概率统计专题
精品高中数学专题:概率与统计

专题七 概率与统计第一讲 统计与统计案例1. 随机抽样抽样方法主要有简单随机抽样、系统抽样、分层抽样三种,这三种抽样方法各自适用不同特点的总体,但无论哪种抽样方法,每一个个体被抽到的概率都是相等的,都等于样本容量和总体容量的比值. 2. 总体分布的估计在研究总体时,常用样本的频率分布去估计总体分布.一般地,样本容量越大,这种估计就越精确. 3. 线性回归方程(1)对n 个样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a ^ =y -b ^x ,x 、y 分别是{}x i 、{}y i 的平均数.(2)相关系数r >0,表明两个变量正相关;r <0,表明两个变量负相关;|r |越接近于1,表明两个变量的线性相关性越强;|r |越接近于0,表明两个变量之间几乎不存在线性相关关系;|r |>0.75时,认为两变量有很强的线性相关关系. 4. 独立性检测的一般步骤(1)根据样本数据列出2×2列联表,假设两个变量无关系;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算K 2的值;(3)比较K 2与临界值的大小关系作统计推断.1. (2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11B .12C .13D .14答案 B解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12(人). 2. (2013·福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120答案 B解析 少于60分的学生人数600×(0.05+0.15)=120(人), ∴不少于60分的学生人数为480人.3. (2013·重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)甲组 乙组 9 0 9 x 2 1 5 y 8 7424已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8答案 C解析 由于甲组中有5个数,比中位数小的有两个数为9,12,比中位数大的也有两个数24,27,所以10+x =15,x =5.又因9+15+10+y +18+245=16.8,所以y =8,故选C.4. (2012·湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg答案 D解析 由于线性回归方程中x 的系数为0.85, 因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确. 当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确. 5.运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为________. 答案 2 解析 x 甲=15(87+91+90+89+93)=90, x乙=15(89+90+91+88+92)=90, s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4, s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.题型一 抽样方法例1 (1)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15(2)某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10审题破题 系统抽样的特点是“等距”,分层抽样最重要的是“比例”. 答案 (1)C (2)A解析 (1)由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人.(2)若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x2+300=3 500, 解得x =1 600,故高一学生数为800,因此应抽取高一学生数为800100=8.反思归纳 (1)在系统抽样的过程中,要注意分段间隔,需要抽取几个个体,样本就需要分成几个组,则分段间隔即为Nn (N 为样本容量),首先确定在第一组中抽取的个体的号码数,再从后面的每组中按规则抽取每个个体.(2)在分层抽样中,要求各层在样本中和总体中所占比例相同.变式训练1 (1)要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为( )A .①简单随机抽样法,②系统抽样法B .①分层抽样法,②简单随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法 答案 B(2)防疫站对学生进行身体健康调查,采用分层抽样法抽取,某中学高三有学生1 600人,抽取一个容量为200的样本,已知女生比男生少抽10人,则该校的女生人数应该有________. 答案 760解析 设该校的女生为x 人,男生为(1 600-x )人,则按照分层抽样,各层的比例为2001 600=18,所以女生抽取x 8,男生抽取1 600-x 8,所以x8+10=1 600-x 8,解得x =760. 题型二 用样本估计总体例2 (2012·广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比审题破题 (1)根据样本频率之和为1,求出参数a 的值;(2)根据频率分布直方图和平均值的计算公式,求出样本平均值;(3)由直方图可计算语文成绩在每分段上的频数,再根据语文和数学成绩在同一段上的人数比,便可计算数学成绩在[50,90)之间的人数,进而求解.解 (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为 100-(5+20+40+25)=10(人).反思归纳 频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小.变式训练2 (1)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙答案 B解析由茎叶图可知甲数据集中在10至20之间,乙数据集中在20至40之间,明显x 甲<x乙,甲的中位数为20,乙的中位数为29,即m甲<m乙.(2)某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成六段[40,50),[50,60),…,[90,100)后,画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________;平均分为________.答案75%71解析及格的各组的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%;样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.题型三统计案例例3(1)根据上表可得线性回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时销售额为() A.63.6万元B.65.5万元C.67.7万元D.72.0万元(2)为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20附:参考公式及数据①卡方统计量:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d);则下列说法正确的是( )A .有99%的把握认为环保知识测试成绩与专业有关B .有99%的把握认为环保知识测试成绩与专业无关C .有95%的把握认为环保知识测试成绩与专业有关D .有95%的把握认为环保知识测试成绩与专业无关审题破题 (1)可以通过回归直线过(x ,y )求出a ^,然后进行预报;(2)计算K 2,然后和临界值比较. 答案 (1)B (2)C解析 (1)∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^=b ^x +a ^必过(x ,y ),∴42=72×9.4+a ^ ,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). (2)K 2=40×(14×13-7×6)220×20×21×19≈4.912,3.841<K 2<6.635,所以有95%的把握认为环保知识测试成绩与专业有关.反思归纳 (1)线性回归分析中,回归直线过(x ,y )是解决问题的核心;(2)独立性检验问题要计算卡方值,和临界值比较,说明有多大把握认为两者有关系.变式训练3 某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进(1)求线性回归方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解 (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80,又b ^=-20,所以a ^=y -b ^x =80+20×8.5=250,从而线性回归方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-20(x-8.25)2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.典例(12分)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学习成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)设m,n表示样本中两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;(2)根据有关规定,成绩小于16秒为达标.根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?附:规范解答解(1)从频率分布直方图中可以看出,成绩在[13,14)的人数为50×0.04=2(人),设为a,b;成绩在[17,18]的人数为50×(1-0.38-0.34-0.18-0.04)=3(人),设为A,B,C.[2分] m,n∈[13,14)有ab一种情况;m,n∈[17,18]时有AB,AC,BC三种情况;m,n分别在[13,14)和[17,18]时有aA ,aB ,aC ,bA ,bB ,bC 六种情况,所有基本事件总数为10.[4分] 而事件“|m -n |>2”由6个基本事件即aA ,aB ,aC ,bA ,bB ,bC 组成.所以P (|m -n |>2)=610=35.[6分](2)依题意得到相应的2×2列联表如下:[9分]K 2=50×(24×12-6×8)232×18×30×20≈8.333.由于8.333>6.635,故在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”.故可以根据男女生性别划分达标的标准.[12分]评分细则 (1)计算出成绩在两个区间[13,14),[17,18]内的人数给1分,标记给1分;(2)列举基本事件不全扣1分;(3)卡方值计算正确得1分,和临界值比较得1分,写最后结论得1分.阅卷老师提醒 (1)频率分布直方图和概率的结合是高考考查的热点,解题时要审清题意,把握频率分布直方图所体现的频率分布或数字特征;(2)解决独立性检验问题,要先得到列联表,准确代入公式计算.1. 某校共有学生2 000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在( )A.24B .18C .16D .12答案 C解析 由2 000×0.19=380知二年级的学生人数为380+370=750,由于一年级的学生人数为373+377=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16(人).2. (2012·山东)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 ( )A .众数B .平均数C .中位数D .标准差答案 D解析 对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.3. 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,设回归方程为y =b x +a ,则点(a ,b )在直线x +45y -10=0的( )A .左上方B .左下方C .右上方D .右下方答案 C解析 依题意得,x =18×(10+20+30+40+50+60+70+80)=45,y =18×(62+68+75+81+89+95+102+108)=85.注意到题中的每一组点(x ,y )均位于直线x +45y -10=0的右上方,因此点(a ^,b ^)必位于直线x +45y -10=0的右上方,故选C.4. 高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本.已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为________. 答案 20解析 由题意可知,可将学号依次为1,2,3,…,56的56名同学分成4组,每组14人,抽取的样本中,若将他们的学号按从小到大的顺序排列,彼此之间会相差14.故还有一个同学的学号应为6+14=20.5. (2013·湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示. (1)直方图中x 的值为 __________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.答案 (1)0.004 4 (2)70解析 (1)(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1, ∴x =0.004 4.(2)(0.003 6+0.004 4+0.006 0)×50×100=70.6. (2013·辽宁)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________. 答案 10解析 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5, 则由题意知x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20, 五个整数的平方和为20,则必为0+1+1+9+9=20, 由|x -7|=3可得x =10或x =4. 由|x -7|=1可得x =8或x =6.由上可知参加的人数分别为4,6,7,8,10,故最大值为10.专题限时规范训练一、选择题1. (2013·安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数 答案 C 解析 x男=15(86+94+88+92+90)=90,x 女=15(88+93+93+88+93)=91, s 2男=15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8, s 2女=15[(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6. 2. (2013·湖南)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法答案 D解析 总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样. 3. 为了解一片大约10 000株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm 的树木大约有( )A .3 000株B .6 000株C .7 000株D .8 000株答案 C解析 底部周长小于110 cm 的频率为(0.01+0.02+0.04)×10=0.7,所以底部周长小于110 cm 的树木大约有10 000×0.7=7 000株,故选C.4. 如图是2013年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1、a 2,则一定有( )A.a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2大小与m 的值有关答案 B解析 去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a 2>a 1.5. 假设学生初一和初二数学成绩是线性相关的.若10个学生初一(x )和初二(y )的数学分数则初一和初二数学分数间的线性回归方程是( )A.y ^=1.218 2x -14.192B.y ^=14.192x +1.218 2C.y ^=1.218 2x +14.192D.y ^=14.192x -1.218 2 答案 A 解析 因为x=71,∑i =110x 2i =50 520,y =72.3,∑i =110x i y i =51 467,所以,b ^=51 467-10×71×72.350 520-10×712≈1.218 2.a ^=72.3-1.218 2×71=-14.192 2,线性回归方程是:y ^=1.218 2x -14.192 2.6. (2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取( )A.08 B .07 C .02 D .01答案 D解析 从第1行第5列、第6列组成的数65开始由左到右依次选出的数为:08,02,14,07,01,所以第5个个体编号为01.7. 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3 答案 D解析 逐项验证,由0,0,0,2,4,4,4,4,4,8可知,A 错;由0,0,0,0,0,0,0,0,2,8可知,B 错;由0,0,1,1,2,2,3,3,3,8可知,C 错.D 中x =2. (x 1-2)2+(x 2-2)2+…+(x 10-2)210=3.即(x 1-2)2+(x 2-2)2+…+(x 10-2)2=30.显然(x i -2)2≤30(i =1,2,…,10),x i ∈N *即x i ≤7.8. 有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A .18B .36C .54D .72答案 B解析 由0.02+0.05+0.15+0.19=0.41, ∴落在区间[2,10)内的频率为0.41×2=0.82. ∴落在区间[10,12)内的频率为1-0.82=0.18.∴样本数据落在区间[10,12)内的频数为0.18×200=36. 二、填空题9. (2013·山东改编)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________.答案 367解析 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0) =367. 10.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案 9解析 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.11.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.答案 24 23解析 x 甲=110×(19+18+20+21+23+22+20+31+31+35)=24.x 乙=110×(19+17+11+21+24+22+24+30+32+30)=23.12.以下四个命题,其中正确的是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1 ;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量K 2(χ2)的值越小,“X 与Y 有关系”的把握程度越大. 答案 ②③解析 ①是系统抽样;对于④,随机变量K 2(χ2)的值越小,说明两个变量有关系的把握程度越小. 三、解答题13.(2013·安徽)为调查甲、乙两校高三年级学生某次联考的数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n ,由已知条件 30n=0.05,则n =600. 在甲校高三年级抽取的30名学生中成绩在60分及60分以上的人数为25,因此甲校高三年级这次联考的及格率大约是2530=56=83.3%.(2)x 1=[(7+13+24+26+22+2)+40+50×4+60×9+70×9+80×5+90×2]÷30=1 04215;x 2=[(5+14+17+33+20)+40+50×3+60×10+70×10+80×5+90]÷30=2 06930.x 1-x 2=2 08430-2 06930=12.14.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 解 (1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)从题中所给条件可以看出收看新闻节目的共45人,随机抽取5人,则抽样比为545=19,故大于40岁的观众应抽取27×19=3(人).(3)抽取的5名观众中大于40岁的有3人,在20岁到40岁的有2人,记大于40岁的人为a 1,a 2,a 3,20至40岁的人为b 1,b 2,则从5人中抽取2人的基本事件有(a 1,a 2),(a 1,a 3),(a 2,a 3),(b 1,b 2),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2)共10个,其中恰有1人为20至40岁的有6个,故所求概率为610=35.。
专题15 概率统计问题(压轴题)

《中考压轴题》 专题15:概率统计问题一、选择题1. 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是A. a <13,b=13B. a <13,b <13C. a >13,b <13D. a >13,b=13 2. 如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是A .0.25B .0.5C .0.75D .0.953. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的A. 众数B. 平均数C. 中位数D. 方差4. 一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程2x px q 0++=有实数根的概率是A.41 B.31 C.21 D.325. 五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据,若这五个数据的中位数是6,唯一..众数是7,则他们投中次数的总和可能是 A 、20 B 、28 C 、30 D 、316.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分) 9.40 9.50 9.60 9.70 9.80 9.90 人数235431则入围同学决赛成绩的中位数和众数分别是A. 9.70,9.60B. 9.60,9.60C. 60,9.70D. 9.65,9.607. 事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P (C)的大小关系正确的是A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)8. 四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率为A. 12B.14C.34D.19. 在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.110.下列事件是必然事件的为()A.明天太阳从西方升起B.掷一枚硬币,正面朝上C.打开电视机,正在播放“河池新闻”D.任意一个三角形,它的内角和等于180°11.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.4512.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3B.5C.8D.1013.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值约为( )A .12B .15C .18D .21 14.下列事件发生的概率为0的是( ) A .射击运动员只射击1次,就命中靶心 B .任取一个实数x ,都有0xC .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmD .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为615.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a ,如果投掷一枚硬币,正面向上的概率为b ,关于a 、b 大小的正确判断是( )A .a >bB .a =bC .a <bD .不能判断16.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( ) A .112 B .512 C .16 D .1217.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( ) A .16 B .13 C .12 D .2318.如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( ) A .43 B .32 C .31 D .2119.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( ) A .12 B .14 C .38D .58 20.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A .13 B .23 C .16 D .3421.从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x图象上的概率是( ) A .12 B .13 C .14 D .1622.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( ) A .21 B .31 C .41 D .5123.如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254 D .257 24.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( ) A .12 B .23 C .25D .35二、填空题1. 某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书 本.2. 小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .3. 已知a 、b 可以取﹣2、﹣1、1、2中任意一个值(a ≠b ),则直线y=ax+b 的图象不经过第四象限的概率是 .4.统计学规定:某次测量得到n 个结果x 1,x 2,…,x n .当函数()()()22212n y x x x x x x =-+-+⋯+-取最小值时,对应x 的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为 .5.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01)6.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .7.写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件.8.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____.9.从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x=+的自变量取值范围内的概率是 . 10.从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为 . 11.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C ′恰好落在直线AB 上,则点C ′的坐标为 .12.如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 .三、解答题1. 某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如下图:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;(3)根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只70 72 74 75 77 79 天数 1 2 3 4 3 2计算该组内平均每天销售玫瑰花的只数.2.八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分。
高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析概率与统计作为高考数学的重要部分,占据了相当大的比重。
掌握概率与统计的相关知识对于考生来说是至关重要的。
本文将通过对2024年高考概率与统计专题历年题目的解析,帮助考生更好地理解和掌握这一部分知识点。
一、选择题解析选择题是高考中常见的题型,对于考生来说,熟练掌握解题技巧是很重要的。
题目1:某班有30名学生,其中男生占总人数的40%。
已知从该班随机抽取一名学生,他是男生的概率是多少?解析:根据题目可知男生的人数为30 × 40% = 12人,所以男生的概率是12/30 = 2/5。
题目2:某工厂生产零件,每天生产150个。
已知每个零件的质量标准为99%,A同学随机抽样抽取2个零件,请问这两个零件都合格的概率是多少?解析:每个零件合格的概率为99% × 1/100 = 0.99。
因为是随机抽取,所以这两个零件都合格的概率为0.99 × 0.99 = 0.9801。
二、解答题解析解答题在概率与统计中也占据重要地位,考察学生的综合应用能力和解题能力。
题目3:某校学生的身高服从正态分布,其中男生的平均身高为170cm,标准差为5cm;女生的平均身高为165cm,标准差为4cm。
已知该校男女生比例为2:3,请问在该校随机抽取一个学生,他身高超过175cm的概率是多少?解析:根据题目可知男生的概率为2/5,女生的概率为3/5。
设男生身高超过175cm的概率为p1,女生身高超过175cm的概率为p2。
根据正态分布的性质,可以计算出男生身高超过175cm的概率为0.5 × (1 - p1) = 2/5,女生身高超过175cm的概率为0.5 × (1 - p2) = 3/5。
解方程得到p1 = 1/5,p2 = 2/5,所以在该校随机抽取一个学生,他身高超过175cm的概率为(2/5) × (1/5) + (3/5) × (2/5) = 11/25。
概率与统计专题复习

4 二 项式 定理 与相 关 知识 的交 汇考 查
■, ,
例 5 已知 数列 { ( a } 为 正 整数 ) 首 项 为 a , 是
公 比为 q的等 比数列 .
() 1 求和 : 1 2 2 3 ; a C 一n C +n C ,
a C 一n C + n C -a C ; 1 2 3 i 4 i
( ) 1 的结 果 归纳 概 括 出关 于 正 整数 n的 一 2 由( ) 个 结 论 , 加 以证 明. 并
( )口 C 一口 C +口 c _ 1 z 。2 O 1
对 等可 能性 事 件 的 概 率 、 斥 事件 的概 率 、 立 事件 互 独 的概率 、 事件 在 次独 立重 复试 验 中恰 发 生 k次 的概 率 、 散型 随机变 量分 布列 和数 学 期 望 、 离 方差 、 样 方 抽 法 等 内容都进 行 了考查 .
用 的全 过程 . 率统计 内容 中蕴涵 着 丰 富 的数 学思 想 概
方法 , 函数 与 方 程 思 想 、 如 分类 讨 论 、 化 思 想 等. 转 概
率统计 为人 们 处 理 现 实 数 据 信 息 , 析 、 握 随机 事 分 把
越 是 接 近 真 理 , 愈 加 发 现 真理 的 迷人 . 便
q c + … + ( 1 ” :1 1 1 q . 。 ~ )q C - 一n ( - )
森主 项定知与 识 二式理识 均
( 者单位 : 作 河北省 滦 平县 第一 中学)
数学思 想方 法作 为数 学 的精 髓 , 来是 高 考数 学 历 考查 的重 中之 重 . 蕴涵 在 数 学 知 识 发 生 、 展 和 应 它 发
高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
高考数学概率统计解答题专题

高考数学概率统计解答题专题一、归类解析题型一:离散型随机变量的期望与方差【解题指导】离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率的对应.【例】某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示.已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)求上表中的a,b值;(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);(3)求η的分布列及期望E(η).【变式训练】某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列及期望.题型二:概率与统计的综合应用【解题指导】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【例】某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个? 【变式训练】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获得利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的期望. 题型三:概率与统计案例的综合应用【解题指导】 概率与统计案例的综合应用常涉及相互独立事件同时发生的概率、频率分布直方图的识别与应用、数字特征、独立性检验等基础知识,考查学生的阅读理解能力、数据处理能力、运算求解能力及应用意识.【例】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次 2次 3次 4次 5次 6次及以上总计 男 10 8 7 3 2 15 45 女 5 4 6 4 6 30 55 总计1512137845100(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X ,求X 的分布列及期望. 附公式及表如下:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828【变式训练】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料是否可以认为“体育迷”与性别有关?非体育迷体育迷合计 男 女 10 55 合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.10 0.05 0.01 k 02.7063.8416.635二、专题突破训练1.为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:优秀 非优秀 合计 男生 15 35 50 女生 30 40 70 合计4575120(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关?(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组.现从这6人中随机抽取2人到校外宣传,求到校外宣传的同学中男生人数X 的分布列和期望. 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.2(1)求出y关于x的回归直线方程y=b x+a,并在坐标系中画出回归直线;(2)试预测加工10个零件需要的时间.3.为了评估天气对某市运动会的影响,制定相应预案,该市气象局通过对最近50多年气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图所示).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X,求X的期望和方差(精确到0.01).4.某婴幼儿游泳馆为了吸引顾客,推出优惠活动,即对首次消费的顾客按80元收费,并注册成为会员,对会员消费的不同次数给予相应的优惠,标准如下:假设每位顾客游泳1(1)估计该游泳馆1位会员至少消费2次的概率;(2)某会员消费4次,求这4次消费中,游泳馆获得的平均利润;(3)假设每个会员最多消费4次,以事件发生的频率作为相应事件发生的概率,从该游泳馆的会员中随机抽取2位,记游泳馆从这2位会员的消费中获得的平均利润之差的绝对值为X,求X的分布列和期望E(X).。
《近五年中考考点概率统计》专题

《近五年中考考点概率统计》专题班级 姓名只要站起来的次数比倒下去的次数多,那就是成功。
【类型五:统计】(2014•鸡西第14题3分)14.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表。
关于这10户家庭的月用电量说法正确的是 (A. 中位数是40B. 众数是4C. 平均数是20.5D. 极差是3A 4.9,4.6B 4.9,4.7C 4.9,4.65D 5.0,4.65(2012•鸡西第5题3分)5. 2012年5月份,鸡西地区一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是 ( ) A.32,31 B.31,31 C.31,32 D.32,35(2011•鸡西第6题3分)某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 甲x 、乙x ,方差依次为2甲s 、2乙s ,则下列关系中完全正确的是 ( )A 甲x <乙x , 2甲s <2乙sB 甲x =乙x , 2甲s <2乙s C 甲x =乙x , 2甲s >2乙s D 甲x >乙x , 2甲s >2乙s(2010•鸡西第5题3分)5.一组数据3,4,9,x,它的平均数比它唯一的众数大1,则x= .(2009•鸡西第4题3分)4.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .考点须知:平均数的作用:加权平均数众数:中位数:极差:方差:(2012黑龙江龙东,15,3分)某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为( )A. 14,13B. 13,14C. 14,13.5D. 14,13.6(2011黑龙江龙东,13,3分)某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛。
小兰已经知道了自已的成绩,她想知道自已能否进入决赛,还需要知道这11名同学成绩的 ( ) A 、中位数 B、众数 C、平均数 D、不能确定(2010黑龙江龙东,5,3分)“一方有难,八方支援”,当青海玉树发生地震后,全国人民A.15B.30C.50D.20。
专题六 概率统计专题复习

专题六、概率统计 1、计数原理、二项式定理热点一 两个原理、排列与组合例1、从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120变式训练:1、若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为( ).A .232B .252C .472D .4843、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种. 热点二 求展开式中的指定项例2、在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于_________.变式训练:1、8的展开式中常数项为( ).A .3516B .358C .354D .1052、若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为_________.3、在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40热点三 求展开式中的各项系数的和例3、若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2变式训练:1、若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=________.2、若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.课外训练: 一、选择题1 .已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-2 .用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279 3 .设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .84 .)()()8411+x y +的展开式中22x y 的系数是 ( )A .56B .84C .112D .1685 .满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .106 . 10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x7 .使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .78 .从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .209 . (x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40二、填空题10.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 11.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).12.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)13. 6x⎛⎝ 的二项展开式中的常数项为______.14.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 15.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =16.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.17.若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.18.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).2、概率、统计与统计案例 热点一 随机事件的概率例1、如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).则V =0时的概率为_______变式训练:1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A .49B .13C .29D .192、某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1).若选手甲在A 区射击,则选手甲至少得3分的概率为_________ 热点二 古典概型与几何概型例2、设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6 D .4-π4变式训练:1、在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A .56B .12C .13D .162、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A .16B .536C .112D .123、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17热点三 统计例3、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙变式训练:1、采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152、某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,16 3、甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩不比乙的成绩稳定 热点四 独立性检验例4、为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩. (1)根据以上数据完成下面的2×2列联表:(2)能否有95%附:K 2=n (ad -bc )2(a +b )(c变式训练:为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d ).课外训练: 一、选择题1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为( ) A .11 B .12 C .13 D .14 3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 4、如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π5、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120 6、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样7、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8二、填空题8、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________; (II)在这些用户中,用电量落在区间[)100,250内的户数为___________.10、利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 11、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 12、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.13、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为______.三、解答题14、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.3、随机变量及其分布列热点一 相互独立事件、互斥事件、对立事件及其概率例1、现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分至少1分的概率; (3)求该射手的总得分至多3分的概率.热点二 二项分布及其应用例2、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.记ξ为射手射击3次后的总得分数,求p(ξ=3)和p(ξ<2).热点三 离散型随机变量的分布列、均值与方差 例3、交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机1 7 92 0 1 53 0选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.课外训练:1、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.3、经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)100≤表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量X∈,则落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)取105X=的概率等于需求量落入[100,110)的概率),求利润T的数X=,且105学期望.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计专题
1、(2013•宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )
2、(2013四川南充,7,3分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。
将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 ( ) A. 51 B. 52 C. 53 D. 54
3、(2013•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
A .
B .
C .
D .
4、(13年安徽省)如图,随机闭合开关K 1、K 2、K 3中的两个,则能让两盏灯泡同时发光的概率为( )
A 、
61 B 、3
1 C 、21 D 、32
5、(2013泰安)有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( )
6、(2013•内江)同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率为
7、(2013济宁)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.
8、(2013•巴中)在﹣1、3、﹣2这三个数中,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是.
9、(2013甘肃兰州)某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是.
10、(2013鞍山)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.
(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.
11、(2013年武汉)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两
把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.
(1)请用列表或画树状图的方法表示出上述试验所有可能结果;
(2)求一次打开锁的概率.。