高一人教版数学必修教案:幂函数幂函数
【人教A版高一数学必修1教案】幂函数

1 《幂函数》教案
一、教学目的:
使学生掌握幂函数的概念,会画幂函数的图象,能判定一个幂函数是增函 数还是减函数,能判断一个幂函数的奇偶性。
二、教学重难点:
1.教学重点:幂函数的图象、幂函数的增减性的证明。
2.教学难点:幂函数增减性的证明。
三、教学过程:
(一)新课引入
课本P90,p=w, S=a 2, V=a 3 ,a=S 21,v=t -1,
上述问题中的函数具有什么共同特征?
(二)新课讲授:
上述问题中涉及的函数,都是形如y =x a 的函数。
一般地,函数y =x a 叫做幂函数(power function )。
其中x 是自变量,a 是常数。
当a =1,2,3,2
1,-1时,得到下列的幂函数,画出它们的图象,并观察图象, 将你发现的结论写在下表中:
y =x y =x 2 y =x 3 y =x 2
1
y =x -1 定义域 R R R [0,+∞) (-∞,0)∪(0,+∞) 值域 R [0,+∞) R [0,+∞) (-∞,0)∪(0,+∞) 奇偶性 奇 偶 奇 非奇非偶 奇
单调性 增 [0,+∞)增 增 增 (-∞,0)减
(-∞,0)减 [0,+∞)减
定点 (1,1) (1,1) (1,1) (1,1) (1,1)
例1、证明幂函数f (x )=x 在[0,+∞)上是增函数。
高中数学必修一幂函数教案

高中数学必修一幂函数教案教案主题:幂函数教案目标:1.了解幂函数的定义和性质;2.掌握幂函数图像的特点以及对称性;3.准确理解幂函数的增减性质并能应用到解题中;4.能够分析幂函数与线性函数、指数函数和对数函数的关系。
教学准备:1.多媒体教学工具;2.手写板或黑板;3.课本及教学参考书。
教学过程:一、导入(5分钟)教师利用多媒体工具或手写板呈现一幂函数的图像,并提问学生对于该图像的感受和认知。
引导学生逐渐了解幂函数。
二、输入与解释(10分钟)教师在黑板上写下幂函数的定义,并对每一部分进行解释。
幂函数定义:幂函数是指以自变量x为底数,以常数a(a>0且a≠1)为指数的函数。
它可以表示为y=x^a。
三、图像特点与对称性(20分钟)1.通过幂函数的图像和函数表达式的关系,教师解释幂函数的图像特点:(1)当a>1时,函数图像在x轴正半轴上逐渐上升;当0<a<1时,函数图像保持下降的趋势。
(2)当a为整数时,函数图像在坐标原点有一个翻转对称轴,如a为奇数,则函数图像在原点处且坐标原点是函数图像的一个特殊点。
2.教师通过实例讲解幂函数图像的对称性,并要求学生在黑板上绘制出幂函数图像,并观察其对称轴和特殊点。
四、增减性质与应用(30分钟)1.幂函数的增减性质:(1)a>1时,函数递增;(2)0<a<1时,函数递减。
教师通过函数的图像和定义,对幂函数的增减性质进行讲解,强调函数图像的上升和下降趋势。
2.教师通过例题引导学生应用增减性质去解题。
五、幂函数与其他函数的关系(20分钟)1.幂函数与线性函数的关系:幂函数的特殊情况即a=1时,函数变为y=x。
教师通过图像和式子对比,指出线性函数就是幂函数的特殊情况。
2.幂函数与指数函数及对数函数的关系:幂函数与指数函数和对数函数正好是互为反函数,即幂函数和指数函数是对方的反函数。
3.教师通过例题和实例分析,引导学生理解以上关系。
六、总结与归纳(10分钟)教师与学生共同总结幂函数的定义、图像特点以及与其他函数的关系。
高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修一、教学目标1. 知识与技能:(1)理解幂函数的定义和性质;(2)会求幂函数的导数;(3)能够运用幂函数解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳幂函数的性质,培养学生的逻辑思维能力;(2)利用信息技术手段,展示幂函数的图象,提高学生的直观认知能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点1. 重点:幂函数的定义和性质,幂函数的导数。
2. 难点:幂函数在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习指数函数、对数函数的性质;(2)提问:幂函数是什么?它的图象和性质是怎样的?2. 自主学习:(1)学生自主探究幂函数的定义和性质;3. 课堂讲解:(1)讲解幂函数的定义和性质;(2)讲解幂函数的导数;(3)举例说明幂函数在实际问题中的应用。
4. 课堂练习:(1)学生独立完成练习题;(2)教师点评答案,解答疑问。
5. 课堂小结:(2)教师点评并补充。
四、课后作业1. 完成教材课后练习题;2. 选取两个不同的幂函数,分析它们的性质和图象;五、教学反思1. 反思教学目标是否达成,学生掌握情况如何;2. 反思教学过程中是否存在问题,如何改进;3. 针对学生的反馈,调整教学策略,为下一节课做好准备。
六、教学评价1. 评价内容:学生对幂函数的定义、性质和导数的掌握程度,以及运用幂函数解决实际问题的能力。
2. 评价方式:课堂练习、课后作业、课堂讨论、小组合作等。
3. 评价指标:准确性、逻辑性、创新性、合作精神等。
七、教学拓展1. 对比分析幂函数、指数函数和对数函数的性质及其应用;2. 探讨幂函数在其他学科领域的应用,如物理学、化学等;3. 引入复合幂函数的概念,引导学生进一步探究。
八、教学资源1. 教材:新人教A版高中数学必修教材;2. 课件:幂函数的定义、性质和导数的课件;3. 练习题:幂函数相关练习题及答案;4. 信息技术手段:多媒体投影、网络资源等。
新人教A版必修1《幂函数》教案

-强调幂函数的单调性、奇偶性、过定点等性质。
-结合具体幂函数,如f(x) = x^2、f(x) = x^3等,讲解其性质并举例说明。
-核心内容三:常见幂函数的图像与性质
-详细分析正比例函数、反比例函数、二次函数、三次函数的图像及其性质。
-引导学生观察图像,总结性质,并能运用性质解决相关问题。
2.教学难点
4.数学抽象:帮助学生从具体实例中抽象出幂函数的一般规律,培养学生的数学抽象思维。
三、教学难点与重点
1.教学重点
-核心内容一:幂函数的定义及其一般形式
-重点讲解幂函数的一般形式f(x) = x^a,强调a为常数的特点。
-通过实例展示,让学生理解不同a值对应的幂函数图形差异。
-核心内容二:幂函数的性质
-难点三:幂函数在实际问题中的应用
-学生可能不知道如何将幂函数应用于实际问题,如计算面积、体积等。
-教师应设计相关实际问题,引导学生运用幂函数知识解决问题,提高应用能力。
-难点四:幂函数性质的应用与拓展
-学生可能难以将幂函数性质应用于更广泛的数学问题。
-教师可通过举例,如数学竞赛题等,展示幂函数性质在更复杂问题中的应用,拓展学生思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂函数的基本概念。幂函数是形如f(x) = x^a的函数,其中a为常数。幂函数在数学中具有重要地位,广泛应用于实际问题中。
2023年高中数学幂函数教学教案(7篇)

2023高中数学幂函数教学教案(7篇)高中数学必修1《幂函数》教案篇一1、教学目标学问目标:(1)把握幂函数的形式特征,把握详细幂函数的图象和性质。
(2)能应用幂函数的图象和性质解决有关简洁问题。
力量目标:培育学生发觉问题,分析问题,解决问题的力量。
情感目标:(1)加深学生对讨论函数性质的根本方法和流程的阅历。
(2)渗透辨证唯物主义观点和方法论,培育学生运用详细问题详细分析的方法分析问题、解决问题的力量。
2、教学重点:从详细函数归纳熟悉幂函数的一些性质并简洁应用。
教学难点:引导学生概括出幂函数的性质。
3、教学方法和教学手段:探究发觉法和多媒体教学4、教学过程:问题情境问题1写出以下y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。
(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。
为了加深对定义的理解,请同学们判别以下函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来讨论幂函数的性质。
问题3幂函数具有哪些性质?用什么方法讨论这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起讨论了哪些性质呢?(学生争论,教师引导)(引发学生作图讨论函数性质的兴趣。
函数单调性的推断,既可以使用定义,也可以通过图象解决,直观,易理解。
)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。
依据你的学习经受,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡察。
将学生作图用实物投影仪演示,指出优点和错误之处。
教师利用几何画板演示,通过超级链接几何画板演示。
高中数学新人教版A版精品教案《幂函数》

幂函数
一、教材分析:
《幂函数》是普通高中课程标准实验教科书人教A 版数学必修一第二章第三单元的内容从本单元所在教材中的地位来看,它起到了承上启下的作用承上:在本章前两单元学习的指数函数和对数函数为本单元学习铺设了研究方法:例如“数形结合”、“从特殊到一般”、“类比”;同时,初
中学习的正比例函数x y =、反比例函数x
y 1=和二次函数2x y =也为本单元的学习提供了基础启
下:幂函数为学生在选修中学习导数做了铺垫
通过对本单元的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待已经接触的函数,进一步熟悉研究一个函数的方法因而本单元是对学生研究函数的方法和能力的综合提升
本单元内容安排1课时 二、教学目标:
1通过具体实例,了解幂函数的概念,体会建立一个函数模型的过程
2通过数形结合的研究方法,掌握五个具体幂函数:,,,3
2
x y x y x y ===2
1
x y =,1-=x y 的图象及性质
3经历研究五个具体幂函数的图象及性质的过程,掌握研究一般幂函数的图象及性质的方法,进一步渗透从特殊到一般的思想,培养学生综合归纳、类比的能力 三、教学重点:
1幂函数的概念
2五个幂函数的图象及性质 四、教学难点:
归纳五个幂函数的图象的共同特征,并由此得到对一般幂函数的图象及性质的研究方法 五、教学手段和方式:
本节课主要采用“思考、探究”,问题教学的方式,老师设置问题进行引导,学生自主学习、思考进行概念学习,合作交流、综合归纳进行思想方法的掌握意在充分体现的学生主体地位,教师的主导地位,让学生充分享受学习的兴趣
六、教学过程:
七、板书设计。
人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。
二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。
2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。
3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。
4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。
5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。
四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。
五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。
六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。
七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。
幂函数教案:高中数学必修的章节之一

幂函数教案:高中数学必修的章节之一在高中数学必修的课程中,幂函数是一道重要而又基础的数学知识,更是我们学习其他数学知识的基础。
因此,针对高中数学必修中的幂函数教案,我们需要作出详细的讲解和探究,同时需要结合一些实例和练习来帮助学生更好地理解和掌握这一知识,提高数学素养和解题能力。
一、教学目标1.理解幂函数的定义和性质,知道其图像特征并能用具体实例说明。
2.能变形解决简单的幂函数的运算。
3.能应用指数函数和对数函数的性质,解决幂函数与指数函数、对数函数的联立方程。
二、教学重点1.在数轴上绘制幂函数的图像并分析其特征。
2.掌握幂函数的运算规则,以及幂函数与指数函数、对数函数的联立方程解法。
三、教学难点1.理解并掌握幂函数的定义和性质,知道幂函数的图像特点。
2.掌握幂函数的运算规则,能解决幂函数的简单运算。
3.掌握幂函数和指数函数、对数函数联立方程的解法。
四、教学过程1.幂函数的定义和性质幂函数是形如y=x^a(a为实数)的函数,其中x>0(x=0时,a>0)。
幂函数的图像特征与指数函数相似,是利用对数函数的概念、运算,指数函数的知识,掌握的一个重要的数学工具。
幂函数的图像特征:当a>1时,幂函数y=x^a的图像上升逐渐加速,当a=1时为与x 轴正比例函数y=x,当0<a<1时,幂函数y=x^a的图像上升逐渐减缓,最后趋近于x轴。
当a<0时,幂函数y=x^a的图像下降,且在x轴右侧有垂直渐近线x=0,在x轴左侧有水平渐近线y=0。
2.幂函数的运算规则加减法运算:当幂函数底数相同时,可将其指数相加或相减。
即x^a+x^b=x^(a+b),x^a-x^b=x^(a-b)。
乘法运算:当幂函数底数相同时,可将其指数乘积。
即x^a*x^b=x^(a+b)。
幂函数的运算可以变形为指数函数和对数函数的运算,如x^a=y,可变形为a=logx(y)或者y=x^a,可变形为a=logy(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数(第一课时)
课 型:新授课 教学目标:
通过具体实例了解幂函数的图象和性质,体会幂函数的变化规律及蕴含其中的对称性并能进行简单的应用. 教学过程:
一、新课引入:
(1)边长为a 的正方形面积2
a S =,这里S 是a 的函数; (2)面积为S 的正方形边长2
1S a =,这里a 是S 的函数; (3)边长为a 的立方体体积3
a V =,这里V 是a 的函数;
(4)某人ts 内骑车行进了1km ,则他骑车的平均速度s km t v /1
-=,这里v 是t 的函数; (5)购买每本1元的练习本w 本,则需支付w p =元,这里p 是w 的函数. 观察上述五个函数,有什么共同特征?(指数定,底变) 二、讲授新课:。
幂函数的定义:一般地,我们把形如α
=x y 的函数称为幂函数(power function ),其中x 是自变量,α是常数。
【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)
结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从
它们的解析式看有如下区别:
对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 试一试:判断下列函数那些是幂函数
(1)x
2.0y = (2)5
1x y = (3)3x y -= (4)2
x y -=
我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质)
(二)几个常见幂函数的图象和性质
【探究二】观察函数1
2
1
3
2
x y ,x y ,x y ,x y ,x y -=====的图象,将你发现的结论写在下
表内。
【探究三】根据上表的内容并结合图象,试总结函数:2
13
2x y ,x y ,x y ,x y ====的共同性质。
(1) 函数2
13
2
x y ,x y ,x y ,x y ====的图象都过点)0,0(),1,1( (2) 函数2
13
2
x y ,x y ,x y ,x y ====在[)+∞,0上单调递增;
归纳:幂函数α
=x y 图象的基本特征是,当0>α是,图象过点)0,0(),1,1(,且在第一象限随x 的增大而上升,函数在区间[)+∞,0上是单调增函数。
请同学们模仿我们探究幂函数α
=x y 图象的基本特征0>α的情况探讨0<α时幂函数
α=x y 图象的基本特征。
归纳:0<α 时幂函数α
=x y 图象的基本特征:过点)1,1(,且在第一象限随x 的增大而下降,函数在区间),0(+∞上是单调减函数,且向右无限接近X 轴,向上无限接近Y 轴。
例1(P78例1)
.证明幂函数()[0,]f x =
+∞上是增函数
证:任取121,[0,),x x x ∈+∞且<2x 则
12()()f x f x -=
因12x x -<0
所以12()()f x f x <
,即()[0,]f x =+∞上是增函数.
例2. 比较大小:5
.1)1(+a 与5
.1a
;223
(2)a -+与23
2
-
;2
11
.1-
与2
19
.0-
.
三、巩固练习:
1、论函数3
2x y =的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.
2. 比较下列各题中幂值的大小:4
33.2与434.2;5631.0与5
635.0;2
3)2(-
与2
3)
3(-
.
幂函数性质的应用(第二课时)
课 型:新授课
教学目标:利用幂函数性质求解析式,证明,及实际应用。
教学过程:
例1、已知函数2
21
()(2)m
m f x m m x +-=+,m 为何值时,()f x 是:
(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数。
解:(1)若2
21
()(2)m
m f x m m x +-=+为正比例函数,
则2211120
m m m m m ⎧+-=⇒=⎨+≠⎩ (2)若2
21
()(2)m
m f x m m x +-=+为反比例函数,
则22
11120m m m m m ⎧+-=-⇒=-⎨+≠⎩
(3) 若2
21
()(2)m
m f x m m x +-=+为二次函数,
则221220
m m m m m ⎧+-=⇒=⎨+≠⎩
(4)若2
21
()(2)m
m f x m m x +-=+为幂函数,
则2
21,1m m m +=⇒=-
例2、已知函数2
23
()()m
m f x x m Z -++=∈为偶函数,且(3)(5)f f <,
(1)求m 的值,并
确定()f x 的解析式;
(2)若()log [()](0,1),a g x f x ax a a =->≠且是否存在实数a ,使()g x 在区间[2,3]上为增函数。
解:由
2
2
223
23
230
(3)5),3533()1()55
m
m m
m m m f f -++-++-++<⇒<⇒<=
2222
3
()5
3
2301.
2
,0 1.02331232
()1,(x y m m m m Z m m m m m m m f x m f x =∞∞∴-++>⇒-<<∈∴==-++==-++=∴=Q Q 在(-,+)上为减函数,
或当时,当时,而为偶函数,此时)=x (2)假设存在实数a ,使2
()log ()a g x x ax =-在区间[2,3]上为增函数,由
2420(2)(3)2, 1.
9302(),()1
2
a a
g g a a a
h x x ax h x x ->⎧⇒<<⎨->⎩=-=<与存在,得令则开口向上,对称轴
[2,3]x ∴∈当时,()h x 为增函数,又由()log ()a g x h x =在区间[2,3]上为增函数,得
1,1 2.a a >∴<<
例3、
若312(),(),f x x g x x x ==<<求证:
(1)12121
[()()](
);22
x x f x f x f ++>
(2)12121
[()()]();22
x x g x g x g ++<
证明:(1)
1212212121
[()()]()22..........
3
()()08
x x f x f x f x x x x ++-=-+>Q
∴12121
[()()]();22
x x f x f x f ++> (2)
22121221
{[()()]}[()]22
(1)
4
x x g x g x g ++-=-<
∴12121
[()()]();22
x x g x g x g ++< 例4、某工厂1968年的产值100万元增加到40年后2008年的500万元,如果每年年增长率相同,则每年年产值增长率是多少?
(lg 20.3,lg1.040.0175)==
解: 设每年年增长率为x ,根据题意,有40
40100(1)500,(1)5x x +=+=即
两边取自然对数,得40lg(1)lg5x +=
10
lg 20.3.lg5lg 1lg 20.72
=∴==-=Q lg50.7
lg(1)0.01754040
x ∴+=
== lg1.040.01750.044%x =∴==Q
答:每年的年增长率为4%。
练习:
1.指出函数2245
()44
x x f x x x ++=++
的单调区间,比较(),(2f f π--的大小。
增区间:(,2)-∞-,减区间(2,)-+∞;
()(2
f f π->-。