金属间化合物增强陶瓷基体复合材料论文(完成)

合集下载

陶瓷颗粒增强金属基复合材料的制备方法及研究进展

陶瓷颗粒增强金属基复合材料的制备方法及研究进展

陶瓷颗粒增强金属基复合材料的制备方法及研究进展陶瓷颗粒增强金属基复合材料是一类具有优良性能的新型材料,它不仅具有金属材料的优良导热性和导电性,还具有陶瓷材料的高硬度、耐磨性和耐腐蚀性,因此在航空航天、汽车、机械制造等领域具有广泛的应用前景。

本文旨在探讨陶瓷颗粒增强金属基复合材料的制备方法及研究进展,为该类材料的进一步研究和应用提供参考。

1. 粉末冶金法粉末冶金法是制备陶瓷颗粒增强金属基复合材料的常用方法之一。

选取合适的金属基体粉末和陶瓷颗粒进行混合,并添加适量的增强剂和成型剂进行混合压制,然后通过烧结、热压等工艺最终制备成复合材料。

粉末冶金法可以制备出具有较高密度和良好界面结合的复合材料,但制备工艺复杂、成本较高。

2. 溶液浸渗法溶液浸渗法是一种在金属基体表面形成陶瓷涂层的方法,通过浸渗、烧结等工艺将陶瓷颗粒固定在金属基体表面,形成陶瓷颗粒增强的金属基复合材料。

这种方法制备的复合材料具有优良的耐磨性和耐腐蚀性,但陶瓷颗粒与金属基体的结合强度较低。

1. 界面改性技术界面是陶瓷颗粒增强金属基复合材料中的关键问题,在材料的性能和稳定性方面起着至关重要的作用。

近年来,界面改性技术成为了该领域的研究热点之一,主要包括化学镀法、溶液法、电沉积法等,通过在界面上形成一层化学反应层或添加一层助熔金属来改善陶瓷颗粒与金属基体之间的结合强度,从而提高复合材料的性能。

2. 热处理工艺热处理工艺是影响陶瓷颗粒增强金属基复合材料性能的重要因素之一。

通过热处理工艺可以调控材料的组织结构和晶粒尺寸,进而影响材料的力学性能、耐磨性和耐腐蚀性能。

研究表明,适当的热处理工艺可以明显提高复合材料的性能,成为目前研究的重点之一。

3. 新型复合材料随着纳米科技的发展,纳米陶瓷颗粒增强金属基复合材料成为了当前研究的热点之一。

纳米材料具有尺寸效应、表面效应和量子效应等特点,可以显著改善复合材料的力学性能和耐磨性能,因此备受关注。

除了纳米材料,纤维增强复合材料、层状复合材料等新型复合材料也在不断涌现,为陶瓷颗粒增强金属基复合材料的研究和应用带来了新的发展机遇。

金属间化合物/Al2O3陶瓷基复合材料的研究进展

金属间化合物/Al2O3陶瓷基复合材料的研究进展
何 柏 林 , 光 耀 , 燕 平 熊 缪
( 东交通大学 机 电工程学 院 , 西 华 江 南 昌 3 0 1 ) 3 0 3
摘 要 : z 。陶 瓷 的 脆 性 本 质 极 大 的 限 制 了 其 使 用 范 围 。在 提 高 氧 化 铝 陶 瓷 韧 性 的研 究 中 , Alo
利 用金 属 间化 舍物 作 为 第二相 来增韧 氧 化铝 陶瓷 已成 为研 究热 点之 一 。本 文从 金属 间化 合 物
ห้องสมุดไป่ตู้
化 等一 系列 的优异 性 能 , 目前 已广 泛 用 于 许 多 高 新
技 术领 域 , 是 其 陶瓷 材 料 的 脆 性 本 质 在 很 大 程 度 但 上 限制 了它 的发 展 和 应 用 。因 此 , 善 氧 化 铝 陶瓷 改 的韧性 成 为其 得到 进一 步 应用 的核 心 问题 。 近年来 , 提 高氧 化 铝 陶瓷韧 性 的研 究 中 , 用 在 利 金 属 间化合 物 作 为第二 相 来增 韧氧 化 铝 陶瓷 已成 为 研 究 热点 之一 , 取 得 了重 要 的研 究 成 果 。本 文 从 并
中 图 分 类 号 : 3 . ; F 2 . G6 3 8 T 1 5 4 文 献标 识 码 : A 文 章 编 号 :0 6 6 4 ( 0 8 0 — 0 3 一 O 10 — 53 20 )3 0 1 5 P RoG S N I E RE S I NT RM E AL I S A1O E T L C / 2 3 RAM I SB E oMP S TE C C AS D C o I S
化 合 物 ,即 Ni 、 Ni 、Ni 。 。 A1 A1 、Ni 。 和 A1 z A1 Ni 。 。 目前 , — 系金 属 间化 合 物 中研 究 最多 A1 Ⅲ Ni Al

金属间化合物_Al_2O_3陶瓷基复合材料的研究进展

金属间化合物_Al_2O_3陶瓷基复合材料的研究进展

第18卷第3期2008年6月 粉末冶金工业POWDER METALL URG Y IN D USTR Y Vol.18No.3J une 2008收稿日期:2007-10-17基金项目:江西省自然科学基金资助项目(550015)作者简介:何柏林(1962-),男(汉),河南安阳人,教授,硕士生导师,研究方向:结构可靠性,表面强化,复合材料的研究。

金属间化合物/Al 2O 3陶瓷基复合材料的研究进展何柏林,熊光耀,缪燕平(华东交通大学机电工程学院,江西 南昌 330013)摘 要:Al 2O 3陶瓷的脆性本质极大的限制了其使用范围。

在提高氧化铝陶瓷韧性的研究中,利用金属间化合物作为第二相来增韧氧化铝陶瓷已成为研究热点之一。

本文从金属间化合物的基本性质出发,综述了金属间化合物/Al 2O 3陶瓷基复合材料的最新进展,在此基础上总结了增韧机理,并提出了今后的发展方向。

关键词:金属间化合物;Al 2O 3陶瓷;复合材料;增韧机理中图分类号:G63318;TF12514 文献标识码:A 文章编号:1006-6543(2008)03-0031-05PRO GRESS IN IN TERM ETALL ICS/Al 2O 3CERAM ICS BASED COM POSITESHE Bo 2lin ,XIONG G u ang 2yao ,MIAO Yan 2ping(School of Mechanical &Electrical Engineering ,East China Jiaotong University ,Nanchang 330013,China )Abstract :The brittleness of alumina ceramic material limit s t he application of t he material re 2markably 1U sing intermetallics as t he secondary p hase is o ne of t he hot topics in t he field of toughening Al 2O 3ceramics 1Progress in Intermetallics/Al 2O 3ceramics based compo sites is re 2viewed 1Toughening mechanisms are summarized ,and t he develop ment tendency is also pres 2ented 1K ey w ords :intermetallics ;Al 2O 3Ceramics ;Composites ;toughening mechanism 氧化铝陶瓷具有耐高温、高耐磨、耐腐蚀、抗氧化等一系列的优异性能,目前已广泛用于许多高新技术领域,但是其陶瓷材料的脆性本质在很大程度上限制了它的发展和应用。

陶瓷基复合材料标准论文

陶瓷基复合材料标准论文

张峰Z09016133陶瓷基复合材料陶瓷基复合材料概述:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。

法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

陶瓷基复合材料制造工艺1 粉末冶金法工艺流程:原料(陶瓷粉末、增强剂、粘结剂和助烧剂) 均匀混合(球磨、超声等) 冷压成形 (热压)烧结适用于颗粒、晶须和短纤维增韧陶瓷基复合材料2浆体法(湿态法)为了克服粉末冶金法中各组元混合不均的问题,可采用浆体(湿态)法制备颗粒、晶须和短纤维增韧陶瓷基复合材料。

其混合体为浆体形式。

混合体中各组元保持散凝状。

即在浆体中呈弥散分散采用浆体浸渍法也可制备连续纤维增韧陶瓷基复合材料3反应烧结法用此方法制备陶瓷基复合材料,除基体材料几乎无收缩外,还具有以下优(1)增强剂的体积比可以相当大;(2)可用多种连续纤维预制体;(3)大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,因此可避免纤维的损伤。

此方法最大的缺点是高气孔率难以避免。

4、液态浸渍法用此方法制备陶瓷基复合材料,化学反应熔体粘度、熔体对增强材料的浸润性是首要考虑的问题,这些因素直接影响着材料的性能。

陶瓷熔体可通过毛细作用渗入增强剂预制体的孔隙。

施加压力或抽真空将有利于浸渍过程。

假如预制体中的孔隙呈一束束有规则间隔的平行通道,则可用Poisseuiue方程计算出浸渍高度h:h = √(γr t cosθ)/ 2η式中r 是圆柱型孔隙管道半径;t 是时间;γ是浸渍剂的表面能;θ是接触角;η是粘度。

陶瓷基复合材料与金属连接的研究进展

陶瓷基复合材料与金属连接的研究进展

陶瓷基复合材料与金属连接的研究进展摘要陶瓷基复合材料是一种新兴的热结构材料,解决其自身及其与金属的连接工艺,是实现其推广应用的重要课题之一。

首先分析了陶瓷基复合材料自身连接及其与金属连接的难点,在此基础上从解决被连接材料的化学相容性与物理匹配性两方面出发,综述了陶瓷基复合材料自身及其与金属连接的研究进展,并介绍了几种典型的连接实例———活性金属钎焊、部分瞬间液相扩散连接以及宏观结构梯度中间层设计。

关键词: 陶瓷基复合材料化学相容性物理匹配性连接0前言陶瓷基复合材料(Ceramic Matrix Composites,以下简称CMCs)作为一种新兴的热结构材料,具有密度低、耐高温、抗氧化、热强度保持率高以及断裂韧性高等优点,在未来的高推重比航空发动机、卫星姿控发动机、超高声速冲压发动机、巡航导弹发动机、液体和固体火箭发动机等武器装备领域具有广阔的推广应用前景[ 1 ] ,在涡轮燃气电站和核能反应堆等民用领域的市场潜力更大[ 2, 3 ] 。

由德国工业设备公司( IABG)生产的C /SiC复合材料已经应用在光学领域(镜子和反射镜) 、燃烧室、热交换机、高性能车辆刹车盘、化学工业和国防领域[ 4 ] 。

连接是CMCs走向工程应用需要解决的关键技术之一。

一方面, CMCs复杂精密构件的低成本制造,需要实现CMCs之间的连接;另一方面,构件各部分不同的功能,需要实现其与金属之间的连接。

连接的目标是实现接头的高温使用,因此连接的金属对象为Nb合金[ 5~7 ] 、Ti合金[ 8~11 ] 、Ni基高温合金[ 12, 13 ]等难熔金属材料。

由于CMCs继承了陶瓷的化学性能以及高硬度、高模量(如C /SiC) 和低线膨胀系数(如SiC /SiC、C /SiC)等物理性能,即: CMCs - 金属连接与陶瓷- 金属连接在材料组配上有许多相似之处,两类接头的实现面临着一些基本的共性问题,这些问题在本质上可以归纳为两个方面:化学相容性与物理匹配性。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。

如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。

陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。

关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。

如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。

化学键往往是介于离子键与共价键之间的混合键。

陶瓷基复合材料中的增强体通常也称为增韧体。

从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。

碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。

纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。

目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。

晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。

颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。

常用的颗粒也是SiC、Si3N4和A12O3等。

陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。

陶瓷基复合材料论文资料

陶瓷基复合材料论文资料

陶瓷基复合材料在航天领域的应用概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

一、陶瓷基复合材料增强体用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种1.1纤维类增强体纤维类增强体有连续长纤维和短纤维。

连续长纤维的连续长度均超过数百。

纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。

1.2颗粒类增强体颗粒类增强体主要是一些具有高强度、高模量。

耐热、耐磨。

耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。

细金刚石、高岭土、滑石、碳酸钙等。

主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末1.3晶须类增强体晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.4金属丝用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.5片状物增强体用于复合材料的片状增强物主要是陶瓷薄片。

将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

二、陶瓷基的界面及强韧化理论陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。

界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能的影响具有重要的意义。

金属陶瓷复合材料的界面优化与性能研究

金属陶瓷复合材料的界面优化与性能研究

金属陶瓷复合材料的界面优化与性能研究金属陶瓷复合材料是一种由金属基体和陶瓷颗粒组成的复合材料。

在该复合材料中,金属基体提供了强度和韧性,而陶瓷颗粒则提供了硬度和耐磨性。

然而,金属与陶瓷的界面对于复合材料的性能至关重要。

本文将对金属陶瓷复合材料的界面优化方法和性能优化研究进行探讨。

一、界面优化方法1. 化学结合法化学结合法是一种常用的界面优化方法,通过在金属表面或陶瓷颗粒表面生成一层化学反应生成的界面层,提高金属与陶瓷的结合力。

常用的化学结合方法包括电化学沉积、表面改性、溶胶-凝胶法等。

2. 机械锁定法机械锁定法通过设计金属基体和陶瓷颗粒形状的匹配,增加金属基体和陶瓷颗粒间的接触面积,提高界面的机械锁定效果。

常用的机械锁定方法包括纳米线、纳米颗粒等。

3. 界面反应层法界面反应层法是通过在金属基体和陶瓷颗粒之间引入一种化学反应生成的薄层,形成强有力的界面结合。

常用的界面反应层包括金属间化合物层、陶瓷薄膜层等。

二、性能优化研究1. 强度与韧性金属陶瓷复合材料的强度和韧性是其重要的性能指标。

界面优化可以提高金属陶瓷复合材料的界面结合强度,从而提高整体强度。

同时,界面优化还可以改善复合材料的断裂韧性,增加其承受外部载荷的能力。

2. 硬度与耐磨性金属陶瓷复合材料的硬度和耐磨性主要由陶瓷颗粒决定。

通过界面优化,可以提高陶瓷颗粒与金属基体的结合强度,从而增加复合材料的硬度和耐磨性。

3. 界面稳定性界面优化还可以改善金属陶瓷复合材料的界面稳定性。

在使用过程中,复合材料的界面往往会受到热膨胀、热应力等因素的影响,导致界面的剥离和破坏。

通过界面优化,可以提高界面层的稳定性,减少界面的脱粘和剥离现象。

4. 热导率与导电性能金属陶瓷复合材料的热导率和导电性能对于其在工业领域的应用具有重要意义。

界面优化可以改善复合材料的热导率和导电性能,提高其热传导和导电效果。

结论金属陶瓷复合材料的界面优化与性能研究是一个复杂而重要的领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属间化合物增强陶瓷基复合材料研究现状及发展前景摘要:陶瓷材料由于具有强度高、抗氧化、耐高温、热膨胀系数低和密度小等优良性能,因而在许多方面的应用是一般金属材料和高分子材料无法替代的。

但是它的致命弱点——大脆性却大大限制了其更广泛的应用。

因此,改善陶瓷的韧性已成为陶瓷材料获得进一步应用的核心问题。

由于金属间化合物原子的长程有序排列和原子间金属键与共价键共存的特性,其使用温度介于金属超硬合金和陶瓷之间。

金属间化合物相对于金属是脆性材料,而相对于陶瓷又具有一定的塑性,其性能介于金属和陶瓷之间,制备金属间化合物/陶瓷基复合材料可使金属和陶瓷各自的缺点通过彼此的优点所弥补。

关键字:金属间化合物陶瓷基复合材料性能应用0.引言金属间化合物的性能介于金属和陶瓷之间,其结构与性能不同于其金属组元,而是一种长程有序的超点阵结构,因而具有许多特殊的物理化学性能和力学性能。

与金属材料相比,金属间化合物密度小、抗氧化性能好、熔点高、硬度高、抗蠕变和抗疲劳性能好,并具有许多特殊的物理化学性能和力学性能,特别是一些金属间化合物的强度在特定温度范围内随温度升高而升高。

金属间化合物的种类非常多,近年来国内外主要集中于对 Ti-Al、Ni-Al、Fe-Al 等含铝金属间化合物的研究[1]。

Fe-Al金属间化合物中最受关注是Fe3Al与FeAl合金[2]。

Fe-Al 金属间化合物室温脆性大、塑性差,改善其室温脆性,提高其强度是重要的研究方向。

目前研究最多的是Ni3-Al金属间化合物,尤其是对于其在中间温度时的反常流变应力做了较深入的探索。

许多Ni3-Al基合金已应用于铸造、锻压和高温熔炼。

NiAl合金比目前的Ni基高温合金质量轻,且具有高熔点、优良的抗氧化性能以及高的热导率,但是由于其低温下的断裂韧性差以及高温强度低、抗蠕变能力差,使其在结构材料方面的应用受到限制。

许多文献报道,由于NiAl合金熔点高、密度低、热导率大,抗氧化和抗腐蚀性能优异,多年来一直用作高温合金零件的表面防护涂层。

陶瓷材料由于具有强度高、抗氧化、耐高温、热膨胀系数低和密度小等优良性能,因而在许多方面的应用是一般金属材料和高分子材料无法替代的。

但是它的致命弱点—脆性却大大限制了其更广泛的应用。

因此,改善陶瓷的韧性已成为陶瓷材料获得进一步应用的核心问题。

由于金属间化合物原子的长程有序排列和原子间金属键与共价键共存的特性,其使用温度介于金属超硬合金和陶瓷之间。

金属间化合物相对于金属是脆性材料,而相对于陶瓷又具有一定的塑性,其性能介于金属和陶瓷之间,制备金属间化合物/陶瓷复合材料可使金属和陶瓷各自的缺点通过彼此的优点所弥补。

本文主要介绍金属间化合物/陶瓷复合材料的发展现状及趋向。

1.发展历史1.1 NiAl/Al2O3及Ni3-Al/Al2O3复合材料的发展历程在最近几十年内,有很多研究工作者对金属相增韧增强Al2O3陶瓷材料进行了研究[3-4]。

张炳荣[3]等用Ni3-Al增强Al2O3,其中Al2O3型号为“AKP-20”(α-Al2O3,粒度0. 5μm),Ni3-Al的组成为73.12Ni-18.82Al-8.06Cr-0.019MO-0.1B(数据为原子分数,%)。

其试验方法是将Al2O3+ 10%(体积分数)Ni3-Al混合粉末装入衬有WC不锈钢的球磨筒中,以酒精为介质强化球磨90min,球磨后的混合泥浆在70 o C烘干后过100目筛,然后装入石墨模中,在(1340±10)O C、25Mpa压力下于氢气气氛中热压1h,得到Ni3-Al/Al2O3复合材料。

研究表明,Ni3-Al对Al2O3陶瓷有明显的增韧作用。

所得复合材料的抗弯强度与断裂韧性从室温至600O C范围内,随温度升高下降很少。

金属间化合物通过塑性变形、剥离、拔出,起到阻止裂纹扩展,提高材料性能的作用。

随温度进一步升高,在600o C以后,Ni3-Al粒子发生软化,与Al2O3基质的结合强度下降,导致材料性能明显下降。

但是与纯Al2O3陶瓷相比,该复合材料直到1000 O C仍保持了较高的断裂韧性。

CHOU W B 等[5]利用NiAl金属间化合物增韧Al2O3陶瓷获得了较好的效果。

研究表明,随NiA含量增加,复合材料的抗弯强度和断裂韧性提高,但硬度降低。

对于NiAl体积分数为50%的试样,其强度比纯Al2O3陶瓷提高60%,断裂韧性提高160%。

进一步的研究表明,通过加入Fe可增强NiAl/Al2O3的界面结合,提高复合材料的韧性和强度。

CHOU W B 等还借助扫描电镜和透射电镜研究了NiAl金属间化合物增韧Al2O3陶瓷材料的强韧机理。

分析认为:裂纹偏转是复合材料增韧的主要机制,而长颗粒的拔出和NiAl金属间化合物有限的塑性变形也贡献于材料的韧化。

颗粒细化提高了基体材料的强度。

1.2 FeAl/Al2O3及Fe3Al/Al2O3复合材料的发展历程SIL VIA S 等[6-7]研究了Al2O3基复合材料。

他们采用铁粉、铝粉和氧化铝粉,以丙酮为介质进行球磨、制粉。

先在50 Mpa的压力下预成形,再采用冷等静压技术在900Mpa的压力下获得致密坯体,然后在1450-1500 O C的温度下无压烧结,制备出含有Fe /Al2O3和FeAl/Al2O3相的复合材料。

当Fe和FeAl在复合材料中形成网络结构时,复合材料具有最好的力学性能。

文献[8]报道了Al2O 3基复合材料的反应合成方法,通过引入Fe2O3、TiO2、Nb2O5和Al,或引入Fe、Ti、Nb和Al,与Al2O3通过无压烧结得到复合材料。

在烧结过程中Fe2O3、TiO2和Nb2O5可通过Al还原形成铝化物(如TiAl,NbAl),金属Fe、Ti、Nb 与Al可直接形成金属间化合物。

FeAl、TiAl和NbAl3金属间化合物增强Al2O3陶瓷复合材料的抗弯强度分别为:(570±68)、(420±32)和(445±59)Mpa。

孙康宁等[9]探索了Fe3Al/Al2O3复合材料的制备工艺。

试验表明,Fe3Al与Al2O3有良好的亲合性。

采用熔渗烧结法,通过适当控制工艺参数,可制得梯度Fe3Al/Al2O3复合材料。

Fe3Al/Al2O3材料复合了Fe3Al与Al2O3的优点,具有良好的使用前景。

1.3 NiAl/TiC、Ni3-Al/TiC和FeAl/TiC复合材料的发展历程高明霞等[10]采用自发熔化渗透法制备了高TiC含量的NiAl/ TiC和Ni3 -Al/TiC复合材料。

由自发熔渗法制备的NiAl/86%(体积分数)TiC复合材料的四点弯曲强度高达(670±80)Mpa,断裂韧性为6.5Mpa·m1/2,维氏硬度14 Gpa,比用普通混合法得到的复合材料性能高[11]。

采用XRD和TEM/ EDS分析了复合材料的相组成、微观结构和NiAl相与TiC颗粒在高温熔渗过程中的互溶情况。

结果表明:自发熔渗法是制备致密NiAl/TiC 复合材料的既经济又简单的有效方法,用此方法可制备出致密的结合良好的高TiC含量的NiAl/TiC 复合材料。

适当提高熔渗温度,可大大缩短熔渗时间。

在完成熔渗并获得致密组织的前提下,熔渗温度和熔渗时间对NiAl/ TiC复合材料的硬度及断裂韧性无显著影响。

NiAl 相和TiC颗粒结合良好,是熔渗后复合材料中仅有的2个组成相,并在很大程度上各自形成连续的网状组织,这种组织具有较高的韧性。

NiAl相中存在少量的位错。

TiC和 NiAl少量地互溶,这有利于获得较强的界面结合。

TiC 基体与NiAl 界面分裂和TiC晶粒分裂是该复合材料的主要开裂模式;NiAl薄层在其复合材料中具有桥联作用,这种作用使裂纹扩展速度大大降低,从而增加了复合材料的韧性。

GAO Ming-xia 等[12-14]研究了采用无压熔渗法制备Fe40Al/TiC和Fe28Al /TiC复合材料的熔渗力学和材料的微观组织。

研究表明,预制件TiC 的相对密度为60% -88%时,采用无压熔渗法能制备完全致密的复合材料,材料中Fe40Al 的体积分数为12%-40%。

Fe40Al/TiC熔渗体系在1450O C的熔渗温度下,熔渗时间为5min,Fe40Al渗入到相对密度为88%的预制件TiC中的深度是7mm。

由SEM 和TEM 观察到,在熔渗过程中,部分Ti从TiC粒子中分解出来溶解到Fe40Al 中,从而增大了Fe40Al 对TiC的润湿性。

XRD分析表明该复合材料中只有TiC 和Fe60Al40两相,熔渗过程中没有新相产生。

美国橡树岭国家实验室研究人员SUBRAMANI-AN R 和 SCHNEIBEL J H 分别采用无压熔渗法和液相烧结法制备了Fe40Al/TiC复合材料[15-16]。

采用液相烧结法时,若 TiC的体积分数大于60%,复合材料的相对密度会降低,这是由于TiC 在液态Fe40Al 中的溶解度有限。

从图1[15]中可以看出,采用液相烧结法制备的复合材料,其相对密度达到90%-97%;而采用无压熔渗法制备的复合材料,其相对密度可以超过97%。

当 Fe40Al 体积分数为30%时,复合材料的弯曲强度是1034 Mpa,断裂韧性为18 Mpa·m1/2,洛氏硬度为83. 5。

可以通过控制 TiC 晶粒尺寸和改善 Fe40Al 与 TiC 界面强度来进一步提高复合材料的抗弯强度[17]。

采用这 2 种方法制备的复合材料的微观结构如图 2 所示[15],图2 (a)、(b)和(c)所示是由无压熔渗法制备的复合材料微观结构,从图中可以看出材料结构均匀,气孔较少,比较致密;图2 (d)、(e)和(f)是由液相烧结法制备的复合材料,结构不均匀,而且存在不能消除的气孔。

图 1无压熔渗法(MI)和液相烧结法(LpS)制备的Fe40Al / TiC 复合材料的相对密度图2 无压熔渗法和液相烧结法制备的 Fe40Al / TiC 复合材料的微观结构比较-Al/WC复合材料发展历程1.4 FeAl/WC及Ni3WC-Co 复合材料具有很好的力学性能,是工业应用中不可缺少的材料之一。

但由于其抗腐蚀性能差、成本高和对环境有污染等缺点,以至在最近十几年里,有很多研究者在寻找代替 Co 为增强相方面做了很大的努力。

SUBRAMANIAN R 采用无压熔渗法制备出了完全致密的 Fe40Al/WC 复合材料[15,18]。

在 WC 体积分数超过 70% 的情况下,用液相烧结法法制备的复合材料相对密度为82%- 85%,而用无压熔渗法制备的材料相对密度高于98. 5%。

当增强相 Fe40Al的体积分数为30%时,由无压熔渗法制备的 Fe40Al/WC 复合材料,其抗弯强度高达1. 4 Gpa,断裂韧性为10. 6 Mpa·m1/2,洛氏硬度是 HR88。

相关文档
最新文档