高三《概率与统计》专题复习

合集下载

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。

2.已知A,B互相对立,则A与B的关系是互相对立。

,B为随机事件,则P(AB)?。

P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。

,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。

36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。

7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。

8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。

339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。

5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。

12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。

319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。

15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。

??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。

217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。

高三统计概率部分知识点

高三统计概率部分知识点

高三统计概率部分知识点统计和概率是高中数学中的重要内容,它们在实际生活和其他学科中有着广泛的应用。

在高三阶段,学生需要掌握统计和概率的基本概念、计算方法以及实际问题的解决思路。

本文将介绍高三统计概率部分的知识点,帮助学生理解和掌握相关内容。

一、统计学基本概念1. 总体和样本:总体是指研究对象的全体,样本是从总体中选取的一部分个体。

2. 参数和统计量:参数是对总体的数值特征的度量,统计量是对样本的数值特征的度量。

3. 随机抽样:从总体中按照一定的方法和规则选取样本的过程。

二、统计图表的应用1. 频数分布表和频数分布图:将数据按照一定区间范围划分并统计每个区间的数据个数,然后通过表格和直方图等图表形式展示。

2. 饼状图:用于表示各个部分在整体中的比例关系。

3. 折线图和曲线图:用于表示连续变量的变化趋势和相应的关系。

三、概率基本概念1. 随机事件和样本空间:随机事件是指在一次试验中可能发生的结果,样本空间是指所有可能结果的集合。

2. 事件的概率:事件A发生的概率,记作P(A),是指事件A在总体中出现的可能性大小。

3. 事件的互斥和独立:互斥事件是指两个事件不可能同时发生,独立事件是指两个事件的发生与否互不影响。

四、概率计算方法1. 等可能原则:对于所有基本事件来说,每个事件发生的可能性是相等的。

2. 事件的概率计算:对于等可能事件,事件A发生的概率等于事件A的样本数除以样本空间的样本数。

3. 事件的并、交和差:事件的并是指两个事件至少有一个发生的情况,事件的交是指两个事件同时发生的情况,事件的差是指一个事件发生而另一个事件不发生的情况。

五、统计推理的应用1. 抽样分布:通过对多个相同样本容量的抽样进行统计,得到统计量的分布,从而进行统计推断。

2. 置信区间估计:通过样本统计量对总体参数进行估计,并给出参数真值可能存在的范围。

3. 假设检验:对于某个假设进行检验,判断其在给定显著性水平下的可接受性。

六、实际问题解决思路1. 了解问题:明确问题涉及的统计和概率知识点,并理解问题中的条件和要求。

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( )。

(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是(). (A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D )()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件(C )A B φ⋂=(空集) (D ))()(B P A P ≥ 12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。

《概率论与数理统计》复习题

《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。

若未被确诊,病人能自然痊愈的概率为0.1。

①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。

高中数学:概率统计专题

高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。

概率论与数理统计总复习-

概率论与数理统计总复习-

一. 二维离散型r.v.
概率统计-总复习-13
1. 联合分布律(2个性质)
P(Xxi,Yyj)pij,
2.联合分布函数(5个性质)
F ( x , y ) P X x , Y y
3.联合分布律与联合分布函数关系
F(x,y)pij, xixyjy
4. 边缘分布律与边缘分布函数
n
Xi


n
E( Xi )


i1 i1
D
n
Xi


n
D( Xi )
i1 i1
X1,,Xn 相互独立
常见离散r.v.的期望与方差
概率统计-总复习-27
分布 概率分布
期望 方差
参数p的 0-1分布
P (X 1 )p ,P (X 0) q
2. 联合分布函数(5个性质)
xy
F(x,y) p(u,v)dvdu
3.联合密度与联合分布函数关系 2F( x,y) p( x,y)
xy
4.边缘密度与边缘分布函数


p (x) p( x,y)dy p ( y) p( x,y)dx
X

Y

FX( x) F(x, ) FY ( y ) F(, y)

5.全概率公式:分解 P(B) P(Ai)P(B|Ai),B
i1
6.贝叶斯公式
P(Aj |B)
P(Aj )P(B| Aj )

,j
P(Ai )P(B|Ai )
i1
四. 概率模型
概率统计-总复习-6
1.古典概型: 摸球、放球、随机取数、配对
2. n重伯努利概型:

数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析概率与统计是高中数学中的一个重要部分,也是数学高考中的一个重点考点。

掌握好概率与统计的知识对于高三学生来说非常重要。

本文将对高三数学概率与统计的知识进行总结,并解析一些常见的题型。

一、概率的基本概念和性质概率是研究随机试验结果出现的可能性的数学理论。

在概率的研究中,有几个基本概念和性质需要掌握。

1.1 试验、样本空间和事件随机试验是指具有以下三个特点的试验:可以在相同的条件下重复进行,每次试验的结果不确定,且试验的结果有多种可能性。

样本空间是指一个随机试验的所有可能结果的集合。

事件是样本空间的一个子集,表示随机试验中我们关心的一些结果。

1.2 概率的定义和性质概率的定义可以通过两种方式来描述:频率定义和古典定义。

频率定义是指当试验重复进行很多次时,事件发生的频率趋近于概率值。

古典定义是指在满足条件的情况下,事件发生的可能性与样本空间中元素个数的比值。

概率具有以下几个性质:非负性、规范性、可列可加性、互斥性和独立性。

1.3 条件概率和乘法定理条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。

条件概率可以通过乘法定理来计算。

二、离散型随机变量离散型随机变量是指在有限或可数无限个取值中取一个确定值的变量。

离散型随机变量具有以下几个重要的性质:概率函数、分布函数、数学期望、方差等。

2.1 二项分布二项分布是指在n次独立的伯努利试验中,事件发生的次数所符合的概率分布。

如果事件发生的概率为p,不发生的概率为q=1-p,那么在n次试验中,事件发生k次的概率可以由二项分布来计算。

2.2 泊松分布泊松分布是在一定时间或空间范围内,某个事件发生的概率符合的分布。

泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。

三、连续型随机变量连续型随机变量是指在一个或者几个区间内取值的变量。

连续型随机变量具有以下几个重要的性质:概率密度函数、分布函数、数学期望、方差等。

高三统计概率知识点复习

高三统计概率知识点复习

高三统计概率知识点复习统计概率是概率论中的一个重要分支,它研究的是大量数据的规律性和可预测性。

在高三阶段,学生需要对统计概率知识点进行复习,以加深对这一领域的理解和应用。

本文将从概率、随机变量和概率分布三个方面介绍高三统计概率的重要知识点。

概率概率是统计概率的核心概念,它描述了事件发生的可能性大小。

主要涉及到的知识点包括:1. 样本空间和事件:样本空间是指所有可能结果的集合,事件是样本空间的子集。

比如,抛掷一枚硬币的样本空间为{正面、反面},而事件可以是“正面朝上”。

2. 概率的基本性质:概率具有非负性、规范性和可列可加性等基本性质。

其中,非负性指概率值不会小于零;规范性指样本空间的概率为1;可列可加性指多个互不相容事件的概率可以相加。

3. 概率的计算方法:根据概率的定义,我们可以通过频率法、几何法和古典概型等方法来计算概率。

其中,频率法通过试验的频率来估计概率;几何法利用几何图形的面积来计算概率;古典概型则是指所有可能结果的数量相等的情况。

随机变量随机变量是统计概率中的另一个重要概念,它描述了随机试验的结果与数值之间的对应关系。

主要涉及到的知识点包括:1. 随机变量的定义:随机变量可以是离散型或连续型。

离散型随机变量只能取某些特定的值,比如抛掷一枚骰子的点数;连续型随机变量则可以在某个区间内取任意值,比如一个人的身高。

2. 随机变量的分布函数:分布函数描述了随机变量取特定值的概率。

对于离散型随机变量,我们可以通过概率质量函数来计算取某个值的概率;对于连续型随机变量,则需要使用概率密度函数。

3. 期望和方差:期望是对随机变量取值的加权平均,其值反映了随机变量的中心位置。

方差则度量了随机变量取值的分散程度,其值越大,数据的离散程度越高。

概率分布概率分布是统计概率中用来描述随机变量的分布特征的函数。

主要涉及到的知识点包括:1. 常见的离散型概率分布:高三阶段常见的离散型概率分布包括伯努利分布、二项分布和泊松分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三《概率与统计》专题复习
一、常用知识点回顾 1、概率:古典概型n
m
=
p (枚举法、列表法);几何概型。

2、特征数:众数、中位数、平均数、方差得概念及其求法。

3、频率分布直方图、茎叶图。

(1)在频率分布直方图中,各小组得频率等于小长方形得面积,且各小长形得面积之与等于1;(2)在频率分布直方图中,求众数、中位数、平均数得方法;
频率频数样本容量,样本容量频率,频数样本容量
频数
)频率(÷=⨯==
3
4、回归分析。

(1)回归直线必过样本中心点),(y x ;(2)求回归直线方程。

(3)求相关系数,判断拟合效果。

5、独立性检验。

填写22⨯列联表,并根据22⨯列联表求随机变量K 2
,判断“两个随机变量有关”可能性大小。

二、题型训练
【例1】、某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出得酸奶降价处理,以每瓶2元得价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份得订购计划,统计了前三年六月份各天得最高气温数据,得下面得频数分布表:
(1)求六月份这种酸奶一天得需求量不超过300瓶得概率;
(2)设六月份一天销售这种酸奶得利润为Y (单位:元),当六月份这种酸奶一天得进货量为450瓶时,写出
Y 得所有可能值,并估计Y 大于零得概率.
【练习1】、某汽车美容公司为吸引顾客,推出优惠活动:对首次消费得顾客,按200元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:
该公司从注册得会员中, 随机抽取了100位进行统计, 得到统计数据如下:
消费次第第1次第2次第3次第4次第5次
频数60201055
假设汽车美容一次, 公司成本为150元, 根据所给数据, 解答下列问题:
(1)估计该公司一位会员至少消费两次得概率;
(2)某会员仅消费两次, 求这两次消费中, 公司获得得平均利润;
(3) 设该公司从至少消费两次, 求这得顾客消费次数用分层抽样方法抽出8人, 再从这8人中抽出2人发放纪念品, 求抽出2人中恰有1人消费两次得概率、
【练习2】、2017年春节前,有超过20万名广西、四川等省籍得外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年得摩托车驾驶人有一个停车休息得场所。

交警小李在某休息站连续5天对进站休息得驾驶人员每隔50辆摩托车,就进行省籍询问一次,询问结果如图4所示:
(Ⅰ)问交警小李对进站休息得驾驶人员得省籍询问采用得就是什么抽样方法?
(Ⅱ)用分层抽样得方法对被询问了省籍得驾驶人员进行抽样,若广西籍得有5名,则四川籍得应抽取几名?(Ⅲ)在上述抽出得驾驶人员中任取2名,求至少有1名驾驶人员就是广西籍得概率、
【例2】某城市100户居民得月平均用电量(单位:度),以[)
260,280,[]
280,300分组得频率分布
240,260,[)
180,200,[)
160,180,[)
200,220,[)
220,240,[)
直方图如图2.
(1)求直方图中x 得值; (2)求月平均用电量得众数与中位数;
(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300得四组用户中,用分层抽样得方法抽取11户居民,则月平均用电量在[)220,240得用户中应抽取多少户?
【练习1】甲、乙二人参加某体育项目训练,近期得五次测试成绩得分情况如图.
(1)分别求出两人得分得平均数与方差; (2)根据图与上面算得得结果,对两人得训练成绩作出评价. 【练习2】我国就是世界上严重缺水得国家,某市为了制定合理得节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人得月均用水量(单位:吨),将数据按照[0,0、5), [0、5,1),……[4,4、5]分成9组,制成了如图所示得频率分布直方图、
(I)求直方图中得a值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨得人数.说明理由;
(Ⅲ)估计居民月均用水量得中位数、
【练习3】某市民用水拟实行阶梯水价,每人用水量中不超过w立方米得部分按4元/立方米收费,超出w立方米得部分按10元/立方米收费,从该市随机调查了10000位居民,获得了她们某月得用水量数据,整理得到如下频率分布直方图:
(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月得用水价格为4元/立方米,w至少定为多少?(II)假设同组中得每个数据用该组区间得右端点值代替,当w=3时,估计该市居民该月得人均水费、
【练习1】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录得产量x (吨)与相应得生产能耗y (吨标准煤)得几组对照数据: (1)请画出上表数据得散点图;
(2)请根据上表提供得数据,用最小二乘法求出y关于x得线性回归方程y bx a =+;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出得线性回归方程,预测生产100吨甲产品得生产能耗比技术改造前降低多少吨标准煤?
【练习2】下图就是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)得折线图、
x 3 4 5 6 y
2.5
3
4
4.5
例3
(Ⅰ)由折线图瞧出,可用线性回归模型拟合y 与t 得关系,请用相关系数加以说明;
(Ⅱ)建立y 关于t 得回归方程(系数精确到0、01),预测2016年我国生活垃圾无害化处理量、 附注:
参考数据:
7
1
9.32i
i y
==∑,7
1
40.17i i i t y ==∑7
2
1
()
0.55i
i y y =-=∑,7≈2、646、
参考公式:1
2
2
1
1
()()
()(y
y)n
i
i
i n n
i i
i i t t y y r t t ===--=
--∑∑∑ 回归方程y a bt =+中斜率与截距得最小二乘估计公式分别为:
1
2
1
()()
()n
i
i i n
i
i t
t y y b t
t ==--=
-∑∑,a y bt =-
【例4】海水养殖场进行某水产品得新、旧网箱养殖方法得产量对比,收获时各随机抽取了100个网箱,测量各箱水产品得产量(单位:kg), 其频率分布直方图如下:
(1) 记A 表示事件“旧养殖法得箱产量低于50kg ”,估计A 得概率;
(2) 填写下面列联表,并根据列联表判断就是否有99%得把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法
(3) 根据箱产量得频率分布直方图,对两种养殖方法得优劣进行较。

附: P(
)
0、050 0、010 0、001 k
3、841
6、635
10、828
2
2
()()()()()
n ad bc K a b c d a c b d -=++++ .
【练习1】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务得两种新得生产方式.为比较两种生产方式得效率,选取40名工人,将她们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务得工作时间(单位:min)绘制了如下茎叶图:
⑴根据茎叶图判断哪种生产方式得效率更高?并说明理由;
⑵求40名工人完成生产任务所需时间得中位数m,并将完成生产任务所需时间超过m与不超过m得工人数填入下面得列联表:
超过m不超过m
第一种生产方式
第二种生产方式
附:
()
()()()()
2
2
n ad bc
K
a b c d a c b d
-
=
++++
,
()
2
0.0500.0100.001
3.8416.63510.828
P K k
k

.
【练习2】在中学生综合素质评价某个维度得测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果得影响,采用分层抽样方法从高一年级抽取了45名学生得测评结果,并作出频数统计表如下:
表1:男生表2:女生
等级优秀合格尚待改进等级优秀合格尚待改进
频数15 x 5 频数15 3 y
(; (Ⅱ)由表中统计数据填写右边22
⨯列联表,并判
断就是否有90%得把握认为“测评结果优秀与性别有关”.
参考数据与公式:
()
()()()()
2
2
n ad bc
K
a b c d a c b d
-
=
++++
,其中n a b c d
=+++.
临界值表
2
()
P K k
>0、10 0、05 0、01
k2、706 3、841 6、635。

相关文档
最新文档