高一数学幂函数知识点

合集下载

高一数学知识点:幂函数知识点_知识点总结

高一数学知识点:幂函数知识点_知识点总结

高一数学知识点:幂函数知识点_知识点总结在高一数学的学习中,幂函数是一个重要的知识点。

它不仅在数学理论中有着关键的地位,也在解决实际问题中发挥着重要作用。

接下来,让我们一起深入了解幂函数的相关知识。

一、幂函数的定义一般地,形如\(y =x^α\)(\(α\)为常数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

这里需要注意的是,\(α\)可以是有理数,也可以是无理数。

例如,\(y = x^2\),\(y = x^{\frac{1}{2}}\),\(y = x^{ 1}\)等都是幂函数。

二、幂函数的图像幂函数的图像因其指数\(α\)的不同而具有不同的特征。

当\(α > 0\)时:1、\(α > 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越快;在\((∞, 0)\)上函数无定义。

其图像类似于“一撇”,经过点\((1, 1)\)和\((0, 0)\)。

2、\(0 <α < 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越慢;在\((∞,0)\)上函数无定义。

其图像类似于“上凸”的曲线,经过点\((1, 1)\)和\((0, 0)\)。

当\(α < 0\)时:函数\(y =x^α\)在\((0, +∞)\)上单调递减,且曲线向\(x\)轴、\(y\)轴无限接近,但永不相交。

在\((∞, 0)\)上函数无定义。

其图像类似于“下凸”的曲线,经过点\((1, 1)\)。

特别地,当\(α = 0\)时,函数\(y = x^0 = 1\)(\(x ≠0\)),是一条平行于\(x\)轴的直线(去掉点\((0, 1)\))。

三、幂函数的性质1、定义域幂函数的定义域与其指数\(α\)有关。

当\(α\)为正整数时,定义域为\(R\);当\(α\)为分数时,要考虑分母的奇偶性以及根号下式子的非负性来确定定义域。

2、值域幂函数的值域也与指数\(α\)有关。

高中幂函数知识点总结

高中幂函数知识点总结

引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。

本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。

概述:幂函数是指形如y=x^n的函数,其中n是常数。

幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。

在研究幂函数时,需要掌握其定义、性质和应用。

正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。

幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。

1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。

1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。

二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。

当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。

2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。

当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。

2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。

三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。

平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。

3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。

伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。

3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。

高一数学幂函数知识点归纳大全

高一数学幂函数知识点归纳大全

高一数学幂函数知识点归纳大全在高一数学学科中,幂函数是重要的一个知识点。

幂函数是指形如y = ax^n的函数,其中a和n是实数,且a≠0,n≠0。

一、幂函数的定义及性质幂函数的定义就是函数的定义,即y = ax^n,其中a称为幂函数的底数,n称为指数。

幂函数的性质有以下几点:1. 当n为正整数时,幂函数表示乘方运算,例如y = 2x^3表示x的3次方。

2. 当n为负整数时,幂函数表示倒数,例如y = 2x^-2表示x的倒数的平方。

3. 当n为分数时,幂函数表示根式,例如y = 2x^(1/2)表示x的平方根。

4. 当n为零时,幂函数表示常数函数,即y = a,其中a为常数。

二、幂函数图像特征1. 当a>0且n为正偶数时,幂函数的图像开口向上,且对称于y轴。

2. 当a>0且n为正奇数时,幂函数的图像开口向上,且不对称于y 轴。

3. 当a<0且n为正偶数时,幂函数的图像开口向下,且对称于y轴。

4. 当a<0且n为正奇数时,幂函数的图像开口向下,且不对称于y 轴。

三、幂函数的变换幂函数可以通过平移、伸缩、翻转等变换得到其他函数形式。

1. 平移:平移是指将函数的图像沿x轴或y轴方向上下左右移动。

例如,对于函数y = 2x^3,将x坐标减2,可以得到y = 2(x-2)^3,实现了向右平移2个单位。

2. 伸缩:伸缩是指将函数的图像沿x轴或y轴方向上下左右拉长或缩短。

例如,对于函数y = 2x^3,将x坐标扩大为原来的2倍,可以得到y = 2(2x)^3,实现了横向的伸缩。

3. 翻转:翻转是指将函数的图像沿x轴或y轴方向上下左右翻转。

例如,对于函数y = 2x^3,将函数的图像上下翻转,可以得到y = -2x^3,实现了关于x轴的翻转。

四、幂函数的应用1. 金融领域:在复利计算中,幂函数常被用于计算投资收益和贷款利息。

2. 自然科学领域:幂函数经常出现在自然界的现象中,如物体的自由落体运动中,下落距离与时间的关系可以用幂函数表示。

幂函数知识点高一必修一

幂函数知识点高一必修一

幂函数知识点高一必修一幂函数是高中数学中的一个重要概念,它在解决实际问题和理论推导中都有广泛应用。

在高一必修一的数学课程中,学生将首次接触到幂函数的概念和相关知识。

本文将从定义、性质、图像和应用等方面进行介绍,帮助学生更好地理解和掌握幂函数。

一、幂函数的定义幂函数是形如$f(x)=x^a$的函数,其中$x$是自变量,$a$是常数且$a$可以为有理数、整数或实数。

当$a$为有理数时,幂函数的定义域是实数集;当$a$为整数时,幂函数的定义域可以是正实数集、负实数集或者零;当$a$为实数时,幂函数的定义域可以是正实数集和零集。

二、幂函数的性质1. 定义域:幂函数的定义域取决于指数的取值范围,通常为实数集或者特定的数集。

2. 奇偶性:当指数$a$为整数且为偶数时,幂函数是偶函数;当指数$a$为整数且为奇数时,幂函数是奇函数;当指数$a$为实数且为非整数时,幂函数既不是奇函数也不是偶函数。

3. 单调性:当指数$a>0$时,幂函数是增函数;当指数$a<0$时,幂函数是减函数。

4. 对称轴:当指数$a$为整数且为偶数时,幂函数的对称轴为$y$轴;当指数$a$为整数且为奇数时,幂函数没有对称轴。

三、幂函数的图像根据幂函数的性质可以推断出其图像的一些特点。

1. 当指数$a>1$时,幂函数的图像在原点左侧逐渐趋近于$x$轴且斜率逐渐增大;在原点右侧逐渐上升但斜率趋于0。

2. 当指数$a=1$时,幂函数的图像为直线$y=x$。

3. 当指数$0<a<1$时,幂函数的图像在整个定义域上单调递减,并且在$x$轴上趋于无穷。

4. 当指数$a=0$时,幂函数的图像为常数函数$y=1$。

5. 当指数$a<0$时,幂函数的图像在整个定义域上单调递减,但在$x$轴右侧逐渐趋近于0。

综上所述,幂函数的图像呈现出不同的形态和趋势,具体取决于指数的取值范围。

四、幂函数的应用幂函数在实际问题中有广泛的应用,尤其在自然科学和工程技术领域。

高一数学人必修件第三章幂函数

高一数学人必修件第三章幂函数

分式型幂函数
要点一
函数形式
$y = x^a/b$ 或 $y = a/(x^b)$,其 中 $b neq 0$
要点二
图像特点
根据 $a$ 和 $b$ 的取值不同,图像 可能呈现出不同的形状和特点
要点三
性质
分式型幂函数的性质比较复杂,与 $a$ 和 $b$ 的取值密切相关。一般 来说,当 $b > 0$ 时,函数图像在 $x > 0$ 和 $x < 0$ 的区域内分别单 调递增或递减;当 $b < 0$ 时,函数 图像在 $x > 0$ 和 $x < 0$ 的区域内 分别单调递减或递增。此外,分式型 幂函数可能具有渐近线、拐点等特性 。

易错点二
混淆幂的运算性质。在运用幂的 运算性质时,需特别注意底数和 指数的变化规律,避免出现混淆

避免逐步推导求解。同时,多 做相关练习题,加深对知识点的
理解和记忆。
拓展延伸:多元幂函数初步了解
多元幂函数的定义
形如$z=x^ay^b$($a,b$为常数) 的函数称为二元幂函数。类似地,可 以定义三元及更多元的幂函数。
三次幂函数
函数形式
$y = ax^3$,其中 $a neq 0$
图像特点
一个关于原点对称的曲线
性质
比例系数 $a$ 决定了曲线的形状和走向,当 $a > 0$ 时,函数在整个定义域内单调递增;当 $a < 0$ 时 ,函数在整个定义域内单调递减。此外,三次幂函数具有拐点,即函数图像从凹到凸或从凸到凹的点。
指数型幂函数与对数的关系体现在:当且仅当a>1时,函数y=a^x在定 义域内单调增加;当0<a<1时,函数y=a^x在定义域内单调减少。

高一必修一幂函数的知识点

高一必修一幂函数的知识点

高一必修一幂函数的知识点高一必修一:幂函数的知识点高一数学课程中,幂函数是一个重要的学习内容。

幂函数是一种常见的函数形式,在生活和工作中有广泛的应用。

幂函数的研究是数学中的重要课题,掌握了幂函数的知识,对于理解数学的其他分支,如微积分等,具有重要的意义。

本文将重点介绍高一必修一中幂函数的知识点,帮助同学们更好地理解和应用幂函数。

一、幂函数的定义和性质幂函数是形如y = ax^n (a ≠ 0, n为整数)的函数,其中a称为底数,n称为指数。

幂函数的图象一般呈现出曲线的形式,其性质包括:1. 定义域和值域:当指数n为正整数时,定义域为全体实数集,值域为(0, +∞);当指数n为负整数时,定义域为非零实数集,值域为(0, +∞)与(-∞, 0)的并集,并具有一至多个零点;当指数n为零时,定义域为整个实数集,值域为{1}。

2. 奇偶性:当指数n为奇数时,幂函数关于y轴对称;当指数n为偶数时,幂函数关于原点对称。

3. 单调性:当指数n为正数时,幂函数在整个定义域上是递增的;当指数n为负数时,幂函数在定义域的两侧是递减的。

4. 极限性质:当x无限趋近于正无穷时,幂函数的值也趋近于正无穷;当x无限趋近于负无穷时,幂函数的值的符号取决于指数的奇偶性。

二、幂函数与图像的关系幂函数的图像是通过对幂函数的底数进行相同倍数的拉伸或压缩得到的。

具体来说,我们可以通过以下几个方面了解幂函数与图像的关系。

1. 底数a的变化对图像的影响:当底数a大于1时,幂函数的图像被压缩,曲线变得更陡峭;当底数a小于1时,幂函数的图像被拉伸,曲线变得更平缓。

2. 指数n的变化对图像的影响:当指数n为正数时,幂函数的图像在y轴上方增长,形成上升的曲线;当指数n为负数时,幂函数的图像在y轴下方增长,形成下降的曲线。

3. 圆形与直线的比较:幂函数的图像与圆的曲线相似,但在其特定区间内,幂函数的图像会出现与直线相切的情况,这时幂函数的曲线呈现出直线的性质。

高一数学幂知识点

高一数学幂知识点

高一数学幂知识点幂作为数学中的一个重要概念,在高一数学中占据着重要地位。

掌握好幂的定义、运算规则以及一些常见的性质和应用,对于理解和解决数学问题是至关重要的。

本文将为大家详细介绍高一数学中的幂知识点。

一、幂数的定义在数学中,幂是指将一个数乘以自身多次的运算。

其中,被乘的数称为底数,用字母a表示;乘积中相同的因数的个数称为指数,用字母n表示。

幂的表示方式为aⁿ。

例如,当a=2,n=3时,2ⁿ = 2³ = 2 × 2 × 2 = 8。

二、幂数的运算规则1. 幂的乘法规则:当两个幂的底数相同时,它们的指数相加。

即,aⁿ × aᵐ= aⁿ⁺ᵐ。

例如,2² × 2³ = 2⁵ = 2 × 2 × 2 × 2 × 2 = 32。

2. 幂的除法规则:当两个幂的底数相同时,将它们的指数相减。

即,aⁿ ÷ aᵐ= aⁿ⁻ᵐ。

例如,3⁵ ÷ 3² = 3³ = 3 × 3 × 3 = 27。

3. 幂的乘方规则:幂的乘方指的是将一个幂再次乘以指数。

即,(aⁿ)ᵐ= aⁿᵐ。

例如,(4²)³ = 4⁶ = 4 × 4 × 4 × 4 × 4 × 4 = 4096。

三、幂的性质1. 任何数的零次幂等于1:即,a⁰ = 1(其中a不等于0)。

例如,2⁰ = 1。

2. 任何非零数的负整数次幂等于其倒数的正整数次幂:即,a⁻ⁿ = 1 / (aⁿ)(其中a不等于0)。

例如,3⁻² = 1 / (3²) = 1 / 9。

3. 指数为1的幂等于底数本身:即,a¹ = a。

例如,5¹ = 5。

四、幂的应用幂的概念在数学中有着广泛的应用,尤其在代数、几何和物理等领域中经常被使用。

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学幂函数知识点
1.概念:y x α=(x 是自变量,α是常数)
注意:(1).只有形如y x α=(α为任意实数,x 为自变量)的函数才是幂函数,否则就不是; (2).判断是否为幂函数的依据:y x α=
①.指数为常数 ②. 底数为自变量 ③. 底数系数为1 如:()3,2,5,
y x y x y x α
αα===+等都不是幂函数.
2.幂函数的图象 按0,1,1,01,0ααααα==><<<五种类型分
3.幂函数y x α=在第一象限图象特征
(1).当1α>时,图象过(0,0),(1,1),下凸递增,如3y x = (2).当01α<<时,图象过(0,0),(1,1),上凸递增,如12
y x =
(3).当0α<时,图象过(1,1),下凸递减,且以两坐标轴为渐近线.如12
y x -= -
4.幂函数的性质
(1).所有的幂函数在()0,+∞上都有意义,图象都过(1,1). (2).如果0α>,则幂函数过原点,在()0,+∞上单调递增.
(3).如果0α<,图象在()0,+∞上单调递减,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限逼近y 轴;当x 趋向于+∞时,图象在x 轴上方无限逼近x 轴.
(4).①.当α为奇数时,幂函数为奇数 ②.当α为偶数时,幂函数为偶数 ③.当(),,p
p q p q N q
α+=
∈为互质,时
a. 若q 为奇数,则当p 为奇数时p q y x =为奇函数,当p 为偶数时p q
y x =为偶函数 b. `
c.
若q 为偶数,则p 必为奇数,此时p q
y x =为非奇非偶函数
(5).幂函数的定义域
①.当N α+∈时,定义域为R ②.当0α=时,定义域为{}|,0x x R x ∈≠ ③.当α为负整数时,定义域为{}|,0x x R x ∈≠ ④.当(),,1,,p
p q N q p q q
α+=
∈>且互质时 a. q 为偶数时,定义域为[)0,+∞ b. q 为奇数时,定义域为R ⑤.当()-,,1,,p
p q N q p q q
α+=∈>且互质时 a. q 为偶数,定义域为()0,+∞ b. q 为奇数,定义域为{}|,0x x R x ∈≠.。

相关文档
最新文档