图,△ABC中,∠A=60°,AC>AB>6,点D,E分别在边AB,AC上,且BD=CE=6,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为3.【答案】3.【解答】解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH 于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=6,∴EC=CH=6,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=EC•cos30°=3,∴EH=2EJ=6,∵DM=ME,DN=NH,∴MN=EH=3.故答案为:3.一十一.平行四边形的性质(共2小题)32.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④;⑤∠AEO=60°.其中成立的个数是()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BEA=∠BAE,∴AB=EB,∵∠ABE=∠ADC=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵AB=BC,∴BE=BC,∴BE=CE=AE,∴∠EAC=∠ECA,∴∠AEB=∠EAC+∠ECA=2∠ECA=60°,∴∠ECA=30°,∴∠CAD=∠ECA=30°,故①正确;∵∠EAC=∠ECA=30°,∠BAE=60°,∴∠BAC=∠EAC+∠BAE=30°+60°=90°,∴AC⊥AB,∴S▱ABCD=AB•AC,故②正确;AB⊥OA,∴OB>AB,∴OB≠AB,故③错误;∵∠CAD=30°,∠AEB=60°,AD//BC,∴∠EAC=∠ACE=30°,∴AE=CE,∴BE=CE,∵OA=OC,∴OE=AB=BC,故④正确;∵△ABE是等边三角形,∴∠AEB=60°,∴∠AEC=120°,∵CE=AE,OA=OC,∴∠AEO=∠CEO=∠AEC=60°,故⑤正确.故选:D.33.如图,▱ABCD中,AB=22cm,BC=8cm,∠A=45°,动点E从A出发,以2cm/s 的速度沿AB向点B运动,动点F从点C出发,以1cm/s的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.6s B.6s或10s C.8s D.8s或12s【答案】C【解答】解:在▱ABCD中,CD=AB=22cm,AD=BC=8cm,如图,过点D作DG⊥AB于点G,∵∠A=45°,∴△ADG是等腰直角三角形,∴AG=DG=AD=8,过点F作FH⊥AB于点H,得矩形DGHF,∴DG=FH=8cm,DF=GH,∵EF=10cm,∴EH==6cm,由题意可知:AE=2t cm,CF=t cm,∴GE=AE=AG=(2t﹣8)cm,DF=CD﹣CF=(22﹣t)cm,∴GH=GE+EH=(2t﹣8)+6=(2t﹣2)cm,∴2t﹣2=22﹣t,解得t=8,当F点在E点左侧时,由题意可知:AE=2t cm,CF=t cm,∴GE=AE﹣AG=(2t﹣8)cm,DF=CD﹣CF=(22﹣t)cm,∴GH=GE﹣EH=(2t﹣8)﹣6=(2t﹣14)cm,∴2t﹣14=22﹣t,解得t=12,∵点E到达点B时,两点同时停止运动,∴2t≤22,解得t≤11.∴t=12不符合题意,舍去,∴EF的长为10cm时点E的运动时间是8s,故选:C.一十二.平行四边形的判定与性质(共1小题)34.如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC是等边三角形,CH=,∴EF=EC=BD,∵EF∥BD,∴四边形BDEF是平行四边形,故②正确,∵BD=CF=1,BA=BC,∠ABD=∠BCF,∴△ABD≌△BCF,故①正确,=BD•CH=,∵S平行四边形BDEF故③正确,∵CD=2BD,AF=2CF.=S△AEC=•S△ABD=,∴S△AEF故④错误,故选:C.一十三.菱形的性质(共2小题)35.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.8【答案】C【解答】解:∵DH⊥AB,∴∠BHD=90°,∵四边形ABCD是菱形,∴OB=OD,OC=OA=,AC⊥BD,∴OH=OB=OD=(直角三角形斜边上中线等于斜边的一半),∴OD=4,BD=8,由得,=32,∴AC=8,∴OC==4,∴CD==8,故选C.36.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.【答案】D【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.一十四.矩形的性质(共4小题)37.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.B.C.D.【答案】A【解答】解:如图,取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=2,∵点E是AB的中点,∴AE=AB=2,在Rt△DAE中,DE===2,在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:A.38.如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H 分别是EC,FD的中点,连接GH,若AB=6,BC=10,则GH的长度为()A.B.C.D.2【答案】C【解答】解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∵E,F分别是边AB,BC的中点,AB=6,BC=10,∴AE=AB=×6=3,CF=BC=10=5,∵AD∥BC,∴∠DHP=∠FHC,在△PDH与△CFH中,,∴△PDH≌△CFH(AAS),∴PD=CF=5,CH=PH,∴AP=AD﹣PD=5,∴PE===,∵点G是EC的中点,∴GH=EP=,故选:C.39.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(6,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).40.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P为BF中点,连接PD,则线段PD长的取值范围是2≤PD≤.【答案】2≤PD≤.【解答】解:如图:当点F与点C重合时,点P在点P1处,CP1=BP1,当点F与点E重合时,点P在点P2处,EP2=BP2,∴P1P2∥EC且P1P2=CE,当点F在EC上除点C、E的位置处时,有BP=FP,由中位线定理可知:P1P∥CF且P1P=CF,∴点P的运动轨迹是线段P1P2,∵矩形ABCD中,AB=2,AD=4,E为AD的中点,∴△ABE,△BEC、△DCP1为等腰直角三角形,∴∠ECB=45°,∠DP1C=45°,∵P1P2∥EC,∴∠P2P1B=∠ECB=45°,∴∠P2P1D=90°,∴DP的长DP1最小,DP2最大,∵CD=CP1=DE=2,∴DP1=2,CE=2,∴P1P2=,∴DP2==,故答案为:2≤PD≤.一十五.矩形的判定与性质(共1小题)41.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5B.4C.D.3【答案】C【解答】解:连接AP,∵AB=6,AC=8,BC=10,∴AB2+AC2=62+82=100,BC2=102=100,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠PEA=∠PFA=90°,∴四边形AEPF是矩形,∴AP=EF,∴当AP⊥BC时,AP有最小值,即EF有最小值,∵△ABC的面积=BC•AP=AB•AC,∴BC•AP=AB•AC,∴10AP=6×8,∴AP=,∴AP=EF=,∴EF的最小值为,故选:C.一十六.正方形的性质(共10小题)42.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了()A.方程思想B.分类讨论思想C.模型思想D.数形结合思想【答案】D【解答】解:将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了数形结合思想,故选:D.43.如图所示,在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为()A.3B.4C.5D.6【答案】C【解答】解:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,AC⊥BD,又∵OE⊥OF,∴∠EOB+∠BOF=90°=∠BOF+∠COF,∴∠EOB=∠COF,∴△BEO≌△CFO(ASA),∴BE=CF=3,又∵AB=BC,∴AE=BF=4,∴Rt△BEF中,EF===5.故选:C.44.如图,在正方形ABCD中,E、F分别是AB、BC的中点,CE交DF于点G,连接AG.下列结论:①CE=DF;②CE⊥DF;③∠EAG=30°;④∠AGE=∠CDF.其中正确的是()A.①②B.①③C.①②④D.①②③【答案】C【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵E,F分别是AB,BC的中点,∴BE=AB,CF=BC,∴BE=CF,在△CBE与△DCF中,,∴△CBE≌△DCF(SAS),∴∠ECB=∠CDF,CE=DF,故①正确;∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故②正确;∵CF=BC=CD,∴∠CDF≠30°,∴∠ADG≠60°,∵AD=AG,∴△ADG不是等边三角形,∴∠EAG≠30°,故③错误;∵CE⊥DF,∴∠EGD=90°,延长CE交DA的延长线于H,如图,∵点E是AB的中点,∴AE=BE,∵∠AHE=∠BCE,∠AEH=∠CEB,AE=BE,∴△AEH≌△BEC(AAS),∴BC=AH=AD,∵AG是斜边的中线,∴AG=DH=AD,∴∠ADG=∠AGD,∵∠AGE+∠AGD=90°,∠CDF+∠ADG=90°,∴∠AGE=∠CDF.故④正确;故选:C.45.如图.正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是4,则AB的长为()A.4B.2C.D.【答案】A【解答】解:过点O作OE⊥AD于点E,OF⊥CD于点F,则:∠OEM=∠OFN=∠OFD=90°,∵正方形ABCD,∴OA=OD=OC,∠ADC=90°,∴,四边形OEDF为矩形,∴四边形OEDF为正方形,∴OE=OF,∠EOF=90°,∵ON⊥OM,∴∠MON=90°=∠EOF,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴正方形OFDE的面积等于四边形MOND的面积,∴DE2=4,∴DE=2(负值已舍掉);∴AB=AD=2DE=4;故选:A.46.如图,正方形ABCD的边长为2,点O是对角线BD的中点,点E、F分别在AB、AD 边上运动,且保持BE=AF,连接OE,OF,EF在此运动过程中,下列结论:①OE=OF;②∠EOF=90°;③四边形AEOF的面积保持不变;④当EF∥BD时,EF=,其中正确的结论是()A.①②B.②③C.①②④D.①②③④【答案】D【解答】解:过O作OG⊥AB于G,OH⊥AD于H,∵四边形ABCD是正方形,∴∠A=∠OHA=∠OGA=90°,OH∥AB,OG∥AD,∵点O是对角线BD的中点,∴AH=DH,AG=BG,∴OH=AB,OG=AD,∵AD=BA,∴OG=OH,BG=AH,∴四边形AGOH是正方形,∴∠GOH=90°,∵BE=AF,∴GE=FH,在△OFH与△OEG中,,∴△OFH≌△OEG(SAS),∴OE=OF,故①正确;∠EOG=∠FOH,∴∠EOG+∠GOF=∠GOF+∠FOH=90°,∴∠EOF=90°,故②正确;∵△OFH≌△OEG,∴四边形AEOF的面积=正方形AOGH的面积=1×1=2,∴四边形AEOF的面积保持不变;故③正确;∵EF∥BD,∴∠AFE=∠ADB=45°,∠AEF=∠ABD=45°,∴AE=AF,∵BE=AF,∴AE=BE,∴AE=AF=AB=1,∴EF=,故④正确;故选:D.47.如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为()A.B.C.D.【答案】C【解答】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,AD=1,AH=2,∴DH==,∴BF+DE最小值为.故选:C.48.如图,在正方形ABCD中,E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE,EF为邻边作矩形DEFG,连接CG.在下列结论中:①DE=EF;②△DAE≌△DCG;③AC⊥CG;④CE=CF.其中正确的是()A.②③④B.①②③C.①②④D.①③④【答案】B【解答】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,故①正确;②∵矩形DEFG为正方形;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),故②正确;③根据②得AE=CG,∠DAE=∠DCG=45°,∴∠ACG=90°,∴AC⊥CG,故③正确;④当DE⊥AC时,点C与点F重合,∴CE不一定等于CF,故④错误,综上所述:①②③正确.故选:B.49.如图,正方形ABCD边长为12,里面有2个小正方形,各边的顶点都在大正方形的边上的对角线或边上,它们的面积分别是S1,S2,则S1+S2=()A.68B.72C.64D.70【答案】A【解答】解:如图,由正方形的性质,∠1=∠2=∠3=∠4=45°,所以,四个角所在的三角形都是等腰直角三角形,∵正方形的边长为12,∴AC=12,∴两个小正方形的边长分别为×12=4,×12=6,∴S1+S2=(4)2+62=32+36=68.故选:A.50.如图,在正方形ABCD中,O为对角线AC、BD的交点,E、F分别为边BC、CD上一点,且OE⊥OF,连接EF.若,则EF的长为()A.2B.2+C.+1D.3【答案】A【解答】解:在正方形ABCD中,AC和BD为对角线,∴∠AOB=∠BOC=90°,∠OBC=∠OCD=45°,OB=OC,∵∠AOE=150°,∴∠BOE=60°;∵OE⊥OF,∴∠EOF=∠BOC=90°,∴∠BOE=∠COF=60°,∴△BOE≌△COF(ASA),∴OE=OF,∴△OEF是等腰直角三角形;过点F作FG⊥OD,如图,∴∠OGF=∠DGF=90°,∵∠ODC=45°,∴△DGF是等腰直角三角形,∴GF=DG=DF=,∵∠AOE=150°,∴∠BOE=60°,∴∠DOF=30°,∴OF=2GF=,∴EF=OF=2.故选:A.51.如图,E为边长为2的正方形ABCD的对角线BD上的一点,且BE=BC,P为CE 上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是2.【答案】见试题解答内容【解答】解:过E点作EH⊥BC于H点,根据正方形的性质可知△BEH是等腰直角三角形,BE=BC=2,∴EH=2.∴△BEC的面积为×BC×EH=.连接BP,则△BPE面积+△BPC面积=2,即×BE×PR+×BC×PQ=2,∴×(PR+PQ)=2,解得PR+PQ=2.故答案为2.一十七.正方形的判定与性质(共1小题)52.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON 分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G,连接AF,DE.给出下列结论:①△AOF≌△DOE;②△OBE≌△OCF;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=EF2;⑤AF⊥DE,其中正确的为()A.①②④⑤B.①②③④⑤C.①②③④D.①②③⑤【答案】B【解答】解:①在正方形ABCD中,OC=OD,∠COD=90°,∠ODC=∠OCB=45°,∵∠EOF=90°,∴∠COE=∠EOF﹣∠COF=90°﹣∠COF,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴∠DOF=∠COE,OF=OE,∴∠AOF=∠DOE,∵OA=OD,∴△AOF≌△DOE(SAS),故①正确;②在正方形ABCD中,OC=OB,∠COB=90°,∠OBC=∠OCB=45°,∵∠EOF=90°,∴∠BOE=∠COF,∴△OBE≌△OCF(ASA);故②正确;③由①全等可得四边形CEOF的面积与△OCD面积相等,∴四边形CEOF的面积为正方形ABCD面积的,故③正确;④∵△COE≌△DOF,∴CE=DF,∵四边形ABCD为正方形,∴BC=CD,∴BE=CF,在Rt△ECF中,CE2+CF2=EF2,∴DF2+BE2=EF2,故④正确;∵AD=DC,∠ADF=∠DCE,DF=CE,∴△ADF≌△DCE,(SAS),∴∠DAF=∠CDE,∵∠ADF+∠CDE=90°,∴∠ADF+∠DAF=90°,∴AF⊥DE,故⑤正确;综上所述,正确的是①②③④⑤,故选:B.一十八.翻折变换(折叠问题)(共1小题)53.如图,将▱ABCD纸片折叠(折痕为BE),使点A落在BC上,记作①;展平后再将▱ABCD折叠(折痕为CF),使点D落在BC上,记作②;展平后继续折叠▱ABCD,使AD落在直线BC上,记作③;重新展平,记作④.若AB=4,BC=7,则图④中线段GH的长度为()A.B.C.3D.4【答案】C【解答】解:如图④中,连接EH,延长EH交BC于M.由题意易知:AB=AE=4,CD=DF=4,GH是△EBM的中位线,∵AD=BC=7,∴AF=DE=3,EF=1,∵EH=HM,∠EFH=∠MCH,∠EHF=∠CHM,∴△EFH≌△MCH(AAS),∵EF=CM=1,BM=BC﹣CM=6,∵GH是△EBM的中位线,∴GH=BM=3,故选:C.。

高考语文一轮专题重组卷:第一部分 专题八 文言文阅读(二) Word版含解析

高考语文一轮专题重组卷:第一部分 专题八 文言文阅读(二) Word版含解析

专题八文言文阅读(二)一、(2019·全国卷Ⅱ)阅读下面的文言文,完成1~4题。

商君者,卫之诸庶孽公子也,名鞅,姓公孙氏,其祖本姬姓也。

鞅少好刑名之学,事魏相公叔座。

公叔座知其贤,未及进。

会座病魏惠王亲往问病公叔曰公孙鞅年虽少有奇才愿王举国而听之王即不听用鞅必杀之无令出境公叔既死,鞅闻秦孝公下令国中求贤者,将修缪公..之业,东复侵地,乃遂西入秦,因孝公宠臣景监以求见孝公。

公与语,数日不厌。

景监曰:“子何以中吾君?吾君之欢甚也。

”鞅曰:“吾以强国之术说君,君大说之耳。

”孝公既用卫鞅,鞅欲变法,恐天下议己。

卫鞅曰:“疑行无名,疑事无功。

圣人苟可以强国,不法其故;苟可以利民,不循其礼。

”孝公曰:“善。

”“治世不一道,便国不法古。

故汤武..不循古而王,夏殷不易礼而亡。

反古者不可非,而循礼者不足多。

”孝公曰:“善。

”以卫鞅为左庶长,卒定变法..之令。

令行于民期年,秦民之国都言初令之不便者以千数。

于是太子犯法。

卫鞅曰:“法之不行,自上犯之。

”将法太子。

太子,君嗣也,不可施刑,刑其傅公子虔,黥.其师公孙贾。

明日,秦人皆趋令。

行之十年,秦民大说,道不拾遗,山无盗贼,家给人足。

民勇于公战,怯于私斗,乡邑大治。

于是以鞅为大良造。

居五年,秦人富强。

孝公使卫鞅将而伐魏。

卫鞅伏甲士而袭虏魏公子卬,因攻其军,尽破之以归秦。

魏惠王兵数破于齐秦,国内空,日以削,恐,乃使使割河西之地献于秦以和。

而魏遂去安邑,徙都大梁。

惠王曰:“寡人恨不用公叔座之言也。

”卫鞅既破魏还,秦封之於、商十五邑,号为商君。

(节选自《史记·商君列传》) 1.下列对文中画波浪线部分的断句,正确的一项是()A.会座病/魏惠王亲往问病/公叔曰/公孙鞅年虽少有/奇才/愿王举国而听之/王即不听用鞅/必杀之/无令出境/B.会座病/魏惠王亲往问病/公叔曰/公孙鞅年虽少/有奇才/愿王举国而听之/王即不听用鞅/必杀之/无令出境/C.会座病/魏惠王亲往问病/公叔曰/公孙鞅年虽少/有奇才/愿王举国而听之/王即不听/用鞅必杀之/无令出境/D.会座病/魏惠王亲往问病/公叔曰/公孙鞅年虽少/有奇才/愿王举国/而听之/王即不听用鞅/必杀之/无令出境/答案B解析本题考查文言断句的能力。

高中数学 模块1 高考真题(含解析)新人教A版必修1-新人教A版高一必修1数学试题

高中数学 模块1 高考真题(含解析)新人教A版必修1-新人教A版高一必修1数学试题

模块1高考真题对应学生用书P81剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是由教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.但在难度上会有一些差异,但在试卷结构、命题方向上基本上都是相同的.“稳定”是高考的主旋律.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新”是高考的生命线.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心去理解归纳,是难以拿到高分的.在数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修1集合与函数知识的考查,相对来说比较常规,难度不大,变化小,综合性低,属于基础类必得分试题,主要考查集合的概念及运算,函数的图象及定义域、值域、单调性、奇偶性、对称性、周期、最值等基本性质.做题时若能熟练应用概念及性质,掌握转化的技巧和方法,基本不会丢分。

若综合其他省市自主命题卷研究,必修1的知识又能与命题、不等式、导数、分段函数等知识综合,强化了数形结合思想、分类讨论思想、转化与化归的数学思想的运用,提高了试题的难度,所以作为高一学生来说,从必修1就应该打好牢固的基础,培养最基本的能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及其他自主命题省市试卷必修1所考查的全部试题,请同学们根据所学必修1的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学习内容的小综合试题,同学们可根据目前所学内容,有选择性地试做!)穿越自测一、选择题1.(2018·全国卷Ⅰ,文1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案A解析根据集合交集中元素的特征,可以求得A∩B={0,2},故选A.2.(2018·全国卷Ⅱ,文2)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( ) A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}答案C解析∵A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.3.(2018·某某卷,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}答案C解析因为全集U={1,2,3,4,5},A={1,3},所以根据补集的定义得,∁U A={2,4,5},故选C.4.(2018·全国卷Ⅲ,文1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案C解析由集合A={x∈R|x≥1},所以A∩B={1,2},故选C.5.(2018·某某卷,文1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析由并集的定义可得,A∪B={-1,0,1,2,3,4},结合交集的定义可知,(A∪B)∩C ={-1,0,1}.故选C.6.(2018·某某卷,理1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}答案 B解析由题意可得,∁R B={x|x<1},结合交集的定义可得,A∩(∁R B)={x|0<x<1}.故选B.7.(2018·卷,文1)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2} 答案 A解析 A ={x ||x |<2}={x |-2<x <2},B ={-2,0,1,2},∴A ∩B ={0,1}.故选A. 8.(2018·全国卷Ⅰ,理2)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 解不等式x 2-x -2>0,得x <-1或x >2,所以A ={x |x <-1或x >2},于是∁R A ={x |-1≤x ≤2},故选B.9.(2018·全国卷Ⅲ,文7)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x ) 答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于x =1对称的点还是(1,0),只有y =ln (2-x )过此点.故B 正确.10.(2018·某某卷,理5)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 由题意结合对数函数的性质可知,a =log 2e>1,b =ln 2=1log 2e ∈(0,1),c =log1213=log 23>log 2e ,据此可得,c >a >b .故选D.11.(2018·全国卷Ⅱ,文3)函数f (x )=e x -e-xx2的图象大致为( )答案 B解析 ∵x ≠0,f (-x )=e -x-e xx2=-f (x ), ∴f (x )为奇函数,排除A ,∵f (1)=e -e -1>0,∴排除D ;∵f (2)=e 2-e -24=4e 2-4e 216;f (4)=e 4-e-416=e 2·e 2-1e 416,∴f (2)<f (4),排除C.因此选B.12.(2018·全国卷Ⅰ,理9)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞) D.[1,+∞) 答案 C解析 画出函数f (x )的图象,再画出直线y =-x ,之后上下移动,可以发现当直线过点A 时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C.13.(2018·全国卷Ⅰ,文12)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值X 围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎪⎨⎪⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值X 围是(-∞,0),故选D.14.(2018·全国卷Ⅲ,理12)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案 B解析 ∵a =log 0.20.3,b =log 20.3,∴1a =log 0.30.2,1b =log 0.32,∴1a +1b=log 0.30.4,∴0<1a +1b <1,即0<a +b ab<1.又∵a >0,b <0,∴ab <0,即ab <a +b <0,故选B.二、填空题15.(2018·某某卷,1)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 答案 {1,8}解析 由题设和交集的定义可知,A ∩B ={1,8}.16.(2018·某某卷,5)函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 要使函数f (x )有意义,则log 2x -1≥0,解得x ≥2,即函数f (x )的定义域为[2,+∞).17.(2018·全国卷Ⅰ,文13)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2018·全国卷Ⅲ,文16)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=________.答案 -2解析 f (x )+f (-x )=ln (1+x 2-x )+1+ln (1+x 2+x )+1=ln (1+x 2-x 2)+2=2,∴f (a )+f (-a )=2,则f (-a )=-2.19.(2018·卷,理13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 y =sin x (答案不唯一)解析 令f (x )=⎩⎪⎨⎪⎧0,x =0,4-x ,x ∈0,2],则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.20.(2018·某某卷,9)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________.答案22解析 由f (x +4)=f (x )得函数f (x )的周期为4,所以f (15)=f (16-1)=f (-1)=-1+12=12,因此f [f (15)]=f 12=cos π4=22. 21.(2018·某某卷,15)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值X 围是________.答案 (1,4) (1,3]∪(4,+∞)解析 由题意,得⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x -4>0,此时f (x )=x 2-4x +3=0,x =1,3,即在(-∞,λ)上有两个零点;当λ≤4时,f (x )=x -4=0,x =4,由f (x )=x 2-4x +3在(-∞,λ)上只能有一个零点,得1<λ≤3.综上,λ的取值X 围为(1,3]∪(4,+∞).22.(2018·某某卷,理14)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x的方程f (x )=ax 恰有2个互异的实数解,则a 的取值X 围是________.答案 (4,8)解析 当x ≤0时,方程f (x )=ax ,即x 2+2ax +a =ax ,整理可得,x 2=-a (x +1),很明显x =-1不是方程的实数解,则a =-x 2x +1,当x >0时,方程f (x )=ax ,即-x 2+2ax -2a =ax ,整理可得,x 2=a (x -2),很明显x =2不是方程的实数解,则a =x 2x -2,令g (x )=⎩⎪⎨⎪⎧-x 2x +1,x ≤0,x 2x -2,x >0,其中-x 2x +1=-x +1+1x +1-2,x 2x -2=x -2+4x -2+4,原问题等价于函数g (x )与函数y =a 有两个不同的交点,求a 的取值X 围.结合对勾函数和函数图象平移的规律绘制函数g (x )的图象,同时绘制函数y =a 的图象如图所示,考查临界条件,结合a >0观察可得,实数a 的取值X 围是(4,8).。

2024-2025学年年八年级数学人教版下册专题整合复习卷16.2.1 分式的乘除(1)(含答案)

2024-2025学年年八年级数学人教版下册专题整合复习卷16.2.1 分式的乘除(1)(含答案)

2024-2025学年年八年级数学人教版下册专题整合复习卷16.2.1 分式的乘除(1)(含答案)16.2.1 分式的乘除(一)【自主领悟】1.计算:3222c a b ab c = .2.计算:4()7y x x÷-= . 3.下列分式中,是最简分式的是 ( )A .21227ba B .22()ab b a -- C .22x y x y ++ D .22x y x y --4.下列各式中,计算结果是分式的是 ( )A .n a m b ÷B .32n m m nC .35x x÷ D .3223734x x y y ÷5.计算:(1)22432m n n m -; (2)263x xy y -÷; (3)2510621y y x x ÷; (4)2263244x x x x x --÷--+. 6.计算:(1)2222412144m m m m m m ---+++; (2)269(3)2x x x x -+÷-+.【自主探究】问题1计算:(1)22238()4xy zz y-;(2)2226934x x xx x+-+--.名师指导(1)这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.(2)这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范解:(1)2222223824()644xy z xy zxyz y yz-=-=-;(2)22222692(3)(2)(3)3 343(2)(2)(3)(2)(2)2x x x x x x x xx x x x x x x x x+-++-+--===---+--+--.归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开.问题2计算:(1)2236a b axcd cd-÷;(2)2224369a aa a a--÷+++.名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范解:(1)22226636326a b ax a b cd a bcd abcd cd cd ax acdx x-÷=-=-=-; (2)2222242(3)(2)(3)33693(2)(2)(3)(2)(2)2a a a a a a a a a a a a a a a a a ---+-++÷===+++++-++-+.问题3 已知:2a =2b =322222222a b a b a aba ab b a b +-÷++-的值.名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,322222222a b a b a aba ab b a b +-÷++- 22()()()()()a b a b a b a b a b a a b ++-=+-222()()()()a b a b a b a a b a b +-=+- ab =.把2a =-2b =+ab ,所以原式22(222=+=-=.归纳提炼许多化简求值题,有的在题目中会明确要求先化简,再求值,这时必须按要求的步骤进行解题.但有的在题目中未必会给出明确的要求或指示,与整式中的求代数式值的问题一样,分式中的求值题一般也是先化简,然后再代入已知条件,这样可以简化运算过程.【自主检测】 1.计算:2()xy x -·xyx y-=___ _____. 2.计算:23233y xy x-÷____ ____.3.计算:3()9aab b-÷=____ ____. 4.计算:233x y xya a÷=____ ____. 5.若m 等于它的倒数,则分式mm m m m 332422--÷--的值为 ( )A .-1B .3C .-1或3D .41- 6.计算2()x yx xy x++÷的结果是 ( ) A .2()x y + B .y x +2C .2x D .x7.计算2(1)(2)3(1)(1)(2)a a a a a -++++的结果是 ( )A .3a 2-1 B .3a 2-3 C .3a 2+6a +3 D .a 2+2a +18.已知x 等于它的倒数,则263x x x ---÷2356x x x --+的值是 ( )A .-3B .-2C .-1D .09.计算22121a a a -++÷21a aa -+.10.观察下列各式:2324325432(1)(1)1(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x x -÷-=+-÷-=++-÷-=+++-÷-=++++(1)你能得到一般情况下(1)(1)nx x -÷-的结果吗? (2)根据这一结果计算:2320062007122222++++++.【自主评价】一、自主检测提示8.因为x 等于它的倒数,所以1x =±,2263356x x x x x x ---÷--+(3)(2)(2)(3)33x x x x x x -+--=--(2)(2)x x =+-224(1)43x =-=±-=-.10.根据所给一组式子可以归纳出:122(1)(1)1n n n x x x x x x ---÷-=+++++.所以232006200720082008122222(21)(21)21++++++=--=-.二、自我反思 1.错因分析2.矫正错误3.检测体会4.拓展延伸参考答案1.2x y - 2. 292x y - 3. 213b- 4.9x 5.C 6.C 7.B 8.A9.1a10.(1)121n n x x x --++++,(2)200821- 16.2.1分式的乘除(1)知识领航分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.用式子表示为:db ca d cb a ⋅⋅=⋅ 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:cb da c db a dc b a ⋅⋅=⋅=÷ e 线聚焦【例】 计算:(1)⎪⎭⎫ ⎝⎛-⋅-22563ab cd c b a , (2)xx yx y y x x +÷-222. 分析:几个单项式相乘(相除),利用乘、除法的法则计算,约分,化为最简式子;分式中分子、分母是多项式,应分别先分解因式,再用乘、除法的法则计算,最后约分,化为最简式子.解:(1)⎪⎭⎫ ⎝⎛-⋅-22563ab cd c b a =badab c cd b a 5253622=⋅⋅. (2)x x y x y y x x +÷-222=y x x x x y x 22)1()1(+⋅-=y x x x x x y x 2)1()1)(1(+⋅-+=)1(12-x y .双基淘宝◆仔细读题,一定要选择最佳答案哟!1. x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( )克A.a mx B. x am C. a x am + D. ax mx + 2.桶中装有液状纯农药a 升,刚好一满桶,第一次倒出8升后用水加满,第二次又倒出混合药4升,则这4升混合药液中的含药量为( )升A.a 32 B. a a )8(4- C.84-a D.2)8(4a a - 3.大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖机的工作效率是小拖机的工作效率( )倍. A.b a B.m n C. bm an D. mnab 4.一艘船顺流航行n 千米用了m 小时,如果逆流航速是顺流航速的qp,那么这艘船逆流航行t 小时走了__________千米. 5.已知:31=+x x ,则_________122=+xx . 综合运用◆认真解答,一定要细心哟!6. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷x y y x 346342; (2)xy x xy xy y x y x ++÷++-22222224.7.已知:xx 1=,求96339622+++÷-+-x x x x x x 的值.8.“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田的边长为(a -1)米的正方形,两块试验田的小麦都收获了m 千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?拓广创新◆试一试,你一定能成功哟!9.先化简,后求值:⎪⎭⎫ ⎝⎛++⋅-÷++-+142282232x x x x x x x x x ,其中54-=x .10.已知a,b,x,y 是有理数,且()02=++-b y a x ,求式子ba b by ax a y x b bx ay a +-++÷++-+2222的值.答案:1.C 2. B 3. C 4.mqnpt5. 76. ①y x 329-②y x xy x +-227. 8-8.① “丰收2号”小麦单位面积产量高②11-+a a 9.化简结果是:11+x 值为:5 10. 2116.2.1 分式的乘除(二)【自主领悟】1.下列各式中,计算正确的是( )A .m n m m ÷=B .1m n m n ÷⨯= C .111m m m m ÷÷= D .3211m m m÷÷= 2.2221a bb÷= . 3.232()3a b c-=_____ ______. 4.化简322()()x y xz y z y x z÷-,结果是 ( ) A .222y z x B .523x y z - C .344x y z - D .432x z z5.下列计算中,错误的是 ( )A .332628()y y x x -=-B .36224416()39b b c c =-C .22222()x y x y x y x y --=++D .24236()nn n b b a a=- 6.计算:(1)222212111a a a a a a a a --÷++++; (2)233()()()24b b b a a a-÷-.【自主探究】问题1 计算:22136932x x x x x x +-÷-+-+. 名师指导与整式乘除法混合运算一样,分式乘除法混合运算也是统一为乘法运算,然后利用分式乘法法则进行计算,其中要注意先确定运算结果的符号,以及不含小括号等其它附加条件的乘除同级运算顺序是从左往右.解题示范 解:22136932x x x x x x +-÷-+-+ 2223(3)(3)2(2)(3)(3)(3)(2)1.x x x x x x x x x x +-=--++--=-+=- 问题2 计算:22326123()()y y xy x x÷-. 名师指导在进行分式乘方运算时,先确定运算结果的符号,负数的偶数次方为正,而奇数次方为负,同时要注意运算顺序,先乘方,后乘除.解题示范解:22326123()()y y xy x x÷-362223232262442622612314432165322162.y y xy x x x y xyy x x y x y x y=-÷=-=-=-归纳提炼分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.【自主检测】1.计算22234()()()x y y y x x÷-得 ( )A .5x B .x 5y C .y 5 D .xy 52.计算2()x y yy x x ÷-的结果是 ( ) A .y - B .2x y - C .xyD .2x y3.计算2243312()()22a a ba b b -÷-的值等于 ( )A .9a -B .9aC .36a -D .36a4.计算:2223x y mn ·2254m n xy ÷53xymn. 5.计算:2222()()64y y x x ÷-.6.计算:24911214223xx x x-÷---.7.计算:2221644168282m m mm m m m---÷++++.8.阅读理解:计算1(2)2x xx÷--时,小虎给出了他的解答过程如下:解:12(2)122xx x x x xx x-÷-=÷=÷=--.试说明小虎的求解过程是否正确?如果不正确,请你指出错误之处,并写出你认为正确的解答过程.9.课堂上,吴老师给大家出了这样一道题:求当x等于(1)7-(2)时,请分别计算代数式22211x xx-+-÷221xx-+的值.小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体过程.10.先化简,再求值:2222225632()()12728x x x xx x x x-+++÷-+-+,其中2x=-.【自主评价】一、自主检测提示9.将22211x xx-+-÷221xx-+化简得,原式12=,所以计算结果与x取值无关.10.化简:2222222 225632(2)(3)(2)(4)2 ()()[][]() 12728(3)(4)(2)(1)1x x x x x x x x x x x x x x x x x x-+++--+--÷== -+----+++,再把2x=-代入.二、自我反思1.错因分析2.矫正错误3.检测体会4.拓展延伸【例题】用水清洗蔬菜上残留的农药,设用x(x≥1)单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为11x +.现有a(a≥2)单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.【点拨】根据题意在两种方案下,设清洗前蔬菜上残留的农药量为1,分别用a 的代数式表示蔬菜上残留的农药量,用a 单位量的水清洗一次,蔬菜上残留的农药量为11P a=+;把a 单位量的水平均分成两份后清洗两次,蔬菜上残留的农药量为211111(1)222Q a a a ==+++.然后比较其大小.结果是把水平均分成两份后清洗两次蔬菜上残留的农药量较少.总结:与分数一样,比较两个分式的大小时,如果分子相同,那么分母大的分式的值反而小.本题可用“作差法”比较两个结果中分母的大小,即22(1)(1)1124a a a a a +-+=+---24a =-<0,所以1a +<2(1)a +.参考答案1.A 2.B 3.D 4.212y 5.2249x y 6.46x + 7.42m - 8.不正确,原式21122(2)x x x x x =••=--- 9.12 10.22()1x x -+16.2.1分式的乘除(2)知识领航分式的乘方法则:分式的乘方要把分子、分母分别乘方.用式子表示为:n ba )(=n nb a乘除混合运算可以统一为乘法运算;乘方与乘除混合运算同数的运算一样,先乘方,再乘除.e 线聚焦【例】计算:(1))()()(432ab ab b a -÷-⋅- , (2)22222)(x y x xy y xy x x xy -⋅+-÷-. 分析:第(1)题是分式乘方与乘除混合运算,应先乘方再乘除;第(2)题分式中分子、分母是多项式,应分别先分解因式,再运用乘、除法的法则计算,最后约分,化为最简式子;乘、除法属于同一级运算,应按从左到右的运算顺序进行计算.解:(1))()()(432ab a b b a -÷-⋅-=433221)(ab a b b a -⋅-⋅=433221ab a b b a ⋅⋅=321b a . (2) 22222)(x y x xy y xy x x xy -⋅+-÷-=22)()(x y x y x xy y x x -⋅-⋅--=y -.双基淘宝◆仔细读题,一定要选择最佳答案哟!1.在下列各式中:①22)2(b a mn -; ②25248bm an b a n m ⋅-;③ 2222⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛-a nb ab m ; ④m a abmn 3222÷,相等的两个式子是( ) A .①② B. ①③ C. ②③ D.③④ 2. dd c c b b a 1112⋅÷⋅÷⋅÷=_______. 3.化简a b b b a a b a b a a 222224)()(⋅+÷--的结果是__________. 4.计算:y yy x ⋅÷⋅11=___________. 综合运用◆认真解答,一定要细心哟! 5. 计算:(1) ⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛-⋅y x x y x y x 22426438 ,(2)xyx xzxy x z y x y xy x z y x y x --+⋅--++÷---2222222222)(2)(.6.先化简,再求值 521043242)(⎪⎪⎭⎫⎝⎛-÷⋅⎪⎪⎭⎫ ⎝⎛-⋅⎥⎦⎤⎢⎣⎡--y xy x y x x xy x y x xy ,其中4,2=-=y x .拓广创新◆试一试,你一定能成功哟!7.计算:(1)4344516652222+-÷-++⋅-+-a a a a a a a a ; (2)22222121221⎪⎭⎫⎝⎛+÷-+-÷⎪⎭⎫ ⎝⎛---x x x x x x x x .8.甲、乙两人分别从相距S (km )的两地同时出发,若同向而行,经过1m (h ) 甲追上乙;若相向而行,经过2m (h)甲、乙两人相遇,设甲的速度为1v ,乙的速度为2v (其中1v ,2v 单位是km/h ),那么21v v 等于多少?(用1m ,2m 的式子表示,并说明理由)答案:1.B2.2222dc b a 3. ba b -44.xy5.①y x 236-;②yx zy x +--6.yx 3,结果为2- 7.①824522--++a a a a ;②22--x x8. 2112m m m m -+。

2023届高三第一次八省八校T8联考高考数学试卷-含答案详解

2023届高三第一次八省八校T8联考高考数学试卷-含答案详解

绝密★启用前2023届高三第一次学业质量评价(T8联考)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 复数z 满足1+zi +zi 2=|1−√3i|,则z = A. 1+iB. 12+12iC. −12−12iD. −12+12i2. 若集合M ={x|2x >4},N ={x|log 3x ≤1},则M ∪N =( ) A. {x|2<x ⩽3} B. {x|x >0} C. {x|0<x <2或x >2}D. R3. 已知S n 是数列{a n }的前n 项和,则“a n >0”是“{S n }是递增数列”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 方差是2.4,平均数是2D. 平均数是3,众数是25. 已知sin(α+π6)−cosα=12,则sin(2α+π6)=( ) A. −12B. 12C. −34D. 34……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 已知圆台上底面半径为1,下底面半径为3,球与圆台的两个底面和侧面均相切,则该圆台的侧面积与球的表面积之比为A. 136B. 43√3C. 1312D. 437. 已知函数f(x)及其导函数f′(x)的定义域均为R ,记g(x) = f(1+x)−x ,若f′(x)为奇函数,g(x)为偶函数,则f′(2023)=A. 2021B. 2022C. 2023D. 20248. 已知椭圆C:x 2a 2+y 2b2=1(a >b >0),直线l 过坐标原点并交椭圆于P ,Q 两点(P 在第一象限),点A 是x 轴正半轴上一点,其横坐标是点P 横坐标的2倍,直线QA 交椭圆于点B ,若直线BP 恰好是以PQ 为直径的圆的切线,则椭圆的离心率为( )A. 12B. √22C. √33D. √63二、多选题(本大题共4小题,共20.0分。

专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第八篇平面解析几何专题8.05椭圆及其几何性质【考试要求】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【微点提醒】点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( )【教材衍化】2.(选修2-1P49T1改编)若F 1(3,0),F 2(-3,0),点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是________.3.(选修2-1P49A6改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.【真题体验】4.(2018·张家口调研)椭圆x 216+y 225=1的焦点坐标为( )A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)5.(2018·全国Ⅰ卷)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.2236.(2018·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【考点聚焦】考点一 椭圆的定义及其应用【例1】 (1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A.椭圆B.双曲线C.抛物线D.圆(2)(2018·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( ) A.24 B.12C.8D.6【规律方法】 (1)椭圆定义的应用主要有:判断平面内动点的轨迹是否为椭圆,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.【训练1】 (1)(2018·福建四校联考)已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A.2 3B.6C.4 3D.2(2)(2018·衡水中学调研)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |-|PF 1|的最小值为________.考点二 椭圆的标准方程【例2】 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1D.x 264+y 248=1 (2)(一题多解)若椭圆经过两点(2,0)和(0,1),则椭圆的标准方程为________________.【规律方法】 根据条件求椭圆方程的主要方法有:(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),不必考虑焦点位置,用待定系数法求出m ,n 的值即可. 【训练2】 (1)(2018·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( ) A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1D.x 216+y 212=1 (2)(2018·榆林模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1考点三 椭圆的几何性质多维探究角度1 椭圆的长轴、短轴、焦距【例3-1】 (2018·泉州质检)已知椭圆x 2m -2+y 210-m =1的长轴在x 轴上,焦距为4,则m 等于( )A.8B.7C.6D.5角度2 椭圆的离心率【例3-2】 (2018·全国Ⅱ卷)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12C.13D.14角度3 与椭圆性质有关的最值或范围问题【例3-3】 (2017·全国Ⅰ卷)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)【规律方法】1.求椭圆离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.2.在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围、离心率的范围等不等关系.【训练3】(1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()A.1B. 2C.2D.2 2(2)(2019·豫南九校联考)已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C 以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A.55 B.105 C.255 D.2105【反思与感悟】1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )【易错防范】1.判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.3.椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A.5B.3C.5或3D.82.(2019·聊城模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( ) A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1D.x 29+y 25=1 3.已知圆(x -1)2+(y -1)2=2经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 和上顶点B ,则椭圆C 的离心率为( ) A.12 B. 2 C.2 D.224.(2019·湖北重点中学联考)已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过F 2且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 1内切圆的半径为( ) A.43 B.1C.45D.345.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( ) A. 2 B.2 C.2 2 D. 3二、填空题6.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________.7.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB的面积为43的等边三角形,则椭圆C 的方程为______________.8.(2019·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.三、解答题9.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.【能力提升题组】(建议用时:20分钟)11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( ) A.32 B.2-12 C.3-12 D.5-1212.(2019·湖南湘东五校联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A.(3-12,1)B.(3-12,12)C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 13.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.14.(2019·石家庄月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【新高考创新预测】15.(多填题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),其关于直线y =bx 的对称点Q 在椭圆上,则离心率e =________,S △FOQ =________.。

高考数学二轮复习 专题八 附加题 第2讲 计数原理、随机变量、数学归纳法学案

—————————— 教育资源共享 步入知识海洋 ————————第2讲 计数原理、随机变量、数学归纳法[考情考向分析] 1.考查分类计数原理、分步计数原理与排列、组合的简单应用,B 级要求. 2.考查n 次独立重复试验的模型及二项分布、离散型随机变量的数学期望与方差,B 级要求.3.考查数学归纳法的简单应用,B 级要求.热点一 计数原理与二项式定理例1 (2018·苏州调研)已知f n (x )=⎝⎛⎭⎪⎫x 2+3a x 3n ,n ∈N *.(1)当a =1时,求f 5(x )展开式中的常数项;(2)若二项式f n (x )的展开式中含有x 7的项,当n 取最小值时,展开式中含x 的正整数次幂的项的系数之和为10,求实数a 的值.解 二项式⎝⎛⎭⎪⎫x 2+3a x 3n的展开式通项为T r +1=C r n ()x 2n -r ⎝ ⎛⎭⎪⎫3a x 3r =C r n (3a )r x2n -5r(r =0,1,2,…,n ), (1)当n =5,a =1时,f (x )的展开式的常数项为T 3=9C 25=90. (2)令2n -5r =7,则r =2n -75∈N ,所以n 的最小值为6,当n =6时,二项式⎝⎛⎭⎪⎫x 2+3a x 36的展开式通项为T r +1=C r 6(3a )r x12-5r(r =0,1,2,…,6), 则展开式中含x 的正整数次幂的项为T 1,T 2,T 3,它们的系数之和为 C 06+C 16(3a )+C 26(3a )2=135a 2+18a +1=10, 即15a 2+2a -1=0,解得a =-13或15.思维升华 涉及二项式定理的试题要注意以下几个方面:(1)某一项的二项式系数与这一项的系数是两个不同的概念,必须严格加以区别. (2)根据所给式子的结构特征,对二项式定理的逆用或变用,注意活用二项式定理是解决二项式问题应具备的基本素质.(3)关于x 的二项式(a +bx )n(a ,b 为常数)的展开式可以看成是关于x 的函数,且当x 给予某一个值时,可以得到一个与系数有关的等式,所以,当展开式涉及到与系数有关的问题时,可以利用函数思想来解决.跟踪演练1 (2018·江苏丹阳高级中学期中)设n ≥3,n ∈N *,在集合{}1,2,…,n 的所有元素个数为2的子集中,把每个子集的较大元素相加,和记为a ,较小元素之和记为b . (1)当n =3时,求a ,b 的值;(2)求证:对任意的n ≥3,n ∈N *,b a为定值.(1)解 当n =3时,集合{}1,2,3的所有元素个数为2的子集为{}1,2, {}1,3,{}2,3,所以a =2+3+3=8,b =1+1+2=4.(2)证明 当n ≥3,n ∈N *时,依题意,b =1×C 1n -1+2×C 1n -2+3×C 1n -3+…+()n -2×1(2)C n n --+()n -1×1(1)C n n --, a =2×C 11+3×C 12+4×C 13+…+()n -1×C 1n -2+n ×C 1n -1=2×1+3×2+4×3+…+()n -1×()n -2+n ×()n -1.则a2=C 22+C 23+C 24+…+C 2n =C 33+C 23+C 24+…+C 2n =C 34+C 24+…+C 2n =…=C 3n +1, 所以a =2C 3n +1.又a +b =(n -1)(1+2+3+…+n )=n ()n +12×()n -1=3C 3n +1,所以b =C 3n +1.故b a =12.热点二 随机变量及其概率分布例2 (2018·南京师大附中考前模拟)如图,设P 1,P 2,…,P 6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S .(1)求S =32的概率; (2)求S 的概率分布及数学期望E (S ).解 (1)从六个点中任选三个不同点构成一个三角形共有C 36种不同选法, 其中S =32的为有一个角是30°的直角三角形,(如△P 1P 4P 5),共6×2=12种,所以P ⎝ ⎛⎭⎪⎫S =32=12C 36=35. (2)S 的所有可能取值为34,32,334. S =34的为顶角是120°的等腰三角形(如△P 1P 2P 3), 共6种,所以P ⎝ ⎛⎭⎪⎫S =34=6C 36=310. S =334的为等边三角形(如△P 1P 3P 5), 共2种,所以P ⎝⎛⎭⎪⎫S =334=2C 36=110.又由(1)知P ⎝ ⎛⎭⎪⎫S =32=12C 36=35,故S 的概率分布为所以E (S )=34×310+32×35+334×110=9320. 思维升华 求解一般的随机变量的数学期望的基本方法先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出概率分布,根据数学期望公式计算.跟踪演练2 (2018·南通、徐州、扬州等六市模拟)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3×3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元.(1)求概率P ()X =600;(2)求X 的概率分布及数学期望E (X ).解 (1)从3×3表格中随机不重复地点击3格,共有C 39种不同情形,则事件“X =600”包含两类情形:第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含C 34种情形,第二类包含C 11·C 14·C 14种情形. ∴P ()X =600=C 34+C 11·C 14·C 14C 39=521. (2)X 的所有可能值为300,400,500,600,700. 则P ()X =300=C 34C 39=484=121,P ()X =400=C 14·C 24C 39=2484=27,P ()X =500=C 11·C 24+C 14·C 24C 39=3084=514, P (X =600)=521,P ()X =700=C 11·C 24C 39=684=114.∴X 的概率分布为∴E ()X =300×121+400×27+500×514+600×521+700×114=500.热点三 数学归纳法例3 (2018·江苏姜堰、溧阳、前黄中学联考)已知数列{}a n 满足a n =C 0n +C 1n +12+C 2n +222+C 3n +323+…+C nn +n 2n ,n ∈N *. (1)求a 1, a 2, a 3的值;(2)猜想数列{}a n 的通项公式,并证明. 解 (1)a 1=2, a 2=4, a 3=8. (2)猜想: a n =2n (n ∈N *). 证明如下:①当n =1时,由(1)知结论成立; ②假设当n =k (k ∈N *,k ≥1)时结论成立, 则有a k =C 0k +C 1k +12+C 2k +222+C 3k +323+…+C kk +k 2k =2k.则当n =k +1时,a k +1=C 0k +1+C 1k +1+12+C 2k +1+222+C 3k +1+323+…+C k +1k +1+k +12k +1.由C k +1n +1=C k +1n +C kn 得a k +1=C 0k +C 1k +1+C 0k +12+C 2k +2+C 1k +222+C 3k +3+C 2k +323+…+C k k +k +C k -1k +k 2k+C k +1k +1+k +12k +1 =2k+C 0k +12+C 1k +222+C 2k +323+…+C k -1k +k 2k +C k +1k +1+k +12k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +k 2k -1+C k +1k +1+k +12k =2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k +C k +1k +1+k 2k . 又Ck +1k +1+k=()2k +1!k !()k +1!=()2k +1!()k +1()k +1k !()k +1!=12()2k +1!()2k +2()k +1!()k +1!=12C k +1k +1+k +1, a k +1=2k+12⎝ ⎛⎭⎪⎫C 0k +1+C 1k +22+C 2k +322+…+C k -1k +1+k -12k -1+C k k +1+k 2k +C k +1k +1+k +12k +1,于是a k +1=2k+12a k +1.所以a k +1=2k +1,故n =k +1时结论也成立.由①②得,a n =2n,n ∈N *.思维升华 在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n =k 到n =k +1时,式子中项数的变化应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.跟踪演练3 (2018·常州期末)记()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1n (n ≥2且n ∈N *)的展开式中含x 项的系数为S n ,含x 2项的系数为T n . (1)求S n ;(2)若T nS n=an 2+bn +c 对n =2,3,4成立,求实数a ,b ,c 的值; (3)对(2)中的实数a ,b ,c 用数学归纳法证明:对任意n ≥2且n ∈N*, T nS n=an 2+bn +c 都成立. (1)解 S n =1+2+…+nn != n +12()n -1!.(2)解T 2S 2=23, T 3S 3=116, T 4S 4=72,则⎩⎪⎨⎪⎧23=4a +2b +c ,116=9a +3b +c ,72=16a +4b +c ,解得a =14, b =-112, c =-16,(3)证明 ①当n =2时,由(2)知等式成立; ②假设n =k (k ∈N *,且k ≥2)时,等式成立,即T k S k =14k 2-112k -16. 当n =k +1时,由f (x )=()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎣⎢⎡⎦⎥⎤()x +1×⎝ ⎛⎭⎪⎫x +12×…×⎝ ⎛⎭⎪⎫x +1k ×⎝ ⎛⎭⎪⎫x +1k +1=⎝ ⎛⎭⎪⎫1k !+S k x +T k x 2+…⎝ ⎛⎭⎪⎫x +1k +1,知T k +1=S k +1k +1T k =k +12()k -1!·⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16,所以T k +1S k +1= k +12()k -1!⎣⎢⎡⎦⎥⎤1+1k +1⎝ ⎛⎭⎪⎫14k 2-112k -16k +1+12k !=k k +2⎝ ⎛⎭⎪⎫k +1+3k 2-k -212=k ()3k +512,又14()k +12-112()k +1-16 =k ()3k +512, 等式也成立;综上可得,对任意n ≥2且n ∈N *,都有T n S n =n 24-n 12-16成立.1.(2018·全国大联考江苏卷)(1)求4C 47-7C 36+k C k n n C k -1n -1(n ≥k ,且n ,k ∈N *)的值.(2)设f (n )=1·C 1n ·3+2·C 2n ·32+…+n C n n ·3n (n ∈N *),求方程f (n )=3 840的所有解. 解 (1)因为4C 47=4×35=140, 7C 36=7×20=140,k C k n =k ·n !k !(n -k )!= n ·(n -1)!(k -1)![(n -1)-(k -1)]!=n C k -1n -1(n ≥k ,且n ,k ∈N *). 所以4C 47-7C 36+k C knn C k -1n -1=1.(2)由(1)知k C k n =n C k -1n -1对1≤k ≤n ,且n ,k ∈N *成立. 所以f (n )=n (C 0n -13+C 1n -132+…+C n -1n -13n), 所以f (n )=3n (C 0n -1+C 1n -13+…+C n -1n -13n -1)=3n (1+3)n -1=3n ·4n -1(n ∈N *).又因为f (n +1)f (n )=3(n +1)·4n 3n ·4n -1 =4(n +1)n =4+4n>1,即f (n +1)>f (n )对n ∈N *成立, 所以f (n )是关于n (n ∈N *)的递增函数. 又因为f (n )=3 840=3×5×44=f (5),所以当且仅当n =5时才满足条件,即n =5是方程f (n )=3 840的唯一解.2.(2018·江苏)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).解 (1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3, 所以f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以f n (0)=1. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22,因此,当n ≥5时,f n (2)=n 2-n -22.3.已知实数数列{a n }满足:a 1=3,a n =n +23n·(a n -1+2),n ≥2. 证明:当n ≥2时,{a n }是单调减数列. 证明 当n ≥1时,有a n +1-a n =⎣⎢⎡⎦⎥⎤n +33(n +1)-1a n +2(n +3)3(n +1)=23(n +1)(n +3-na n).下面用数学归纳法证明:a n >1+3n(n ≥2,n ∈N *).(1)当n =2时,a 2=46(3+2)=103>1+32;(2)假设当n =k (k ∈N *,k ≥2)时,结论成立,即a k >1+3k.那么,a k +1=k +33(k +1)(a k +2)>k +33(k +1)⎝ ⎛⎭⎪⎫1+3k +2=1+3k >1+31+k.故由(1)(2)知,a n >1+3n(n ≥2,n ∈N *).因此,当n ≥2,n ∈N *时,a n +1-a n =23(n +1)(n +3-na n )<0,即当n ≥2时,{a n }是单调减数列.4.(2018·江苏盐城中学模拟)某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.(1)求该乐队至少演唱1首原创新曲的概率;(2)假定演唱一首原创新曲观众与乐队的互动指数为a (a 为常数),演唱一首经典歌曲观众与乐队的互动指数为2a .求观众与乐队的互动指数之和X 的概率分布及数学期望.解 (1)设“至少演唱1首原创新曲”为事件A ,则事件A 的对立事件A 为“没有1首原创新曲被演唱”.所以P (A )=1-P (A )=1-C 45C 48=1314.所以该乐队至少演唱1首原创新曲的概率为1314.(2)设随机变量x 表示被演唱的原创新曲的首数,则x 的所有可能值为0,1,2,3. 依题意知,X =ax +2a (4-x ),故X 的所有可能值依次为8a,7a,6a,5a .则P (X =8a )=P (x =0)=C 45C 48=114,P (X =7a )=P (x =1)=C 13C 35C 48=37,P (X =6a )=P (x =2)=C 23C 25C 48=37,P (X =5a )=P (x =3)=C 33C 15C 48=114.从而X 的概率分布为所以X 的数学期望E (X )=8a ×114+7a ×37+6a ×37+5a ×114=132a .A 组 专题通关1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程. (1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X ,求X 的概率分布与数学期望E (X ). 解 (1)这两个班“在星期一不同时上综合实践课”的概率为P =1-33×3=23.(2)由题意得X ~B ⎝ ⎛⎭⎪⎫5,13, P (X =k )=C k5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫235-k ,k =0,1,2,3,4,5. 所以X 的概率分布为所以X 的数学期望E (X )=5×13=53.2.(2018·江苏省南京师大附中模拟)设集合A ,B 是非空集合M 的两个不同子集.(1)若M ={a 1,a 2},且A 是B 的子集,求所有有序集合对(A ,B )的个数;(2)若M ={a 1,a 2,a 3,…,a n },且A 的元素个数比B 的元素个数少,求所有有序集合对(A ,B )的个数.解 (1)若集合B 含有2个元素,即B ={a 1,a 2}, 则A =∅,{}a 1,{}a 2,则(A ,B )的个数为3;若集合B 含有1个元素,则B 有C 12种,不妨设B ={a 1},则A =∅,此时(A ,B )的个数为C 12×1=2.综上,(A ,B )的个数为5.(2)集合M 有2n个子集,又集合A ,B 是非空集合M 的两个不同子集, 则不同的有序集合对(A ,B )的个数为2n (2n-1).若A 的元素个数与B 的元素个数一样多,则不同的有序集合对(A ,B )的个数为 C 0n (C 0n -1)+C 1n (C 1n -1)+C 2n (C 2n -1)+…+C n n (C nn -1)= ()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2-(C 0n +C 1n +C 2n +…+C nn ),又(x +1)n(x +1)n的展开式中x n的系数为()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2,且(x +1)n (x +1)n =(x +1)2n 的展开式中x n 的系数为C n2n , 所以()C 0n 2+()C 1n 2+()C 2n 2+…+()C n n 2=C n2n .因为C 0n +C 1n +C 2n +…+C n n =2n,所以当A 的元素个数与B 的元素个数一样多时, 有序集合对(A ,B )的个数为C n 2n -2n.所以,A 的元素个数比B 的元素个数少时,有序集合对(A ,B )的个数为 2n (2n -1)-(C n 2n -2n )2=22n -C n2n2.3.已知()1+x 2n +1=a 0+a 1x +a 2x 2+…+a 2n +1x2n +1,n ∈N *.记T n =∑nk =0()2k +1a n -k .(1)求T 2的值;(2)化简T n 的表达式,并证明:对任意的n ∈N *,T n 都能被4n +2整除. 解 由二项式定理,得a i =C i2n +1(i =0,1,2,…,2n +1). (1)T 2=a 2+3a 1+5a 0=C 25+3C 15+5C 05=30. (2)∵()n +1+k C n +1+k2n +1=()n +1+k ·()2n +1!()n +1+k !()n -k !=()2n +1·()2n !()n +k !()n -k !=()2n +1C n +k2n ,∴T n =∑nk =0()2k +1a n -k =∑nk =0()2k +1Cn -k 2n +1=∑nk =0()2k +1C n +1+k2n +1=∑nk =0[]2()n +1+k -()2n +1C n +1+k2n +1=2∑nk =0()n +1+k Cn +1+k 2n +1-()2n +1∑nk =0C n +1+k2n +1=2()2n +1∑nk =0Cn +k 2n-()2n +1∑nk =0C n +1+k 2n +1=2()2n +1·12·()22n +C n 2n -()2n +1·12·22n +1=()2n +1C n 2n .∴T n =()2n +1C n2n =()2n +1()C n -12n -1+C n2n -1=2()2n +1C n2n -1.∵C n 2n -1∈N *,∴T n 能被4n +2整除.4.是否存在正整数m 使得f (n )=(2n +7)·3n+9对任意正整数n 都能被m 整除?若存在,求出最大的m 的值,并证明你的结论;若不存在,说明理由.解 由f (n )=(2n +7)·3n+9,得f (1)=36,f (2)=3×36,f (3)=10×36,f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: ①当n =1时,结论显然成立;②假设当n =k (k ∈N *,k ≥1)时,结论成立,即f (k )能被36整除, 设f (k )=(2k +7)·3k +9=t ·36. 当n =k +1时,f (k +1)=[2(k +1)+7]·3k +1+9=(2k +7)·3k +1+2·3k +1+9=3[(2k +7)·3k+9]+18(3k -1-1)=3·36t +18·2s =36(3t +s ). 所以当n =k +1时结论成立.由①②可知,对一切正整数n ,存在正整数m ,使得f (n )=(2n +7)·3n +9都能被m 整除,m 的最大值为36.B 组 能力提高5.(2018·常州模拟)已知正四棱锥P -ABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求P ()ξ=0的值;(2)求随机变量ξ的概率分布及数学期望E ()ξ.解 根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到△PAC ,△PBD 为等腰直角三角形, ξ的可能取值为: 0, π3, π2,共C 28=28种情况,其中,当ξ=0时,有2种;当ξ=π3时,有3×4+2×4=20(种);当ξ=π2时,有2+4=6(种).(1)P ()ξ=0=228=114. (2)P ⎝ ⎛⎭⎪⎫ξ=π3=2028=57, P ⎝ ⎛⎭⎪⎫ξ=π2=628=314, 根据(1)的结论,随机变量的概率分布如下表:根据上表, E ()ξ=0×114+π3×57+π2×314=2984π. 6.设P (n ,m )=∑k =0n(-1)k C knmm +k,Q (n ,m )=C n n +m ,其中m ,n ∈N *.(1)当m =1时,求P (n,1)·Q (n,1)的值;(2)对∀m ∈N *,证明:P (n ,m )·Q (n ,m )恒为定值.(1)解 当m =1时,P (n,1)=∑k =0n(-1)k C kn11+k=1n +1∑k =0n (-1)k C k +1n +1=1n +1, 又Q (n,1)=C nn +1=n +1,显然P (n,1)·Q (n,1)=1.(2)证明 P (n ,m )=∑k =0n(-1)k C knmm +k=1+∑k =1n -1(-1)k(C kn -1+C k -1n -1)mm +k+(-1)nmm +n=1+∑k =1n -1(-1)k Ck n -1mm +k+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )+∑k =1n(-1)k C k -1n -1mm +k=P (n -1,m )-m n ∑k =0n (-1)k C k n m m +k=P (n -1,m )-m nP (n ,m ). 即P (n ,m )=nm +nP (n -1,m ), 由累乘,易求得P (n ,m )=n !m !(n +m )!=1C n n +m,又Q (n ,m )=C nn +m ,所以P (n ,m )·Q (n ,m )=1.7.已知数列{a n }是等差数列,且a 1,a 2,a 3是⎝ ⎛⎭⎪⎫1+12x m展开式的前三项的系数.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)当n ≥2时,试比较1a n +1a n +1+1a n +2+…+1a n 2与13的大小.解 (1)⎝ ⎛⎭⎪⎫1+12x m =1+C 1m ⎝ ⎛⎭⎪⎫12x +C 2m ⎝ ⎛⎭⎪⎫12x 2+…+C m m ⎝ ⎛⎭⎪⎫12x m,依题意a 1=1,a 2=12m ,a 3=m (m -1)8,由2a 2=a 1+a 3,可得m =1(舍去)或m =8.所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)由(1)知,a n =3n -2,当n =2时,1a n +1a n +1+1a n +2+…+1a n 2=1a 2+1a 3+1a 4=14+17+110=69140>13;当n =3时,1a n +1a n +1+1a n +2+…+1a n 2=1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125=17+⎝ ⎛⎭⎪⎫110+113+116+⎝ ⎛⎭⎪⎫119+122+125 >18+⎝ ⎛⎭⎪⎫116+116+116+⎝ ⎛⎭⎪⎫132+132+132 =18+316+332>18+316+116>13. 猜测:当n ≥2时,1a n +1a n +1+1a n +2+…+1a n 2>13.以下用数学归纳法加以证明: ①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,1a k +1a k +1+1a k +2+…+1a k 2>13,则当n =k +1时,1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2=⎣⎢⎡⎦⎥⎤1a k +1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a k 2+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+⎣⎢⎡⎦⎥⎤1a k 2+1+1a k 2+2+…+1a (k +1)2-1a k >13+2k +1a (k +1)2-1a k=13+2k +13(k +1)2-2-13k -2=13+(2k +1)(3k -2)-[3(k +1)2-2][3(k +1)2-2](3k -2) =13+3k 2-7k -3[3(k +1)2-2](3k -2). 由k ≥3可知,3k 2-7k -3>0, 即1a k +1+1a (k +1)+1+1a (k +1)+2+…+1a (k +1)2>13. 综合①②,可得当n ≥2时, 1a n +1a n +1+1a n +2+…+1a n 2>13. 8.设|θ|<π2,n 为正整数,数列{a n }的通项公式a n =sin n π2·tan nθ,其前n 项和为S n .(1)求证:当n 为偶数时,a n =0;当n 为奇数时,a n =(-1)12n -tan nθ.(2)求证:对任意正整数n ,S 2n =12sin 2θ·[1+(-1)n +1·tan 2nθ].证明 (1)因为a n =sinn π2tan nθ.当n 为偶数时,设n =2k (k ∈N *),a n =a 2k =sin 2k π2tan 2k θ=sin k π·tan 2kθ=0,a n =0.当n 为奇数时,设n =2k -1(k ∈N *),a n =a 2k -1 =sin (2k -1)π2tan 2k -1θ=sin ⎝ ⎛⎭⎪⎫k π-π2·tan 2k -1θ.当k =2m (m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-π2·tan 4m -1θ=sin ⎝ ⎛⎭⎪⎫-π2·tan 4m -1θ=-tan 4m -1θ,此时n -12=2m -1,a n =a 2k -1=-tan 4m -1θ=(-1)2m -1tan 4m -1θ=(-1)12n -tan nθ.当k =2m -1(m ∈N *)时,a n =a 2k -1=sin ⎝⎛⎭⎪⎫2m π-3π2·tan 4m -3θ =sin ⎝ ⎛⎭⎪⎫-3π2·tan 4m -3θ=tan 4m -3θ,此时n -12=2m -2,a n =a 2k -1=tan4m -3θ=(-1)2m -2tan4m -3θ=(-1)12n -tan nθ.综上,当n 为偶数时,a n =0; 当n 为奇数时,a n =(-1)12n -tan nθ.(2)当n =1时,由(1)得S 2=a 1+a 2=tan θ, 12sin 2θ[1+(-1)n +1tan 2n θ]=12sin 2θ(1+tan 2θ) =sin θ·cos θ·1cos 2θ=tan θ. 故当n =1时,命题成立.假设当n =k (k ∈N *,k ≥1)时命题成立, 即S 2k =12sin 2θ·[1+(-1)k +1tan 2kθ].当n =k +1时,由(1)得S 2(k +1)=S 2k +a 2k +1+a 2k +2=S 2k +a 2k +1=12sin 2θ·[1+(-1)k +1tan 2k θ]+(-1)k tan 2k +1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+1tan2kθ+(-1)k·2sin 2θtan2k+1θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-1tan2θ+2sin 2θtan θ=12sin 2θ·⎣⎢⎡⎦⎥⎤1+(-1)k+2·tan2k+2θ⎝⎛⎭⎪⎫-cos2θsin2θ+1sin2θ=12sin 2θ·[1+(-1)k+2·tan2k+2θ].即当n=k+1时命题成立.综上所述,对正整数n,命题成立.。

湖北省武汉市部分重点中学2024-2025学年高三上学期第一次联考数学试卷(含答案)

湖北省部分重点中学2025届高三第一次联考高三数学试卷考试时间:2024年11月11日下午14:00-16:00试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,,则( )A. B. C. D.2.已知为虚数单位,若,则( )A. B. C. D.3.已知向量,满足,,则向量在向量方向上的投影向量为( )A. B. C. D.4.已知角,满足,,则( )A.B. C.D.5.已知函数在区间上有极值,则实数的取值范围是( )A. B. C. D.6.将正奇数按照如图排列,我们将3,7,13,21,31……,都称为“拐角数”,则下面是拐角数的为()A.55B.77C.91D.1137.已知等腰梯形的上底长为1,腰长为1,若以等腰梯形的上底所在直线为轴,旋转一周形成一个几何体,则该几何体表面积的最大值为( )A. B. C. D.8.已知函数,的定义域均为,是奇函数,且,201x A xx -⎧⎫=≤⎨⎬+⎩⎭{}220Bx Nx x =∈+-≤∣AB = (]1,1-{}0,1,2{}0,1{}1,0,1-i ()()1122z i i ++=-+z =1i-+1i --1i +1i-a b ()3,4a = ()2,1b =- b a68,2525⎛⎫⎪⎝⎭(6,8)68,55⎛⎫⎪⎝⎭(4,2)αβtan 2α=()sin 2cos sin βαβα=-tan β=2323-4343-()26ln 1f x x x ax =++-(1,2)a 8,⎡--⎣(8,--7,⎡--⎣(8,7)--(2π+(1π+(3π+()f x ()g x R ()1f x +()()114f x g x -++=,则下列结论正确的是( )A.为奇函数B.为奇函数C.D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知正实数,满足,则的可能取值为( )A.8B.9C.10D.1110.已知双曲线的左、右焦点分别为,.过的直线与双曲线的右支交于,两点.的内心为,的内心为,则下列说法正确的有( )A.双曲线的离心率为2B.直线的斜率的取值范围为C.的取值范围为D.11.在正三棱锥中,,三棱锥的内切球球心为,顶点在底面的射影为,且中点为,则下列说法正确的是( )A.三棱锥的体积为3B.二面角C.球的表面积为D.若在此三棱锥中再放入一个球,使其与三个侧面及内切球均相切,则球三、填空题:本题共3小题,每小题5分,共15分.12.已知点在抛物线上,为抛物线的焦点,直线与准线相交于点,则线段的长度为_____.()()24f x g x +-=()f x ()g x ()()9136k f k g k =⎡⎤-=⎣⎦∑()()9136k f k g k =⎡⎤+=⎣⎦∑x y 2x y +=2291x y x y+++22:13y C x -=1F 2F 2F l C A B 12AF F △1I 12BF F △2I AB (),-∞+∞12I I ⎡⎢⎣2112tan3tan22AF F AF F ∠∠=P ABC -AB =PA =P ABC -O P ABC Q PQ M P ABC -M AB P --O 43π1O O 1O (),4A a 24y x =F AF B FB13.已知直线与曲线相切,则实数的值为_____.14.某人有两把雨伞用于上下班,如果一天上班时他在家而且天下雨,只要有雨伞可取,他将拿一把去办公室,如果一天下班时他在办公室而且天下雨,只要有雨伞可取,他将拿一把回家.如果天不下雨,那么他不带雨伞.假设每天上班和下班时下雨的概率均为,不下雨的概率均为,且与过去情况相互独立.现在两把雨伞均在家里,那么连续上班两天,他至少有一天淋雨的概率为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列为等比数列,数列满足,且.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求.16.(15分)如图,在中,角,,所对的边分别为,,,已知.(1)求;(2)若,,将沿折成直二面角,求直线与平面所成角的正弦值.17.(15分)为倡导节能环保,实现废旧资源再利用,小明与小亮两位小朋友打算将自己家中的闲置玩具进行交换,其中小明家有2台不同的玩具车和2个不同的玩偶,小亮家也有与小明家不同的2台玩具车和2个玩偶,他们每次等可能的各取一件玩具进行交换.(1)两人进行一次交换后,求小明仍有2台玩具车和2个玩偶的概率;(2)两人进行两次交换后,记为“小明手中玩偶的个数”,求随机变量的分布列和数学期望.18.(17分)已知椭圆,不过原点的直线与椭圆相交于不同的,两点,与直线交于点,且,y ax=()x ef xx=a1323{}na{}n b()()*21nnnb n N=+-∈()1,0n n na b b Rλλλ+=-∈>{}na{}nc2n nc n a={}n c n n T9TABC△A B C a b csin sin sin sinA B B Cc a b++=-A3,0BC BD AB AD=⋅=2AD=ABC△AD B AD C'--AB'B CD'X X()2222:10x yC a ba b+=>>()2,1P O l C A B OP Q2AB QB=直线与轴,轴分别交于点,.(1)求椭圆的标准方程;(2)当的面积取最大值时,求的面积.19.(17分)2022年7月,在重庆巴蜀中学读高一的瞿霄宇,夺得第63届国际数学奥林匹克(IMO )满分金牌.同年9月26日,入选2022年阿里巴巴全球数学竞赛获奖名单,同时成为了本届获奖者中年龄最小的选手.次年9月16日,他再接再厉,在2023阿里巴巴全球数学竞赛中获金奖.他的事迹激励着广大数学爱好者勇攀数学高峰,挖掘数学新质生产力.翔宇中学高二学生小刚结合自己“强基计划”的升学规划,自学了高等数学的罗尔中值定理:如果上的函数满足条件:①在闭区间上连续;②在开区间可导;③.则至少存在一个,使得.据此定理,请你尝试解决以下问题:(1)证明方程:在内至少有一个实根,其中,,,;(2)已知函数在区间内有零点,求的取值范围.l x y M N C APB △MON △R ()f x [],a b (,)a b ()()f a f b =(),c a b ∈()0f c '=()43254320ax bx cx dx a b c d +++-+++=(0,1)a b c d R ∈()()()2222222xf x emx e m x m R =-----∈(0,1)m湖北省部分重点中学2025届高三第一次联考数学试卷参考答案及评分标准选择题:1234567891011CAADBCADCDABDACD填空题:12. 13. 14.解答题:15.(13分)解:(1)因为为等比数列,所以,即,化简得.因为,得.因此,易知为等比数列;(2)由(1)知,.,16.(15分)解:(1),,化简得.由余弦定理得,,故;(2)设,,在中,由得,解得.①在中,.②由①、②得.,,从而.二面角为直二面角,,平面平面,平面,10324e 2881{}n a 2213a a a =()()()2755177λλλ-=--()()210λλ-+=0λ>2λ=()()()11122122131n n nn n n n n a b b +++⎡⎤=-=+--+-=--⎣⎦{}n a ()231nn c n=--22222291293123489135T c c c ⎡⎤=++⋯+=-⨯-+-+-+-=⎣⎦ sin sin sin sin A B B C c a b ++=-a b b c c a b++∴=-222b c a bc +-=-2221cos 22b c a A bc +-==-23A π=BD x =2CD x =ACD △sin sin CD AD DAC C ∠=22sin30sin x C=1sin 2C x=ABD △2sin sin 3AD B C BD x π⎛⎫===- ⎪⎝⎭sin B x ==BD ∴=CD =AB = B AD C '--AB AD '⊥AB D ' ACD AD =AB '⊂AB D '平面建立如图所示的空间直角坐标系,易知,,,,,,.设平面的法向量,则有,即令,解得.故直线与平面.17.(15分)解:(1)若两人交换的是玩具车,则概率为,若两人交换的是玩偶,则概率也为,故两人进行一次交换后,小明仍有2台玩具车和2个玩偶的概率为.(5分)(2)可取的值为0、1、2、3、4,一次交换后,小明有1个玩偶和3台玩具车的概率为,有3个玩偶和1台玩具车的概率也为,经过两次交换后,,AB ∴'⊥ACD()0,0,0A ()D ()C (B '(AB ∴='(B C =' (B D '=B CD '(),,n x y z = 00n BC n BD ⎧⋅=⎪⎨⋅=⎪'⎩'x ⎧-=⎪⎨-=⎪⎩1y =()4n =cos ,n AB n AB n AB ⋅∴=''='AB 'B CD '111224⨯=111224⨯=111442+=X 111224⨯=111224⨯=()1111044464P X ==⨯⨯=()1131331117144444422232P X ==⨯⨯+⨯⨯+⨯⨯=()13313311111117244444422222232P X ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=()1131311117344444422232P X ==⨯⨯+⨯⨯+⨯⨯=,故随机变量的分布列为:01234.18.(17分)解:(1)设椭圆左顶点为,则坐标为.由,解得.因为椭圆的离心率为,得.所以椭圆的标准方程为:;(2)设坐标为,坐标为,由于和为椭圆上两点,两式相减,得,整理得.(*)设坐标为,由得为线段的中点,,.由在线段所在直线上,且坐标为,则有,即.由(*)得,故.设直线方程为,联立直线与椭圆的方程,得,整理得.()1111444464P X ==⨯⨯=X X P1647321732732164()1717710123426432323264E X ∴=⨯+⨯+⨯+⨯+⨯=C D D (,0)a -PD ==2a =C c e a ==c =1b =C 2214x y +=A (),A A x y B (),B B x y A B C 22221414A AB Bx y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩()222204A B A B x x y y -+-=222214A B A B y y x x -=--Q (),Q Q x y 2AB QB =Q AB 2A B Q x x x +∴=2A BQ y y y +=Q OP P (2,1)12OQ OP k k ==12Q A B OQ QA B y y y k x x x +===+222214A B A B A B A B A B A B y y y y y y x x x x x x -+-=⨯=--+-12A B AB A B y y k x x -==--l 1,02y x m m =-+≠l C 221412x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩()222210x mx m -+-=由,得且.因为直线与椭圆相交于和两点,所以,.点到直线的距离为且.记,.由,及得即当时,取最大值.此时直线方程为,与坐标轴交点为,19.(17分)证明:(1)设,,则,在上连续,在上可导.又,由罗尔中值定理知:至少存在一个,使得成立,.故方程在内至少有一个实根.(2),在区间内有零点,不妨设该零点为,则,.0>△m <<0m ≠l C A B 2A B x x m +=()221A B x x m =-B AB x ∴=-==P l d 122APB S AB d ∴==-=△m <<0m ≠()()()2222f m mm =--()()()2421f m m m m =---'()0f m '=m <<0m ≠m =m =APB S △l 12y x =-()1M -N ⎛ ⎝12MON S OM ON ∴== △()()5432F x ax bx cx dx a b c d x =+++-+++[]0,1x ∈()()4325432F x ax bx cx dx a b c d '=+++-+++()F x ∴[]0,1(0,1)()()010F F ==()00,1x ∈()00F x '=()432000054320ax bx cx dx a b c d ∴+++-+++=()43254320ax bx cx dx a b c d +++-+++=(0,1)()()2222222xf x emx e m x =----- m R ∈(0,1)1x ()10f x =()10,1x ∈由于,易知在和上连续,且在和上可导.又,由罗尔中值定理可得,至少存在一个,使;至少存在一个,使得.方程在上至少有两个不等实根和.设,,则.,.当,即时,,故在上单调递增;方程在上至多有一个实根,不符合题意,舍去当,即时,,故在上单调递减.方程在上至多有一个实根,不符合题意,舍去当时,由得,时,有单调递减;时,有单调递增.在上的最小值.注意到,则有.方程在上至少有两个不等实根,,解得.结合,且,,()()224222xf x e mx e m '=----()f x '[]10,x []1,1x ()10,x ()1,1x ()()()1010f f x f ===()210,x x ∈()20f x '=()31,1x x ∈()30f x '=∴()()2242220x f x e mx e m '=----=(0,1)2x 3x ()()()224222xg x f x emx e m ==--'--()0,1x ∈()282x g x e m =-'()0,1x ∈ ()2288,8x e e ∴∈1 28m ≤4m ≤()()0820g x g m >=-'≥'()g x (0,1)()0g x =(0,1)2 228m e ≥24m e ≥()()21820g x g e m <=-'≤'()g x (0,1)()0g x =(0,1)3 244m e <<()0g x '=()1ln 0,124mx =∈10,ln 24m x ⎛⎫∴∈ ⎪⎝⎭()()0,g x g x '<1ln ,124m x ⎛⎫∈ ⎪⎝⎭()()0,g x g x '>()g x ∴(0,1)()min 1ln 24m g x g ⎛⎫= ⎪⎝⎭()221422525202g e e e e e e ⎛⎫=+-<-=-<⎪⎝⎭()min 11ln 0242m g x g g ⎛⎫⎛⎫=≤< ⎪ ⎪⎝⎭⎝⎭()0g x =(0,1)()()2206201220g m e g e m ⎧=+->⎪∴⎨=-+>⎪⎩222622e m e -<<+244m e <<22262 2.564e ->⨯->222222224e e e e +<+=故的取值范围为.m ()2226,22e e -+。

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

高考数学二轮复习专题过关检测—数列(含解析)

高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范训练十九 坐标系与参数方程
限时30分钟,实际用时________
分值40分,实际得分________
解答题(本题共4小题,每小题10分,共40分)
1.(2017·河南六市联考)在直角坐标系xOy中,曲线C1的参数方程为






x=7cos α,

y=2+7sin α
(其中α为参数),曲线C2:(x-1)2+y2=1,以坐标原点O为

极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程.

(2)若射线θ=π6(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.

解:(1)因为曲线C1的参数方程为 x=7cos α,y=2+7sin α(其中α为参数),
所以曲线C1的普通方程为x2+(y-2)2=7.
因为曲线C2:(x-1)2+y2=1,
所以把x=ρcos θ,y=ρsin θ代入(x-1)2+y2=1,
得到曲线C2的极坐标方程(ρcos θ-1)2+(ρsin θ)2=1,
化简得ρ=2cos θ.

(2)依题意设Aρ1,π6,Bρ2,π6,
因为曲线C1的极坐标方程为ρ2-4ρsin θ-3=0,
将θ=π6(ρ>0)代入曲线C1的极坐标方程,
得ρ2-2ρ-3=0,解得ρ1=3,
同理,将θ=π6(ρ>0)代入曲线C2的极坐标方程.
得ρ2=3,所以|AB|=|ρ1-ρ2|=3-3.
2.(2017·武昌区调研)在直角坐标系xOy中,曲线C1: x=tcos α,y=tsin α(t为
参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲
线C2:ρ=2sin θ,C3:ρ=23cos θ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
解:(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x
2
+y2-23x=0.

联立 x2+y2-2y=0,x2+y2-23x=0,解得 x=0,y=0,或 x=32,y=32.
所以C2与C3交点的直角坐标为(0,0)和32,32.
(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.
因此A的极坐标为(2sin α,α),B的极坐标为(23cos α,α).
所以|AB|=|2sin α-23cos α|

=4sin α-π3.

当α=5π6时,|AB|取得最大值,最大值为4.
3.(2017·广东普宁模拟)在极坐标系中曲线C的极坐标方程为ρsin2θ=4cos
θ,点M1,π2,以极点O为原点,以极轴为x轴正半轴建立直角坐标系.斜率为-
1的直线l过点M,且与曲线C交于A,B两点.
(1)求出曲线C的直角坐标方程和直线l的参数方程.
(2)求点M到A,B两点的距离之积.
解:(1)令x=ρcos θ,y=ρsin θ,
由ρsin2θ=4cos θ,得ρ2sin2θ=4ρcos θ,
所以y2=4x,所以曲线C的直角坐标方程为y2=4x,

因为点M的直角坐标为(0,1),直线l的倾斜角为3π4,

相关文档
最新文档