安费诺(Amphenol) EDI-DELFOR

合集下载

安费诺Amphenol直连EDI解决方案 简化繁杂的业务逻辑

安费诺Amphenol直连EDI解决方案 简化繁杂的业务逻辑

[案例] 安费诺/Amphenol直连EDI解决方案,简化繁杂的业务逻辑项目概述美国安费诺集团(Amphenol Corporation)创立于1932年,是全球最大的连接器制造商之一,其高性能互联产品被广泛的应用于信息技术、数据通信、汽车及航空航天等各行业。

由于产品和方案的高可靠性,Amphenol 产品在全球电气行业颇负盛名,像我们熟知的贸泽电子Mouser、得捷电子Digi-Key 都是安费诺的一级授权分销商。

高性能的产品生产与采购离不开全球供应商&分销商的协同合作,繁多的产品目录复杂的业务逻辑使EDI电子数据交换系统上线需求迫在眉睫。

数据更快速,流程必须更加精简,这就是为什么在过去的几年里,企业以EDI电子方式交换数据变得越来越重要。

以电子方式传递数据确实有许多好处,例如,效率、准确和透明的信息和更少的错误。

Amphenol 要求供应商&分销商实施EDI直连对接,旨在降低传统手工录入数据的误差,代替邮件通知低效的文件传输方式,最大程度的加快数据信息流交换效率,确保数据实时准确传递。

2018年,知行软件协助台湾供应商实现了与安费诺荷兰分部-Amphenol ICC的EDI 直连对接,通过知行RSSBus EDI系统,供应商可直接收到Amphenol 订单,并在供应商内部ERP系统进行订单数据查看、订单确认,发出提前发货通知及电子发票等业务数据。

需求概览EDI连接传输协议:SFTP报文转换/Mapping报文标准:EDIFACT业务报文:实施方案:中间数据库/EXCEL方案方案概览如下为Amphenol 与供应商的EDI信息流与整体集成方案概览。

文件接收&解析如下为在知行RSSBus EDI系统中EDI文件接收&解析数据处理流程。

通过Amphenol SFTP端口接受到的EDIFACT ORDERS会被自动解析后插入中间数据库,等待ERP的提取后生成订单文件。

安费诺(禁止和限制物质要求)

安费诺(禁止和限制物质要求)
Mercury in other lamps not specifically mentioned above..其它上面没有特别提到的汞灯。
Mercury used as a cathode sputtering inhibition in DC plasma display with a content up to 30mg per display until 1 July 2010 2010年前直流等离子显示器中阴极溅射抑制剂中的汞,其含量不得超过30毫克/显示器
溴及其化合物
<900PPM
All Applications
全部适用
Cl+Br
氯+溴
溴(Br)+氯(Cl) <1,500ppm
All Applications
全部适用
Level C: Reportable SubstancesTable 3
等级C:若材料中使用时须申报表3
Restricted Substance
卤化物及产品会产生酸蒸气物质(Halogenates that produce acidic vapor with water)
100 PPM
All Applications全部适用
铁及其化合物(Iron and iron compounds)
100 PPM
All Applications全部适用
镁及其化合物(Magnesium and its compounds)
100 PPM
All Applications全部适用
胺,脂肪族类(Amines, aliphatic)
100 PPM
All Applications全部适用
苯胺盐(Aniline salts)

amphenol连接器,安费诺连接器产品选型汇总

amphenol连接器,安费诺连接器产品选型汇总

amphenol连接器,安费诺连接器产品选型amphenol连接器,安费诺连接器D 形连接器- 并口(238)D-Sub 连接器(11100)D-Sub,D 形连接器- 后壳,罩(231)D-Sub,D 形连接器- 外壳(221)D-Sub,D 形连接器- 触头(396)D-Sub,D 形连接器- 适配器(128)D-Sub,D 形连接器- 配件(147)D-Sub,D 形连接器- 配件-?顶丝(45)FFC,FPC(扁平柔性)连接器(3157)FFC,FPC(扁平柔性)连接器- 外壳(56)FFC,FPC(扁平柔性)连接器- 触头(23)USB,DVI,HDMI 连接器(450)USB,DVI,HDMI 连接器- 适配器(73)USB,DVI,HDMI 连接器- 配件(37)光伏(太阳能板)连接器(130)光伏(太阳能板)连接器- 触头(7)光伏(太阳能板)连接器- 配件(7)光纤连接器(5)光纤连接器- 适配器(2)光纤连接器- 配件(3)刀片式电源连接器(7)分路器,跳線(123)卡边缘连接器- 边缘板连接器(1053)同轴连接器(RF)(2909)同轴连接器(RF)- 端接器(81)同轴连接器(RF)- 触头(12)同轴连接器(RF)- 适配器(693)同轴连接器(RF)- 配件(74)固态照明连接器(23)固态照明连接器- 触头(8)固态照明连接器- 配件(1)圆形连接器(186896)圆形连接器- 后壳和电缆夹(1819)圆形连接器- 外壳(82226)圆形连接器- 触头(722)圆形连接器- 适配器(249)圆形连接器- 配件(1057)在系列适配器之间(25)套管- 配件(2)套管- 音频连接器(10)存储器连接器- PC 卡- 适配器(4)存储器连接器- PC 卡插槽(799)存储器连接器- 直列式模块插座(693)存储器连接器- 配件(102)接线座- Din 轨道,通道(475)接线座- 接头,插头和插口(18743)接线座- 配件(104)接线座- 配件- 标记条(38)接线座- 配件- 跳线(152)接线座- 隔板块(2742)接线板- 专用(78)接线板- 线至板(7669)接线板- 适配器(138)接线板- 面板安装(44)插接式连接器(723)插接式连接器- 配件(25)模块化连接器- 插头(5)模块化连接器- 插头外壳(27)模块化连接器- 插孔(6270)模块化连接器- 磁性插孔(17)模块化连接器- 适配器(209)模块化连接器- 配件(75)用于IC 的插座,晶体管(154)矩形- 板对板连接器- 针座,公引脚(195)矩形- 板对板连接器- 板垫片,堆叠器(2087)矩形- 板对板连接器- 配件(13)矩形- 板对板连接器- 针座,插座,母插口(2912) 矩形- 板对板连接器- 阵列,边缘型,夹层式(2630) 矩形连接器- 外壳(1137)矩形连接器- 弹簧式(8)矩形连接器- 板载,直接线对板(101)矩形连接器- 自由悬挂,面板安装(669)矩形连接器- 触头(440)矩形连接器- 配件(186)矩形连接器- 针座,公插针(27062)矩形连接器- 针座,插座,母插口(3243)端子- PC 引脚插座,插座连接器(8)端子- PC 引脚,单接线柱连接器(121)端子- 专用连接器(75)端子- 外壳,套(1)端子- 箔片连接器(4)端子- 螺纹连接器(4)端子- 配件(2)端子接线盒系统(591)背板连接器- Hard Metric,标准(2172)背板连接器- 专用(12492)背板连接器- 外壳(215)背板连接器- 触头(65)背板连接器- 配件(361)背板连接器- DIN 41612 (536)触点- 多用途(147)连接器,弹簧加载和压力(16)重载连接器- 外壳,盖罩,基底(1070)重载连接器- 插件,模块(240)重载连接器- 框架(39)重载连接器- 组件(57)重载连接器- 触头(142)重载连接器- 配件(140)amphenol 连接器,安费诺连接器热销型号:制造商零件编号制造商描述包装系列连接器样式L77SDE09S AmphenolCommercialProductsCONN D-SUB RCPT9POS STR SOLDER散装SD D-Sub10090769-P154ALF Amphenol FCI CONN D-SUB HDPLUG 15POS STR托盘10090769D-Sub,高密度DE09S064TLF Amphenol FCI CONN DSUBRCPT 9POSSTR SLDRCUP散装 D D-SubDE09P064TXLF Amphenol FCI CONN DSUBPLUG 9POSSTR SLDRCUP散装 D D-SubDA15P064TXLF Amphenol FCI CONN DSUBPLUG 15POSSTR SLDCUP散装 D D-Sub17EHD-015-P-AA-0-00 AmphenolCommercialProductsCONN D-SUB HDPLUG 15POS STR托盘17EHD D-Sub,高密度ICD15S13E6GV00LF Amphenol FCICONN DSUBHDRCPT 15POS R/A SLDR散装 ICD D-Sub ,高密度10090929-S154VLFAmphenol FCI CONN DSUB HDRCPT 15POS VERT SLD 托盘10090929D-Sub ,高密度D09P33E4GV00LF Amphenol FCICONND-SUB PLUG9POS R/A SOLDER托盘 Delta D D-SubD15S24A4GV00LF Amphenol FCICONN D-SUB RCPT15POS VERT SLDR托盘Delta D D-SubD09P24A4GV00LFAmphenol FCICONND-SUB PLUG9POS VERT SOLDER托盘 Delta D D-SubD09S24A4GV00LFAmphenol FCICONND-SUB RCPT9POS VERT SOLDER托盘 Delta D D-SubD25S24A4GV00LF Amphenol FCICONN D-SUB RCPT25POS VERT SLDR 托盘Delta D D-Sub17EHD-026-P-AA-0-00 AmphenolCommercialProductsCONND-SUB HD PLUG 26POS STR托盘 17EHD D-Sub ,高密度17EHD-044-P-AA-0-00 AmphenolCommercialProductsCONND-SUB HD PLUG 44POS STR托盘 17EHD D-Sub ,高密度17EBH-015-S-AM-0-10 AmphenolCommercialProductsCONN DSUB HD RCPT 15POS R/A托盘 17EBH D-Sub ,高密度SLDRDAP15P065TXLF Amphenol FCI CONN DSUB PLUG15POS STR SLD CUP托盘DP D-SubL77DE09S AmphenolCommercialProductsCONN DSUBRCPT 9POSSTR SLDRCUP托盘 D D-SubMDBE09PE860 AmphenolCommercialProductsCONND-SUB PLUG9POS VERTSOLDER托盘MDB D-SubG17S1510110EU AmphenolCommercialProductsCONN DSUB PLUG15POS STR SLD CUP托盘G17S D-SubL717SDE09P AmphenolCommercialProductsCONN DSUBPLUG 9POSSTR SLDRCUP托盘SD D-SubG17S0900110EU AmphenolCommercialProductsCONN DSUBRCPT 9POSSTR SLDRCUP托盘G17S D-SubLD09P33E4GV00LF Amphenol FCI DSUB R/ASTB 9 PIN LF散装LD D-SubL717SDB25P AmphenolCommercialProductsCONN DSUB PLUG25POS STR SLD CUP托盘SD D-SubG17S1500110EU AmphenolCommercialProductsCONN DSUBRCPT 15POSSTR SLDCUP托盘G17SD-Sub窗体顶端窗体底端SFW15R-2STE1LF Amphenol FCI CONN FFCFPC TOP带卷(TR)SFW-R FFC,FPC可替代的包装15POS1MM R/ASFW15R-2STE1LF Amphenol FCI CONN FFCFPC TOP15POS1MM R/A剪切带(CT)SFW-R FFC,FPC可替代的包装SFW15R-2STE1LF Amphenol FCI CONN FFCFPC TOP15POS1MM R/Aszcwdz-Reel?SFW-R FFC,FPC可替代的包装SFV4R-1STE1HLF Amphenol FCI CONN FFCBOTTOM4POS0.50MMR/A带卷(TR)SFV-R FFC,FPC可替代的包装SFV4R-1STE1HLF Amphenol FCI CONN FFCBOTTOM4POS0.50MMR/A剪切带(CT)SFV-R FFC,FPC可替代的包装SFV4R-1STE1HLF Amphenol FCI CONN FFCBOTTOM4POS0.50MMR/Aszcwdz-Reel?SFV-R FFC,FPC可替代的包装HFW4R-1STE1LF Amphenol FCI CONN FFCBOTTOM4POS1.00MMR/A带卷(TR)HFW-R FFC,FPC可替代的包装HFW4R-1STE1LF Amphenol FCI CONN FFCBOTTOM4POS1.00MMR/A剪切带(CT)HFW-R FFC,FPC可替代的包装HFW4R-1STE1LF Amphenol FCI szcwdz-ReelHFW-R FFC,FPCCONN FFC BOTTOM4POS1.00MMR/A 可替代的包装SFV10R-2STE1HLF Amphenol FCI CONN FFCTOP 10POS0.50MMR/A带卷(TR)SFV-R FFC,FPC可替代的包装SFV10R-2STE1HLF Amphenol FCI CONN FFCTOP 10POS0.50MMR/A剪切带(CT)SFV-R FFC,FPC可替代的包装SFV10R-2STE1HLF Amphenol FCI CONN FFCTOP 10POS0.50MMR/Aszcwdz-Reel?SFV-R FFC,FPC可替代的包装SFV5R-1STE1HLF Amphenol FCI CONN FFCBOTTOM5POS0.50MMR/A带卷(TR)SFV-R FFC,FPC可替代的包装SFV5R-1STE1HLF Amphenol FCI CONN FFCBOTTOM5POS0.50MMR/A剪切带(CT)SFV-R FFC,FPC可替代的包装SFV5R-1STE1HLF Amphenol FCI CONN FFCBOTTOM5POS0.50MMR/Aszcwdz-Reel?SFV-R FFC,FPC可替代的包装SFV16R-1STE1HLF Amphenol FCI CONN FFCBOTTOM16POS0.50MMR/A带卷(TR)SFV-R FFC,FPC可替代的包装SFV16R-1STE1HLF Amphenol FCI CONN FFCBOTTOM16POS0.50MMR/A剪切带(CT)SFV-R FFC,FPC可替代的包装SFV16R-1STE1HLF Amphenol FCI CONN FFCBOTTOM16POS0.50MMR/Aszcwdz-Reel?SFV-R FFC,FPC可替代的包装HFW10S-2STE1LF Amphenol FCI CONN FFCFPC VERT10POS1MM SMD带卷(TR)HFW FFC,FPC可替代的包装HFW10S-2STE1LF Amphenol FCI CONN FFCFPC VERT10POS1MM SMD剪切带(CT)HFW FFC,FPC可替代的包装HFW10S-2STE1LF Amphenol FCI CONN FFCFPC VERT10POS1MM SMDszcwdz-Reel?HFW FFC,FPC可替代的包装SFW4R-1STE1LF Amphenol FCI CONN FFCBOTTOM4POS1.00MMR/A带卷(TR)SFW-R FFC,FPC可替代的包装SFW4R-1STE1LF Amphenol FCI CONN FFCBOTTOM4POS1.00MMR/A剪切带(CT)SFW-R FFC,FPC可替代的包装SFW4R-1STE1LF Amphenol FCI CONN FFCBOTTOM4POS1.00MMszcwdz-Reel?SFW-R FFC,FPC可替代的包装R/ASFW4R-2STE1LFAmphenol FCI CONN FFCFPC TOP4POS1.00MMR/A带卷(TR)SFW-R FFC,FPC窗体顶端窗体底端可替代的包装10118192-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/A带卷(TR)- USB - 微B 型可替代的包装10118192-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/A剪切带(CT)- USB - 微B 型可替代的包装10118192-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/Aszcwdz-Reel?- USB - 微B 型可替代的包装10118193-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/A带卷(TR)- USB - 微B 型可替代的包装10118193-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/A剪切带(CT)- USB - 微B 型可替代的包装10118193-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/Aszcwdz-Reel?- USB - 微B 型可替代的包装10118194-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/A带卷(TR)- USB - 微B 型可替代的包装10118194-0001LF Amphenol FCI 剪切带(CT)- USB - 微B 型CONN USB MICRO B RECPT SMT R/A 可替代的包装10118194-0001LF Amphenol FCI CONN USBMICRO BRECPT SMTR/Aszcwdz-Reel?- USB - 微B 型可替代的包装10103594-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPE B带卷(TR)- USB - 微B 型可替代的包装10103594-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPE B剪切带(CT)- USB - 微B 型可替代的包装10103594-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPE Bszcwdz-Reel?- USB - 微B 型可替代的包装10103592-0001LF Amphenol FCI CONN RCPTREV MICROUSB TYPE B带卷(TR)- USB - 微B 型可替代的包装10103592-0001LF Amphenol FCI CONN RCPTREV MICROUSB TYPE B剪切带(CT)- USB - 微B 型可替代的包装10103592-0001LF Amphenol FCI CONN RCPTREV MICROUSB TYPE Bszcwdz-Reel?- USB - 微B 型可替代的包装10033526-N3212LF Amphenol FCI CONN MINIUSB RCPTRA TYPE BSMD带卷(TR)- USB - mini B可替代的包装10033526-N3212LF Amphenol FCI CONN MINIUSB RCPTRA TYPE BSMD剪切带(CT)- USB - mini B可替代的包装10033526-N3212LF Amphenol FCI CONN MINIUSB RCPTRA TYPE BSMDszcwdz-Reel?- USB - mini B可替代的包装10103593-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPE B带卷(TR)- USB - 微B 型可替代的包装10103593-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPE B剪切带(CT)- USB - 微B 型可替代的包装10103593-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPE Bszcwdz-Reel?- USB - 微B 型可替代的包装10104111-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPEAB带卷(TR)- USB - 微AB 型可替代的包装10104111-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPEAB剪切带(CT)- USB - 微AB 型可替代的包装10104111-0001LF Amphenol FCI CONN RCPTSTD MICROUSB TYPEABszcwdz-Reel?- USB - 微AB 型可替代的包装10104110-0001LF Amphenol FCI CONN RCPTSTD MICRO带卷(TR)-USB - 微B 型窗体顶端窗体底端可替代的包装USB TYPE BA-1JB Amphenol-RFDivisionCONN UMCJACK STR 50OHM SMD带卷(TR)AMC 超微型同轴可替代的包装A-1JB Amphenol-RFDivisionCONN UMCJACK STR 50OHM SMD剪切带(CT)AMC 超微型同轴可替代的包装A-1JB Amphenol-RFDivisionCONN UMCJACK STR 50OHM SMDszcwdz-Reel?AMC 超微型同轴可替代的包装31-320-RFX Amphenol-RFDivisionCONN BNC PLUGSTR 50 OHM CRIMP散装- BNC31-221-RFX Amphenol-RFDivisionCONN BNCJACK STR 50OHMSOLDER散装- BNC122108 Amphenol-RFDivisionCONN TNCPLUG STR50 OHMCRIMP散装- TNC112116 Amphenol-RFDivisionCONN BNC PLUGSTR 50 OHM CRIMP散装- BNC31-315-RFX Amphenol-RFDivisionCONN BNCPLUG STR50 OHMCRIMP散装- BNC031-5431-10RFX Amphenol-RF 散装- BNCDivision CONN BNCJACK R/A 50OHM PCB112538 Amphenol-RFDivisionCONN BNCJACK STR 50OHM PCB散装- BNC031-10-RFXG1 Amphenol-RFDivisionCONN BNCJACK STR 50OHMSOLDER散装- BNC112133 Amphenol-RFDivisionCONN BNCPLUG STR75 OHMCRIMP散装- BNC142138 Amphenol-RFDivisionCONN SMBJACK STR 50OHM PCB散装- SMB031-5329-52RFX Amphenol-RFDivisionCONN BNC JACKSTR 50 OHM PCB散装- BNCFA1-NZSJ-C01-0 Amphenol-RFDivisionCONNFAKRA JACKSTR 50OHMCRIMP托盘- SMB,FakraFA1-NCSJ-C01-0 Amphenol-RFDivisionCONNFAKRA JACKSTR 50OHMCRIMP托盘- SMB,FakraFA1-NCRP-PCB-8 Amphenol-RFDivisionCONNFAKRA PLUGR/A 50OHM PCB托盘- SMB,Fakra31-10-RFX Amphenol-RF 散- BNCDivision CONN BNCJACK STR 50OHMSOLDER装031-5329-72RFX Amphenol-RFDivisionCONN BNCJACK STR 75OHM PCB散装- BNC142138-75 Amphenol-RFDivisionCONN SMBJACK STR 75OHM PCB散装- SMB,迷你型901-9867-RFX Amphenol-RFDivisionCONN SMAPLUG STR50 OHMSOLDER散装- SMA31-236 Amphenol-RFDivisionCONN BNCJACK STR 50OHMSOLDER散装- BNC132101 Amphenol-RFDivisionCONN SMAPLUG STR50 OHMSOLDER散装- SMA132102 Amphenol-RFDivisionCONN SMAPLUG STR50 OHMSOLDER散装- SMA31-5640-1010 Amphenol-RFDivisionCONN BNCJACK R/A 50OHM PCB散装-BNC窗体顶端窗体底端。

安费诺 Amphenol EDI解决方案

安费诺 Amphenol EDI解决方案

[案例] 安费诺/Amphenol EDI解决方案安费诺集团成立于1932年,是目前世界上第二大连接器与传感器供应商,产品涵盖汽车、移动通讯设备、IT及数据通讯、移动通讯基站、宽带、军事防卫、商用飞机以及工业设备等各个领域。

安费诺汽车连接系统(常州)有限公司是安费诺集团在中国的全资子公司,隶属于安费诺汽车产品集团,成立于2004年,有1500余名员工,4万平方生产面积,2018年销售额突破11.5亿,公司具备强大的研发能力,拥有高水准实验室能力,采用世界上先进的生产、检测设备及加工工艺,贯彻精益生产的理念,生产各类小型汽车线束,新能源汽车高压线束及标准型连接器,常年生产的品号超过3000个,年产量超过1.2亿件,通过十多年的努力,已形成五大事业单元及八大产品群,涵盖安全气囊连接器及线束、汽车安全带线束、新能源汽车连接器及线束、汽车传感器用连接器及线束、汽车内外饰照明连接器及线束、汽车天窗线束、汽车变速箱线束、汽车信息及娱乐系统线束、汽车油压开关、标准型连接器以及其它各类汽车不同功能部位的小型线束。

所生产的产品无论市场占有率,技术含量及质量方面,在全国均处于强有力的领导地位。

2019年,知行软件助力安费诺汽车连接系统(常州)有限公司实现和海外供应商的EDI连接。

安费诺需求分析项目需求概览•传输协议:OFTP2 on Internet•报文标准:EDIFACT•实施方案:支持本地部署,云托管EDI接口•DELFOR:Delivery Schedule 物料需求计划(长期)•DESADV:Despatch Advice 发货通知安费诺EDI方案工作流工作流区分,接收和发送两个方向。

以下内容构成了流程的核心元素:发送方向:安费诺业务人员在LIP系统中填写交付计划,完成数据维护后,点击Send按钮,EDI会将交付计划生成EDI报文DELFOR,发送给海外供应商。

下图为LIP系统交付计划主界面,可在此界面新建交付计划,或查找已发出的交付计划。

TCS-Amphenol_tcs_designcon_2007_

TCS-Amphenol_tcs_designcon_2007_

Amphenol TCS Aptera, Crossbow, eHSD, GbX, HD Plus, HDM Plus, HDM, HD-Optyx, NeXLev, Ventura, 44 Simon Street VHDM, VHDM-HSD, XCede, and DesignLink are trademarks or registered trademarks Nashua, NH 03060 of Amphenol Corporation. All other products names are the marks of the 603.879.3000 respective owners.www. DesignCon 2007Advanced Design Techniques to Support Next Generation Backplane Links Beyond 10GbpsMarc Cartier, Amphenol TCSmarc.cartier@Jason Chan, Amphenol TCSjason.chan@Tom Cohen, Amphenol TCStom.cohen@Brian Kirk, Amphenol TCSbrian.kirk@AbstractCopper backplane links are typically designed to support multiple generations of upgradeable plug-in modules with successive increases in line speed. Choices around cost, density, and risk must be made to facilitate this upgrade path, while maintaining cost effectiveness and reliability for the immediate market requirements. Progress is being made on various specifications for Ethernet, Fibre Channel, and other protocols that are expected to exceed 10 Gbps. Consequently, system designers are evaluating channels that support 20+ Gbps. This paper investigates advanced design techniques including alternative plated-through-structures (PTH) for connector attachment, advanced shielding technologies, and novel approaches to mitigate mode conversion effects. Authors BiographyMarc Cartier is a signal integrity engineer at Amphenol TCS. Currently, he is working in New Product Development where he performs measurements, creates models, and simulates backplane interconnects. He received his BS in Electrical Engineering from the University of New Hampshire.Jason Chan is a signal integrity engineer at Amphenol TCS. His activities include connector development, correlation/analysis of backplane channel systems and models, and development of PCB launch structures. He received his MS degree in Electrical Engineering from the University of New Hampshire.Tom Cohen is currently a principal development engineer in the New Product Development group at Amphenol TCS. His current activities include the design and analysis of high-speed next generation products. During Tom’s 26 years of industry experience he has received over 30 interconnect patents and has authored numerous papers. Tom has a BS degree in Mechanical Engineering from the University of Pittsburgh.Brian Kirk is a signal integrity engineer at Amphenol TCS. He has previously worked for Digital Equipment Corporation, Compaq, and Hewlett Packard. His previous experiences include a variety of signal integrity tasks, module designs and FPGA designs for servers and routers. He is currently involved in model development, simulation and correlation for high-speed connectors and backplanes. He received his PHD in Electrical Engineering from the University of New Hampshire.IntroductionOriginal equipment manufactures (OEMs) are constantly trying to maximize the install base of chassis and backplanes by redesigning plug-in modules for existing systems with higher bandwidth silicon. As new systems are designed, they are expected to support an upgrade path of one to three generations. Initial data rates for newly deployed systems are commonly between 3.125 Gbps to 6.25 Gbps. Therefore, many current backplane designs are being evaluated from 10 Gbps through 25 Gbps to support the planned module upgrades.Designing systems to support multiple generations of upgrades does not supersede the immediate market requirements for cost effective and reliable designs that can be delivered on schedule. Reliance on mature technologies such as compliant or press-pin connectors enables system delivery in a timely fashion. However, design choices that are overly conservative may limit the future performance and product life of a system. It is imperative to minimize bandwidth limitations in the chassis and infrastructure that is deployed in the field; these limitations must not burden plug-in modules, which will be replaced with unproven technology. Though current midplane architectures can offer potential performance advantages [1,2], this paper focuses on traditional backplane architectures,The performance criteria for higher data rate links, 10 Gbps and above, are developed in the following section. The IEEE 802.3ap TM Backplane Ethernet specification is used as a baseline and is extrapolated to higher data rates. These performance benchmarks are used to develop the interconnect model that is the basis for the proposed implementations. There are three major elements of the performance criteria: insertion loss, insertion loss deviation (linearity), and the insertion loss to crosstalk ratio (ICR).This paper investigates advanced design techniques to address existing barriers to meeting the proposed design criteria for data rates above 10 Gbps. Alternative plated-through-hole (PTH) structures for connector attachment are proposed and investigated to address impedance issues in the footprint for press-pin connectors. These impedance issues result in highly non-linear insertion losses that manifest itself in the form of excessive insertion loss deviations. Secondly, innovative crosstalk mitigation and advanced shielding technologies are used to significantly improve the high frequency noise problems that limit many existing interconnect systems. Finally, the mitigation of mode conversion is investigated to demonstrate the most effective methods of handling skew within the interconnect, specifically skew introduced from backplane connectors.The interconnect system is designed to minimize performance barriers, especially in the backplane, as it is typically part of the deployed infrastructure. Existing tooling and manufacturing techniques are also strongly considered to minimize the impact on the initial shipping systems that might not rely on the advanced material or manufacturing techniques. The different elements are used to design a robust, reliable, and cost-effective backplane system that supports 20 Gbps.Performance CriteriaThere are significant technical challenges when evaluating links for silicon devices that currently do not exist, particularly above 5 Gbps. The foremost problem is the signal at the receiver is expected to have a closed eye. The eye is constructed at the receiver using a variety of signal processing techniques, including Decision Feedback Equalization (DFE) and Feed-Forward Equalization (FFE). Therefore, traditional time domain analysis of evaluating the eye height and width received cannot be performed without an exact understanding of the signal conditioning expected in these future devices.To overcome the difficulty of developing a specification for an interconnect with a closed eye, the IEEE 802.3ap TM 10 Gbps Backplane Ethernet working group has developed a set of frequency domain masks. These masks allow system designers to develop links without specific knowledge of the exact silicon to be used in the implementation, but with enough knowledge to design interconnects that will be compliant to future interconnect technologies. There are currently very few if any copper based backplane systems being shipped with 10 Gbps signaling rates on any single differential pair. However, many systems are currently being designed to operate at 10 Gbps when the silicon becomes available.There is also work on the 100 Gbps Ethernet specification, which is expected to support 20 Gbps to 25 Gbps on each differential pair. This committee is still in the earliest stages and no specification is currentlyavailable. Without an available specification for data rates above 10 Gbps, the authors have extrapolated the frequency domain masks proposed by the IEEE 802.3ap TM working group to higher data rates. These masks are also being verified with multiple silicon partners.These masks cover three major components of the interconnect performance: the insertion loss, the insertion loss deviation, and the insertion loss to crosstalk ratio. The insertion loss mask has two different categories: Hi Confidence and Low Confidence. This paper uses the more stringent Hi Confidence portion of the mask for all performance criteria development. The insertion loss mask for 10 Gbps links is a segmented piecewise linear curve. The low frequency segment extends from 0 GHz to 6 GHz and has approximately –25 dB of loss at 5 GHz. The insertion loss then degrades at a much higher rate above 6 GHz, as described by the other linear segment. The 20 Gbps mask is designed to have twice the bandwidth of the 10 Gbps mask, therefore all attenuation limits are set to twice the 10 Gbps frequency limit. The 10 Gbps and 20 Gbps masks are compared in Figure 1.Board loss and plated-through-hole (PTH) effects dominate the insertion loss. This material has been extensively covered over the past few years [3,4]. Therefore, this paper will focus more on the insertion loss deviation and design techniques to control it. The insertion loss for a typical link is shown in Figure 2 for reference. The link consists of 4 inches of the trace on two daughtercards and 20 inches of trace on the backplane. All board materials use a dielectric constant of 3.8 and the loss tangent of 0.014. The PTHs are counterbored, or backdrilled, to maintain a stub of 25 mils. The exact footprint details are covered in the section of plated-through-holes. This link example demonstrates that it is possible to meet the desired mask for a realistic backplane interconnect length of 28 inches without exotic board materials.Figure 1 - Insertion Loss MaskFigure 2 - Insertion Loss of a Typical LinkFigure 3 - Insertion Loss Deviation SpecificationThe second element of the specification constrains the amount of insertion loss deviation. To determine the insertion loss deviation for 10 Gbps, the raw insertion loss is fit with a linear least squares algorithm from 1 GHz to 6 GHz. The deviation is the difference between the least squares fit and the raw insertion loss. For a 10 Gbps link, IEEE 802.3ap TM has defined the acceptable range of insertion loss deviation according to the envelope shown in Figure 3. For a 20 Gbps link, the authors have extended the range of insertion loss deviation from 6 GHz to 12 GHz. The 10 Gbps specification allows plus or minus 1 dB of deviation at 1 GHz and extends to a maximum of plus or minus 4 dB of deviation at 6 GHz. The authors have maintained the maximum insertion loss deviation at plus or minus 4 dB for a 20 Gbps link, but the effective bandwidth is doubled from 6 GHz to 12 GHz.Controlling the insertion loss deviation is very important for links with short backplane etch. Press-pinconnectors traditionally have poor impedance within the daughtercard and backplane footprints where both reflect energy. With long traces, the reflected energy is dampened between the impedance mismatches. However, the energy is not sufficiently dampened in short traces and is therefore reflected back to the receiver off subsequent impedance mismatches. Depending on the magnitude and the timing of the reflections, silicon devices can have difficulty compensating for these reflections due to the formation of partial standing waves within the interconnect. These reflections and their effect on the linearity of the insertion loss can be a significant performance limitation. Issues of insertion loss deviation are specifically covered in the section of PTH effects.Figure 4 - Insertion Loss to Crosstalk RatioThe final element of the performance criteria is the insertion loss to crosstalk ratio, also traditionally known as signal to noise ratio in communication systems. Using a ratio instead of an absolute number for the acceptable noise limit allows the noise to scale with the amount of insertion loss. The amount of noise is calculated using the following power summation equation.The local aggressors determine the Far-End Crosstalk (FEXT) and Near-End Crosstalk (NEXT) terms in the summation. If an adjacent line has a transmitter on the near-end side of the victim line’s receiver, the NEXT crosstalk term is used in the power summation. Conversely, the FEXT crosstalk terms are used when receivers are ⎟⎠⎞⎜⎝⎛+⋅=∑=N n n n total NEXT FEXT XTLK 12210log 10adjacently coupled. The ratio is the logarithmic difference between the insertion loss (in dB) and the total crosstalk (in dB) defined by the above equation. The crosstalk section of this paper shows that this is a more effective way of quantifying noise effects over some traditional time domain approaches.Plated-Through-Hole EffectsParasitic effects of PTHs can severely degrade link performance. Although counterboring successfully bypasses one of the primary effects - via stub resonances, PTHs for press-pin connectors are known to be excessively reflective at high frequencies. It is assumed that there must be a migration towards surface mount (SMT) attachment technology to support data rates beyond 10 Gbps. The aspect ratio of SMT holes are highly constrained by the board thickness. Additionally, this particular attachment methodology has significant technical obstacles for thick backplane applications. Consequently, SMT in thicker backplanes may not provide an optimal solution. This section shows the trade-offs between the electrical and mechanical features of press-pin connector technology versus SMT. It also evaluates the use of dual-diameter PTHs as a method to approach the electrical performance level of SMT without compromising mechanical integrity.It is known that PTHs for standard press-pin backplane connectors are inherently capacitive. Further compounding this problem is the fact that this parasitic phenomenon is frequency dependent, or dispersive. Consequently, this dispersive parasitic manifests itself in the form of increasing differential return loss with increasing frequency. At data rates below 3.125 Gbps, i.e. fundamental frequencies below ~ 1.6 GHz, the differential return losses of traditional press-pin PTHs are sufficiently low thereby minimizing signal reflections. Time domain measurements of such traditional systems, with slow rise times to support these low data rates, demonstrate that PTH impedances are fairly matched with connector and board trace impedances. Backplane designers need only be aware of the degrading effects of PTH stubs as they can significantly increase return losses due to the stub resonance phenomenon. As it was the first major technical obstacle, it was later shown that PTH stub resonances can be circumvented with the implementation of counterboring techniques. The reduction of PTH stub lengths effectively shifts the resonance frequency up in the frequency spectrum thereby maximizing throughput at low data rates [3].Backplane link designers will have to confront with additional technical obstacles for data rates beyond 10 Gbps. Although counterboring extended the viability of PTH technology by shifting resonance frequencies well beyond the passband of interest, the technique itself does not address the increasingly reflective properties of standard press-pin PTHs at higher frequencies. This degrading effect at even higher data rates causes severe reflections at press-pin connector PTHs, thereby accentuating the nonlinearity of backplane links. This phenomenon manifests itself in the form of severe insertion loss combing in the frequency spectrum. Backplane links with highly nonlinear throughput around the neighborhood of the fundamental frequency may be problematic for silicon devices. Thus, system designers are faced with the possibility of either designing a non-functional system or forced to utilize costly silicon devices with sufficient equalization to compensate for channel nonlinearity (provided that such devices are going to be available in the future). However, system designers can mitigate these nonlinearities by implementing improved, cost-effective alternative PTH designs in the interconnect while improving the likelihood that future devices will support such a backplane channel.Backplane Plated-Through-HolesThe current preference of most OEM suppliers is to use press-pin connectors. Traditional compliant pin technology is known to be a mechanically robust solution as it offers highly reliable electrical connections with both backplane and daughtercard PTHs. However, the PTHs that support standard compliant press-pin contacts in thick backplanes are highly reflective at higher frequencies.Consider a modeling example, shown in Figure 5a, of a traditional press-pin PTH in a 250 mil thick PCB representing a thick backplane. Note that the ground planes are hidden in figure 5 for the sake of clarity. The drill diameter used for the PTHs in this model is 22 mils, a standard size for a number of current press-pin connectors. It is assumed that mid-grade FR4 type dielectrics with lower loss and lower dielectric constant are used for backplanes supporting data rates greater than 10 Gbps. The dielectric in all models has a dielectric constant of 3.8 and a loss tangent of 0.014. The associated return loss for this standard press-pin model is shown in Figure 6. Observe in Figure 6 that the return loss for the “Standard PTH Technology: 22 mil Diameter” solution is acceptably low enough for low data rate operations. Due to the inherently capacitive nature of standard press-pin PTHs, theybecome increasingly reflective at higher frequencies. Subsequently, the migration to higher data rates with standard press-pin PTHs becomes less attractive as the elevated reflections increase channel nonlinearity.The PTH capacitance can be decreased by decreasing the drill diameter. This subsequently increases the inductance of the PTH thereby leading to improved return losses with drill diameters of around 12 mils. It is known that this optimization scenario can be achieved by using SMT attachment interfaces on thin daughtercards. Most daughtercard thicknesses are typically 125 mils or less; current board processing technologies allow for 12 mil drill diameters as the aspect ratio is approximately 10:1. Reverting back to our modeling example, suppose that the standard press-pin is migrated to an SMT connector attachment interface as shown in Figure 5b. The dielectric properties and the thickness are kept the same while the drill diameter is decreased from 22 mils to 18 mils. Refer back to Figure 6 and observe the “SMT: 18 mil diameter” return loss where the return loss improvement is approximately 4 dB at 5 GHz. Note that the aspect ratio for the 18 mil drill diameter is approximately 14:1. This aspect ratio is essentially the limit of conventional backplane processing techniques; larger diameters are required to meet more common aspect ratio requirements. Consequently, this further degrades the return loss performance to the point where it is only marginally improved over standard press-pin PTHs. Further compounding the mechanical challenge is the warping of thick backplanes as failed co-planarity of backplane surfaces with SMT attachment interfaces lead to contact reliability issues. The aforementioned issues suggest that the compounding mechanical difficulties are not worth the illustrated improvements in electrical performance.A balanced solution can be achieved by combining the mechanical qualities of press-pin connectors and the electrical qualities of optimized SMT PTHs. This hybrid solution is a dual-diameter PTH implementation, shown in Figure 5c, where it capitalizes on the availability of newer compliant pins that are smaller than conventional compliant pins. The larger diameter barrels, shown in Figure 5c, are 22 mil diameter holes that support the smaller compliant pins where the barrel depth is approximately 60 mils. Additionally, the small compliant depth minimizes the overall PTH capacitance. The remaining narrow diameter barrel, 190 mils deep, has a 14 mil drill diameter where the aspect ratio is 14:1. Note that the reduced depth of the narrow barrel alleviates the aspect ratio constraint, thereby permitting PTH capacitance reduction by using even smaller hole diameters. The associated return loss for the dual-diameter PTH is shown in Figure 6, designated as “Dual Diameter: 21.7 / 14 mil diameters”, where it yields considerable performance improvement over both the SMT and Standard PTH cases.Daughtercard Plated-Through-HolesStandard daughtercard PTHs exhibit similar return loss problems as they are highly reflective at higher frequencies. Consider a daughtercard modeling example, shown in Figure 7a, of a traditional press-pin PTH in a 100 mil thick daughtercard PCB. The drill diameter used for the PTHs in this model is 22 mils, a standard hole size for a number of current press-pin connectors. It is assumed that mid-grade FR4 type dielectrics with lower loss and lower dielectric constant are used for data rates greater than 10 Gbps. The dielectric properties used in the daughtercard analysis are identical to those used in the backplane PTH section. The associated return loss for this standard press-fit model, designated as “Standard PTH Technology: 22 mil Diameter”, is shown in Figure 8. As with standard backplane PTHs, standard daughtercard PTHs are also inherently capacitive. They become increasingly reflective at higher frequencies, thus making the migration to higher data rates daughtercards with standard press-fit PTHs less attractive.The daughtercard PTH capacitance can be decreased by reducing the drill diameter. This subsequently increases the inductance of the PTH thereby leading to improved return losses with drill diameters of around 12 mils. Reverting back to our modeling example, suppose that we migrate from standard press-pin to an SMT connector attachment interface, shown in Figure 7b. The dielectric properties and the thickness are kept the same while the drill diameter is decreased from 22 mils to 12 mils. Observe in Figure 8 the “Optimized SMT: 12 mil diameter” return loss as the improvement over standard press-fit PTH is approximately 12 dB at 5 GHz.As the typical daughtercard thickness is 125 mils or less, current board processing technologies permit small drill diameters as the aspect ratio requirements are not as stringent. Daughtercard SMT attachment interfaces are preferably suitable for this scenario as illustrated in the previous example. Unlike the backplane mechanical issues cited in the previous section, there are very few technical hurdles to overcome for the daughtercard side as current process techniques exist to support SMT daughtercard components.(a) (b) (c) Figure 5 - 250 mil thick backplane with (a) standard PTHs (b) SMT attachment and 18 milPTHs (c) dual diameter PTHsFigure 6 - Return Loss of backplane models(a)(b)Figure 7 -100 mil thick daughtercard with (a) Standard PTHs (b) SMT attachment and 12mil PTHsFigure 8 - Return loss of Daughtercard modelsLinearized Link SolutionIn order for current OEM install-base stations to migrate to data rates beyond 10 Gbps while avoiding the nonlinearity issues present in standard press-fit PTHs, a different solution is required. The two previous sections above showed an optimized backplane link solution where PTH return losses at higher frequencies can be suppressed through the implementation of dual-diameter holes in the backplane and SMT holes in the daughtercard. Subsequently, a different connector solution with mixed attachment technologies is required to facilitate the proposed hybrid PTH solution. This connector would require new “mini-compliant” pin technology for the backplane attachment to support optimized dual-diameter PTHs and SMT leads for the daughtercard attachment for optimized SMT PTHs. The advantage of such a hybrid technology is that it supports current board processing techniques, thereby offering OEM’s a seamless upgrade path to higher data rates.To illustrate the aforementioned benefits, consider the following modeling example. Let us consider a traditional copper backplane channel with daughtercards on either end. There is 2 inches of etch in each daughtercard and 2 inches of etch in the backplane. Additionally, mid-grade FR4 materials (Dk = 3.8 and Df =0.014) are assumed in all etch and footprints. First consider the case where connectors with standard press-pin pins are used in this modeling example. The insertion loss of this link, labeled “Standard PTH Technology”, is shown in Figure 9. The impedance of the standard PTHs employed in the footprints are poorly matched to the traces and connectors. Furthermore, the short etch lengths with low loss dielectrics are insufficient to attenuate the reflected signal. This translates to significant insertion loss combing as illustrated in the “Standard PTH Technology” insertion loss curve in Figure 9.The insertion loss deviation of the standard PTH channel is shown in Figure 10, where it is considered marginal when compared against the 10 Gbps mask. However, the standard PTH channel fails when tested against the more stringent 20 Gbps mask as shown in Figure 11. Though this failure is not absolute, it suggests that future silicon devices beyond 10 Gbps are less likely to be capable of compensating for such nonlinearities. This illustrates the need for improved attachment technologies that offer improved impedance matching. Now consider the scenario where the standard PTH footprints in our example model are replaced with optimized SMT footprints in the daughtercards and optimized dual-diameter footprints in the backplane. The insertion loss of such a channel is shown in Figure 9, labeled “Optimized Hybrid PTH Technology”. This improved channel is significantly more linear with minimal insertion loss combing, thus indicating the improved impedance matching throughout the interconnect. The linearity is also evident as there is minimal insertion loss deviation as shown in Figures 10 and 11. In particular, Figure 11 shows that this optimized channel example is now compliant with the 20 Gbps mask thereby suggesting that future silicon packages are less likely to have difficulty with signal recovery in the optimized hybrid attachment channel.Figure 9 - Insertion losses of backplane link exampleFigure 10 - Insertion loss deviation of backplane link examples vs 10 Gbps insertion lossdeviation maskFigure 11 - Insertion loss deviation of backplane link examples vs 20 Gbps insertion lossdeviation maskCrosstalkMultiline crosstalk is one of the most limiting factors in link performance. It has traditionally been specified and simulated using time domain methods. Unfortunately, these time domain methods can yield deceptive results. Time domain simulations with pseudorandom bit streams that are long enough to properly characterize the link are severely limited by the simulation time. When crosstalk and coupling terms are included in these simulations, the runtimes can increase exponentially. It is almost impossible to run enough bit stream combinations to excite the worst-case crosstalk and intersymbol interference (ISI) effects. To solve these problems, many design engineers and SERDES vendors now use frequency domain and statistical methods to characterize links with very high bandwidth and low bit-error-rate (BER) requirements.Traditional time domain measurement techniques can also lead to deceptive results about the actual noise characteristics within the link. The most common time domain measurement technique is the step response stimulus method. The rise-time of the step response is varied where it can be applied to different interconnect technologies. This method has been used for many years and many engineers are comfortable with this approach. Unfortunately, there are two major issues with this approach.First, when these time domain methods were initially derived the rise-time was a small portion of the overall bit time as the crosstalk waveform damped out before the next switching edge or bit time. However, as shown in Figure 12a below, it is apparent that the initial crosstalk pulse is already wider than the response of a single bit time at 10 Gbps. Consequently, the crosstalk will accumulate as more bits are switched. In fact, the problem is more dramatic than it initially appears. The blue curve in Figure 12b represents a typical backplane connector with shields between signal pairs. The crosstalk in many current connector designs does not dampen until 50 or 100 bit-times after the initial rising edge.。

深圳安费诺电子科技有限公司--易科

深圳安费诺电子科技有限公司--易科

深圳安费诺电子科技有限公司公司及项目背景安费诺(Amp henol )创立于1932 年,1994 年在美国纽约证券交易所上市。

1984 年进入中国,全球现有员工12000 余人。

2003 年公司的销售额达到了14 亿美元,为全球四大连接器制造商之一。

安费诺主要为各行业提供连接解决方案并提供互连产品。

包括:航空及军用、汽车工业等各工业领域的连接解决方案。

安费诺具有全面的产品线,成千上万种连接器产品应用于通信及信息处理领域(包括有线电视、移动通信、数据交换、信息处理系)。

安费诺在全球实施本地化战略,共在全球设立了60 多间工厂及100 多个销售办事处,直接为各大洲的客户提供产品和实施本地化服务深圳安费诺成立于1994 年,拥有超过1000 名员工,主要负责生产电信设备和存储设备用的低频通信连接器,是安费诺在全球范围内的主要生产基地之一,对于其全球策略有着至关重要的作用。

作为各个电子产品中必不可少的元件——连接器拥有非常广阔的市场。

其命运并不简单的拘泥于某一个领域,而是和大部分电子行业紧密结合。

因此,在“全球采购”的市场背景下,将生产和销售以及其他部门分开,并且最优化分配资源将是该行业面临的主要问题。

同时产生的问题就是如何将整个集团中的各个部门顺畅的串起来,组合成一个完整团体,降低其中各环节之间传递信息所需的成本。

在这种情况下,安费诺电子急欲借助先进管理工具,进一步优化企业资源,解决它面临的问题。

ERP 符合了这个要求。

安费诺和Exact (易科)的完美结合2000 年,深圳安费诺打算正式进行企业改革,使用ERP 管理软件,并且对理想中的ERP 软件提出了需求:直接针对生产型企业,注重生产管理和物料管理。

能够完全应对全球化采购的大环境,适应全球化管理,支持多币种交易管理。

改善企业人员结构,信息传递透明化。

提高财务管理效率,避免成为业务瓶颈。

满足行业特殊性要求,能够做客户化处理。

良好的售后服务体系。

深圳安费诺在此之前使用的是Scala 的管理软件。

致客户一封信格式500字以上5篇

致客户一封信格式500字以上5篇尊敬的顾客您好,祝在新的一年里,事业蒸蒸日上,家庭幸福,马到成功……小编带你了解更多相关内容,接下来要给大家提供的是:致客户一封信格式,希望你认真看完,会对你有帮助的!致客户一封信格式1致尊敬的客户:美国All Sensors公司很高兴的宣布:我们已被安费诺集团(Amphenol Corporation)收购。

我们对这一事件感到非常兴奋。

我们尊敬的客户与All Sensors公司的日常业务不会发生变化。

我们将一如既往地开展业务,您的专属销售、客服和工程联络人员将继续工作,以满足您对压力传感器的需要。

安费诺集团是全球领先的传感器技术驱动型公司,此处收购将提供更多的机会,通过协同提供更好的解决方案,并且可通过实现更大的产品组合来满足您对压力传感器的需求。

All Sensors公司将继续推动新产品开发,类似于最近几个月推出的许多新产品和更复杂的数字产品。

所有这些低量程和高精度传感解决方案继续保持了行业遥遥领先。

如需更多产品细节和新产品信息,请随时与当地的区域销售人员联系。

谢谢致客户一封信格式2尊敬的客户:您好!首先怀着感恩的心让你相信我们,并购买本公司的产品,真诚感谢您对伟迪生公司的合作和支持!感应加热设备作为现代企业单位的变革品,越来越受到企业家们的认可和使用。

我们很荣幸能够成为您购买本公司系列产品并有机会为您提供服务。

为了感恩,为了互利,公司拟如下让利:在你购买本公司设备(高频机、中频机系列)出厂价第一台后,第二台立减300元、第三台立减400元、第四台立减500元、第五台立减600元、第六台立减700元、第七台立减800元。

老客户介绍新客户也如此类推;另外奖励老客户每台200元的推广费。

再次感谢你对伟迪生公司的信用和支持!只要您对公司系列产品的质量、服务提出要求和建议就能给我们带来鼓舞与启迪!公司承“细致无忧”的售后服务理念,建立了完善的用户电子信息档案,通过每一件产品独有的身份识别码,定期跟踪检测,终身保养;公司还培养造就了一支高素质的专业服务队伍,负责咨询、上门安装、维修、等全方位服务。

安费诺光纤技术(深圳)有限公司介绍企业发展分析报告

Enterprise Development专业品质权威Analysis Report企业发展分析报告安费诺光纤技术(深圳)有限公司免责声明:本报告通过对该企业公开数据进行分析生成,并不完全代表我方对该企业的意见,如有错误请及时联系;本报告出于对企业发展研究目的产生,仅供参考,在任何情况下,使用本报告所引起的一切后果,我方不承担任何责任:本报告不得用于一切商业用途,如需引用或合作,请与我方联系:安费诺光纤技术(深圳)有限公司1企业发展分析结果1.1 企业发展指数得分企业发展指数得分安费诺光纤技术(深圳)有限公司综合得分说明:企业发展指数根据企业规模、企业创新、企业风险、企业活力四个维度对企业发展情况进行评价。

该企业的综合评价得分需要您得到该公司授权后,我们将协助您分析给出。

1.2 企业画像类别内容行业计算机、通信和其他电子设备制造业-其他电子设备制造资质一般纳税人产品服务是:研究、设计、开发、生产经营光纤连接器1.3 发展历程2工商2.1工商信息2.2工商变更2.3股东结构2.4主要人员2.5分支机构2.6对外投资2.7企业年报2.8股权出质2.9动产抵押2.10司法协助2.11清算2.12注销3投融资3.1融资历史3.2投资事件3.3核心团队3.4企业业务4企业信用4.1企业信用4.2行政许可-工商局4.3行政处罚-信用中国4.5税务评级4.6税务处罚4.7经营异常4.8经营异常-工商局4.9采购不良行为4.10产品抽查4.12欠税公告4.13环保处罚4.14被执行人5司法文书5.1法律诉讼(当事人)5.2法律诉讼(相关人)5.3开庭公告5.4被执行人5.5法院公告5.6破产暂无破产数据6企业资质6.1资质许可6.2人员资质6.3产品许可6.4特殊许可7知识产权7.1商标7.2专利7.3软件著作权7.4作品著作权7.5网站备案7.6应用APP7.7微信公众号8招标中标8.1政府招标8.2政府中标8.3央企招标8.4央企中标9标准9.1国家标准9.2行业标准9.3团体标准9.4地方标准10成果奖励10.1国家奖励10.2省部奖励10.3社会奖励10.4科技成果11 土地11.1大块土地出让11.2出让公告11.3土地抵押11.4地块公示11.5大企业购地11.6土地出租11.7土地结果11.8土地转让12基金12.1国家自然基金12.2国家自然基金成果12.3国家社科基金13招聘13.1招聘信息感谢阅读:感谢您耐心地阅读这份企业调查分析报告。

具有多高度的配合槽结构的连接器

专利名称:具有多高度的配合槽结构的连接器专利类型:实用新型专利
发明人:桑圣芬,吕洛文
申请号:CN202121576517.7
申请日:20210712
公开号:CN215645140U
公开日:
20220125
专利内容由知识产权出版社提供
摘要:本实用新型是一种具有多高度的配合槽结构的连接器,该连接器至少包括一绝缘本体与一端子组,其中,该端子组能组装至该绝缘本体内,该绝缘本体一侧设有至少一第一前开口,该绝缘本体另一侧设有至少一第一后开口,且该绝缘本体内设有至少一第一容纳空间,该第一前开口能通过该第一容纳空间而连通至该第一后开口;该第一前开口至少划分为一主配合区与两个辅配合区,该辅配合区位于该主配合区的相对两侧,且该辅配合区的纵向最大高度为第一高度,该主配合区的纵向最大高度为第二高度,且该第一高度能大于或小于该第二高度。

申请人:香港商安费诺(东亚)有限公司台湾分公司
地址:中国台湾桃园市龟山区复兴一路361号4楼
国籍:CN
代理机构:中科专利商标代理有限责任公司
代理人:吴梦圆
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Amphenol EDI 项目DELFOR 报文DELFOR ,Delivery schedule, 交付计划,是采购商发送给供应商的,是一段时间内的交付预测, 也会有一些供应商将DELFOR 当做订单来处理。

交付计划中一般会包含两种情况:∙确认交付。

买方确认要货,需要供应商按交期交付。

∙ 预测交付。

买方预测可能在某个时间内需要多少货,供应商按照计划生产。

报文转换过程安费诺要发送交付计划给供应商,需要在LIP 系统中填写数据后,EDI 系统会从数据库读取数据,生成EDI 报文,转换过程主要分为如下三个步骤:1. EDI 从数据库中获取到数据,格式为XML1 2 3 4 5 6 7 8 9 10 11 12 1<Items><po_header><id>f57ebacff2146781418fc15b770957b0</id><buyer_number>8568b6a5ba5a845ddd0379b2cf4c4b31</buyer_number><supplier_number>7605a372b5dbe7abe4e2d4e67a670452</supplier_number> <final_recipent_number>7605a372b5dbe7abe4e2d4e67a670452</final_reci pent_number><create_datetime>2019-12-18T16:06:53+08:00</create_datetime> <end_datetime null ="true"/><order_number>20191218</order_number><start_datetime null ="true"/><status>1</status><pre_release_no>20191205</pre_release_no><pre_release_datetime>2019-12-05T16:07:10+08:00</pre_release_dateti me><buyer_code>3 14 15 16 17 18 19 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3<buyer_no>1111</buyer_no><buyer_company>AMPHENOL AUTOMOTIVE CONNECTION</buyer_company> <buyer_country>CN</buyer_country><buyer_number null="true"/></buyer_code><supplier_code><supplier_no>92.3.0061</supplier_no><supplier_company>EAO AUTOMOTIVE GMBH&amp;CO.KG</supplier_company><supplier_country>DE</supplier_country><supplier_number null="true"/></supplier_code><cn_code><cn_no>92.3.0061</cn_no><cn_company>EAO AUTOMOTIVE GMBH&amp;CO.KG</cn_company><cn_country>DE</cn_country><cn_contact></cn_contact><final_recipent_number null="true"/></cn_code><po_position><id>6234c0fada3c436cb1085ebd858ca3a6</id><buyer_item_number>N382524796C</buyer_item_number><cumulative_qty>87500</cumulative_qty><item_description>Switch_EAO_34176558 TRW normallyopened</item_description><last_delivery_note>0464130</last_delivery_note><po_header_id>f57ebacff2146781418fc15b770957b0</po_header_id><po_number>P9026120</po_number><po_datetime>2019-12-09T16:15:43+08:00</po_datetime><pos_number null="true"/><status>0</status><unloading_point>Tianshan Road Plant</unloading_point><last_receipt_qty>24500</last_receipt_qty><last_receipt_date>2019-12-17T16:08:59+08:00</last_receipt_date ><last_delivery_date>2019-12-09T16:09:37+08:00</last_delivery_da te><po_disposition><id>fe97ec517c699b2f7cd0c52b68530854</id><delivery_datetime_type>Delivery</delivery_datetime_type><earliest_delivery_date null="true"/><latest_delivery_date null="true"/><plan_status>Firm</plan_status><frequency_code>3Week</frequency_code>5 36 37 38 39 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 <po_position_id>6234c0fada3c436cb1085ebd858ca3a6</po_position_id><quantity>24500</quantity><quantity_qualifier>Discrete</quantity_qualifier><unit_of_measure>PCE</unit_of_measure><status>0</status><datetime>2020-01-13T16:16:27+08:00</datetime></po_disposition><po_disposition><id>7d00d490fa8acd0128fd871860c976f6</id><delivery_datetime_type>Delivery</delivery_datetime_type><earliest_delivery_date null="true"/><latest_delivery_date null="true"/><plan_status>Firm</plan_status><frequency_code>6Week</frequency_code><po_position_id>6234c0fada3c436cb1085ebd858ca3a6</po_positi on_id><quantity>21000</quantity><quantity_qualifier>Discrete</quantity_qualifier><unit_of_measure>PCE</unit_of_measure><status>0</status><datetime>2020-02-03T16:16:53+08:00</datetime></po_disposition><po_disposition><id>9e2b31aac205ed55f11a573deb7b1839</id><delivery_datetime_type>Delivery</delivery_datetime_type><earliest_delivery_date null="true"/><latest_delivery_date null="true"/><plan_status>Forecast</plan_status><frequency_code>9Week</frequency_code><po_position_id>6234c0fada3c436cb1085ebd858ca3a6</po_positi on_id><quantity>7000</quantity><quantity_qualifier>Discrete</quantity_qualifier><unit_of_measure>PCE</unit_of_measure><status>0</status><datetime>2020-02-23T08:00:00+08:00</datetime></po_disposition></po_position></po_header></Items>2. 将数据库XML转换为标准XML1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 <Interchange Delimiters=":+.?*&apos;" xmlns="" xmlns:xsi="/2001/XMLSchema-instance"><Meta><!--SYNTAX IDENTIFIER--><UNB1 type="Composite"><!--Syntax identifier--><UNB1.1><!--UN/ECE level A-->UNOA</UNB1.1><!--Syntax version number--><UNB1.2><!--Version 1-->1</UNB1.2></UNB1><!--INTERCHANGE SENDER--><UNB2 type="Composite"><!--Interchange sender identification--><UNB2.1>AmphenolPROD</UNB2.1></UNB2><!--INTERCHANGE RECIPIENT--><UNB3 type="Composite"><!--Interchange recipient identification--><UNB3.1>ABC-ESA</UNB3.1></UNB3><!--DATE AND TIME OF PREPARATION--> <UNB4 type="Composite"><!--Date--><UNB4.1>191219</UNB4.1><!--Time--><UNB4.2>0000</UNB4.2></UNB4><!--Interchange control reference--><UNB5>000000043</UNB5></Meta><TransactionSet><TX-D00A-DELFOR type="TransactionSet"><Meta><!--Message reference number--><_0062>00000000000001</_0062><!--MESSAGE IDENTIFIER--><S009 type="Composite"><!--Message type--><_0065><!--Delivery schedule message-->DELFOR</_0065> <!--Message version number--><_0052><!--Draft version/UN/EDIFACTDirectory-->D</_0052><!--Message release number-->4445464748495051525354555657585960616263646566676869707172737475767778798081828384858687<_0054><!--Release2000-A-->00A</_0054><!--Controlling agency,coded--><_0051><!--UN/CEFACT-->UN</_0051></S009></Meta><BGM type="Segment"><!--DOCUMENT/MESSAGE NAME--><C002 type="Composite"><!--Document name code--><_1001>241</_1001></C002><!--DOCUMENT/MESSAGE IDENTIFICATION--><C106 type="Composite"><!--Document identifier--><_1004>20191218</_1004></C106><!--Message function code--><_1225>9</_1225></BGM><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function code qualifier--><_2005>137</_2005><!--Date or time or period value--><_2380>201912181606</_2380><!--Date or time or period format code--><_2379>203</_2379></C507></DTM><NADLoop1 type="Loop"><NAD type="Segment"><!--Party function code qualifier--><_3035>BY</_3035><!--PARTY IDENTIFICATION DETAILS--><C082 type="Composite"><!--Party identifier--><_3039>1111</_3039><!--Code list identification code--><_1131></_1131><!--Code list responsible agency code--><_3055>91</_3055></C082><!--NAME AND ADDRESS-->888990919293949596979899 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131<C058 type="Composite"><!--Name and address description--><_3124>AMPHENOL AUTOMOTIVE CONNECTION</_3124> </C058><!--PARTY NAME--><C080 type="Composite"></C080><!--STREET--><C059 type="Composite"></C059><!--City name--><_3164 xsi:nil="true"/><!--COUNTRY SUB-ENTITY DETAILS--><C819 type="Composite"></C819><!--Postal identification code--><_3251 xsi:nil="true"/><!--Country name code--><_3207>CN</_3207></NAD></NADLoop1><NADLoop1 type="Loop"><NAD type="Segment"><!--Party function code qualifier--><_3035>SE</_3035><!--PARTY IDENTIFICATION DETAILS--><C082 type="Composite"><!--Party identifier--><_3039>92.3.0061</_3039><!--Code list identification code--><_1131></_1131><!--Code list responsible agency code--><_3055>92</_3055></C082><!--NAME AND ADDRESS--><C058 type="Composite"><!--Name and address description--><_3124>ABC AUTOMOTIVE GMBH&amp;CO.KG</_3124> </C058><!--PARTY NAME--><C080 type="Composite"></C080><!--STREET--><C059 type="Composite">132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175</C059><!--City name--><_3164 xsi:nil="true"/><!--COUNTRY SUB-ENTITY DETAILS--><C819 type="Composite"></C819><!--Postal identification code--><_3251 xsi:nil="true"/><!--Country name code--><_3207>DE</_3207></NAD></NADLoop1><GISLoop1 type="Loop"><GIS type="Segment"><!--PROCESSING INDICATOR--><C529 type="Composite"><!--Processing indicator description code--><_7365>37</_7365></C529></GIS><NADLoop2 type="Loop"><NAD type="Segment"><!--Party function code qualifier--><_3035>CN</_3035><!--PARTY IDENTIFICATION DETAILS--><C082 type="Composite"><!--Party identifier--><_3039>92.3.0061</_3039><!--Code list identification code--><_1131></_1131><!--Code list responsible agency code--><_3055>92</_3055></C082><!--NAME AND ADDRESS--><C058 type="Composite"><!--Name and address description--><_3124>ABC AUTOMOTIVE GMBH&amp;CO.KG</_3124> </C058><!--PARTY NAME--><C080 type="Composite"></C080><!--STREET--><C059 type="Composite"></C059>176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219<!--City name--><_3164 xsi:nil="true"/><!--COUNTRY SUB-ENTITY DETAILS--><C819 type="Composite"></C819><!--Postal identification code--><_3251 xsi:nil="true"/><!--Country name code--><_3207>DE</_3207></NAD></NADLoop2><LINLoop1 type="Loop"><LIN type="Segment"><!--Line item identifier--><_1082 xsi:nil="true"/><!--Action request/notification description code--><_1229/><!--ITEM NUMBER IDENTIFICATION--><C212 type="Composite"><!--Item identifier--><_7140>N382524796C</_7140><!--Item type identification code--><_7143>IN</_7143></C212></LIN><PIA type="Segment"><!--Product identifier code qualifier--><_4347>1</_4347><!--ITEM NUMBER IDENTIFICATION--><C212 type="Composite"><!--Item identifier--><_7140>C</_7140><!--Item type identification code--><_7143>EC</_7143></C212></PIA><IMD type="Segment"><!--Description format code--><_7077/><!--ITEM CHARACTERISTIC--><C272 type="Composite"></C272><!--ITEM DESCRIPTION--><C273 type="Composite">220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 <!--Item description code--><_7009></_7009><!--Code list identification code--><_1131></_1131><!--Code list responsible agency code--> <_3055></_3055><!--Item description--><_7008>Switch_ABC_34176558 normallyopened</_7008></C273></IMD><LOC type="Segment"><!--Location function code qualifier--><_3227>11</_3227><!--LOCATION IDENTIFICATION--><C517 type="Composite"><!--Location name code--><_3225>Tianshan Road Plant</_3225></C517></LOC><RFFLoop4 type="Loop"><RFF type="Segment"><!--REFERENCE--><C506 type="Composite"><!--Reference function code qualifier--><_1153>AAN</_1153><!--Reference identifier--><_1154>20191218</_1154></C506></RFF><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function code qualifier--><_2005>137</_2005><!--Date or time or period value--><_2380>20191218</_2380><!--Date or time or period format code--><_2379>102</_2379></C507></DTM></RFFLoop4><RFFLoop4 type="Loop">264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 <RFF type="Segment"><!--REFERENCE--><C506 type="Composite"><!--Reference function code qualifier--><_1153>AIF</_1153><!--Reference identifier--><_1154>20191205</_1154></C506></RFF><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function codequalifier--><_2005>137</_2005><!--Date or time or period value--><_2380>20191205</_2380><!--Date or time or period format code--><_2379>102</_2379></C507></DTM></RFFLoop4><RFFLoop4 type="Loop"><RFF type="Segment"><!--REFERENCE--><C506 type="Composite"><!--Reference function code qualifier--><_1153>ON</_1153><!--Reference identifier--><_1154>P9026120</_1154></C506></RFF><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function code qualifier--><_2005>51</_2005><!--Date or time or period value--><_2380>20191209</_2380><!--Date or time or period format code--><_2379>102</_2379></C507></DTM>308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 </RFFLoop4><QTYLoop1 type="Loop"><QTY type="Segment"><!--QUANTITY DETAILS--><C186 type="Composite"><!--Quantity type code qualifier--><_6063>70</_6063><!--Quantity--><_6060>000000000087500</_6060><!--Measurement unit code--><_6411>PCE</_6411></C186></QTY><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function codequalifier--><_2005>310</_2005><!--Date or time or period value--><_2380>20191217</_2380><!--Date or time or period format code--><_2379>102</_2379></C507></DTM></QTYLoop1><QTYLoop1 type="Loop"><QTY type="Segment"><!--QUANTITY DETAILS--><C186 type="Composite"><!--Quantity type code qualifier--><_6063>48</_6063><!--Quantity--><_6060>000000000024500</_6060><!--Measurement unit code--><_6411>PCE</_6411></C186></QTY><RFFLoop5 type="Loop"><RFF type="Segment"><!--REFERENCE--><C506 type="Composite"><!--Reference function codequalifier-->352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395<_1153>AAK</_1153><!--Reference identifier--><_1154>0464130</_1154></C506></RFF><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function codequalifier--><_2005>50</_2005><!--Date or time or period value--><_2380>20191209</_2380><!--Date or time or period format code--><_2379>102</_2379></C507></DTM></RFFLoop5></QTYLoop1><SCCLoop1 type="Loop"><SCC type="Segment"><!--Delivery plan commitment level code--><_4017>1</_4017><!--Delivery instruction code--><_4493/><!--PATTERN DESCRIPTION--><C329 type="Composite"><!--Frequency code--><_2013>F</_2013></C329></SCC><QTYLoop2 type="Loop"><QTY type="Segment"><!--QUANTITY DETAILS--><C186 type="Composite"><!--Quantity type code qualifier--><_6063>1</_6063><!--Quantity--><_6060>000000000024500</_6060><!--Measurement unit code--><_6411>PCE</_6411></C186></QTY>396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 <DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function codequalifier--><_2005>10</_2005><!--Date or time or period value--><_2380>20200113</_2380><!--Date or time or period formatcode--><_2379>102</_2379></C507></DTM></QTYLoop2><QTYLoop2 type="Loop"><QTY type="Segment"><!--QUANTITY DETAILS--><C186 type="Composite"><!--Quantity type code qualifier--><_6063>1</_6063><!--Quantity--><_6060>000000000021000</_6060><!--Measurement unit code--><_6411>PCE</_6411></C186></QTY><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function code qualifier--><_2005>10</_2005><!--Date or time or period value--><_2380>20200203</_2380><!--Date or time or period formatcode--><_2379>102</_2379></C507></DTM></QTYLoop2></SCCLoop1><SCCLoop1 type="Loop"><SCC type="Segment"><!--Delivery plan commitment level code-->440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483<_4017>4</_4017><!--Delivery instruction code--><_4493/><!--PATTERN DESCRIPTION--><C329 type="Composite"><!--Frequency code--><_2013>F</_2013></C329></SCC><QTYLoop2 type="Loop"><QTY type="Segment"><!--QUANTITY DETAILS--><C186 type="Composite"><!--Quantity type code qualifier--><_6063>1</_6063><!--Quantity--><_6060>000000000007000</_6060><!--Measurement unit code--><_6411>PCE</_6411></C186></QTY><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function codequalifier--><_2005>663</_2005><!--Date or time or period value--><_2380>20200223</_2380><!--Date or time or period formatcode--><_2379>102</_2379></C507></DTM><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function code qualifier--><_2005>674</_2005><!--Date or time or period value--><_2380>20200306</_2380><!--Date or time or period formatcode-->484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510<_2379>102</_2379></C507></DTM></QTYLoop2><QTYLoop2 type="Loop"><QTY type="Segment"><!--QUANTITY DETAILS--><C186 type="Composite"><!--Quantity type code qualifier--><_6063>1</_6063><!--Quantity--><_6060>000000000007000</_6060><!--Measurement unit code--><_6411>PCE</_6411></C186></QTY><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function codequalifier--><_2005>663</_2005><!--Date or time or period value--><_2380>20200301</_2380><!--Date or time or period formatcode--><_2379>102</_2379></C507></DTM><DTM type="Segment"><!--DATE/TIME/PERIOD--><C507 type="Composite"><!--Date or time or period function code qualifier--><_2005>674</_2005><!--Date or time or period value--><_2380>20200313</_2380><!--Date or time or period formatcode--><_2379>102</_2379></C507></DTM></QTYLoop2></SCCLoop1></LINLoop1></GISLoop1></TX-D00A-DELFOR></TransactionSet></Interchange>3. 将标准XML 转换为DELFOR EDI 报文1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 BGM+241+20191218+9'20191218: 交付计划编号DTM+137:201912181606:203'201912181606: 文档创建时间NAD+BY+1111::91+AMPHENOL AUTOMOTIVE CONNECTION++++++CN ' BY: 买方标识1111: 买方编号AMPHENOL AUTOMOTIVE CONNECTION: 买方名称CN: 买方国家编码NAD+SE+9261::92+ABC AUTOMOTIVE GMBH & CO. KG++++++DE' SE: 卖方标识9261: 卖方编号ABC AUTOMOTIVE GMBH & CO . KG: 卖方名称DE: 卖方国家编码GIS+37'37: 完整信息NAD+CN+9261::92+ABC AUTOMOTIVE GMBH & CO. KG++++++DE' CN: 收货方标识9261: 收货方编码ABC AUTOMOTIVE GMBH & CO . KG: 收货方名称DE: 收货方国家编码LIN+++N38252477 C:IN ' N38252477 C: 买方物料编号PIA+1+C:EC'C: 物料变更图号36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 IMD+++:::Switch_ABC_34176558 normally opened ' Switch_ABC_34176558 normally opened: 物料描述LOC+11+Tianshan Road Plant'Tianshan Road Plant: 卸货地点RFF+AAN:20191218'20191218: 物料交付计划编号DTM+137:20191218:102'20191218: 交付计划日期RFF+AIF:20191205'20191205: 上次交付计划编号DTM+137:20191205:102'20191205: 上次交付计划日期RFF+ON:P9026120'P9026120: 订单编号DTM+51:20191209:102'20191209: 订单日期QTY+70:000000000087500:PCE '000000000087500: 累积接收数量PCE: 数量单位DTM+310:20191217:102'20191217: 上次收货日期QTY+48:000000000024500:PCE '000000000024500: 上次接收数量RFF+AAK:0464130'0464130: 上次发货通知编号DTM+50:20191209:102'20191209: 上次收货日期SCC+1++F'1: 确认要货80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 QTY+1:000000000024500:PCE ' 000000000024500: 交付数量DTM+10:20200113:102' 20200113: 交付时间QTY+1:000000000021000:PCE ' 000000000021000: 交付数量DTM+10:20200203:102' 20200203: 交付时间SCC+4++F '4: 预测要货QTY+1:000000000007000:PCE' 000000000007000: 预计交付数量DTM+663:20200223:102' 20200223: 预计交付起始时间DTM+674:20200306:102' 20200306: 预计交付结束时间。

相关文档
最新文档