金属基复合材料基体材料

合集下载

复合材料中的基体材料

复合材料中的基体材料

复合材料中的基体材料复合材料是由两种或更多种不同材料组成的材料,其中一种材料称为基体材料。

基体材料在复合材料中起到支撑和固定增强材料(通常是纤维或颗粒)的作用。

基体材料的选择对复合材料的性能和应用起着至关重要的作用。

下面将介绍一些常见的基体材料及其特点。

1.金属基体材料:金属基体材料主要是指铝、镁、钛等金属材料。

金属基复合材料具有高强度、高刚度、优良的导热性、良好的耐腐蚀性和可加工性等优点。

金属基复合材料广泛应用于航空航天、汽车工业、船舶制造和建筑等领域。

2.高分子基体材料:高分子基体材料主要是指树脂类材料,如环氧树脂、聚酯树脂、聚酰亚胺等。

高分子基复合材料具有重量轻、绝缘性能好、抗腐蚀性能好等特点。

高分子基复合材料广泛应用于航空航天、汽车工业、电子电器等领域。

3.陶瓷基体材料:陶瓷基体材料主要是指氧化铝、氧化硅、碳化硅等无机材料。

陶瓷基复合材料具有高硬度、高耐磨性、抗高温等特点。

陶瓷基复合材料广泛应用于制造耐火材料、摩擦材料和高温结构材料等领域。

4.碳基体材料:碳基体材料主要是指碳纤维、炭黑等碳材料。

碳基复合材料具有重量轻、高强度、高刚度、耐高温、导电性能好等特点。

碳基复合材料广泛应用于航空航天、汽车工业、体育器材等领域。

5.纳米基体材料:纳米基体材料主要是指纳米颗粒、纳米管、纳米片等纳米材料。

纳米基复合材料具有独特的物理、化学和力学性能,如高强度、高硬度、低摩擦系数等。

纳米基复合材料在材料科学领域具有重要的应用前景。

总之,基体材料是复合材料中重要的组成部分,其种类和性能直接影响着复合材料的性能和应用范围。

随着科技的发展,不断有新型的基体材料涌现,为复合材料的开发和应用带来了新的可能性。

金属基复合材料

金属基复合材料

四、挤压铸造法
挤压铸造法是制造金属基复合材料较理 想的途径,此工艺先将增强体制成预成型 体,放入固定模型内预热至一定温度,浇 人金属熔体,将模具压下并加压,迅速冷 却得到所需的复合材料。
挤压铸造法特点:可以制备出增强相非常 高体积分数(40 %~50 %)的金属基复合 材料,由于在高压下凝固,既改善了金属 熔体的浸润性,又消除了气孔等缺陷,因 此,挤压铸造法是制造金属基复合材料质 量较好,可以一次成型。
六、熔体浸渗法
熔体浸渗工艺包括压力浸渗和无压浸渗。 当前是利用惰性气体和机械装置作为压力 媒体将金属熔体浸渗进多气孔的陶瓷预制 块中,可制备体积分数高达50 %的复合材 料,随后采用稀释的方法降低体积分数。
三、原位生成法
原位生成法指增强材料在复合材料制造 过程中,并在基体中自己生成和生长的方 法,增强材料以共晶的形式从基体中凝固 析出,也可与加入的相应元素发生反应、 或者合金熔体中的某种组分与加入的元素 或化合物之间的反应生成。前者得到定向 凝固共晶复合材料,后者得到反应自生成 复合材料。

原位生成复合材料的特点:增强体是 从金属基体中原位形核、长大的热力学稳 定相,因此,增强体表面无污染,界面结 合强度高。而且,原位反应产生的增强相 颗粒尺寸细小、分布均匀,基体与增强材 料间相容性好,界面润湿性好,不生成有 害的反应物,不须对增强体进行合成、预 处理和加入等工序,因此,采用该技术制 备的复合材料的综合性能比较高,生产工 艺简单,成本较低。
一、搅拌铸造法
搅拌铸造法制备金属基复合材料起源于 1968年,由S.Ray在熔化的铝液中加入氧化 铝,并通过搅拌含有陶瓷粉末的熔化状态 的铝合金而来的。


搅拌铸造法的特点是:工艺简单,操作 方便,可以生产大体积的复合材料(可到 达500 kg),设备投入少,生产成本低, 适宜大规模生产。但加入的增强相体积分 数受到制,一般不超过20 %,并且搅拌后 产生的负压使复合材料很容易吸气而形成 气孔,同时增强颗粒与基体合金的密度不 同易造成颗粒沉积和微细颗粒的团聚等现 象。

复合材料的基体材

复合材料的基体材

复合材料的基体材
常见的复合材料基体材料包括金属、聚合物和陶瓷等。

金属基体材料是最早被应用于复合材料的基体材料之一、金属基复合材料具有高强度、刚性和导热性能,还具有优良的机械性能和良好的成型性能。

由于金属本身的导热性和良好的电导性,金属基复合材料广泛应用于热传导和电传导方面的应用,如散热器、导电线和电子器件等。

聚合物基体材料是应用最广泛的复合材料基体材料之一、聚合物基复合材料具有重量轻、加工性能好、电绝缘性好、化学稳定性好等特点。

此外,聚合物基体材料的成本相对较低,易于大规模生产。

因此,聚合物基复合材料广泛应用于航空航天、汽车工业、电子设备和建筑等领域。

陶瓷基体材料具有高强度、高硬度、高耐压性和高耐磨性等特点。

陶瓷基复合材料的主要优点是在高温和高压环境下具有出色的性能。

陶瓷基复合材料常用于高性能陶瓷刀具、高温热力设备和用于材料强化的陶瓷纤维等领域。

此外,还有一些其他的基体材料,如碳纤维基体材料和纤维增强中空玻璃基体材料等。

碳纤维基体材料具有重量轻、高强度、高弹性模量和耐腐蚀性强等特点,常用于航空航天、汽车和体育器材等领域。

而纤维增强中空玻璃基体材料以其低密度、优良的隔热性能和抗雷击性能而得到广泛应用。

综上所述,复合材料的基体材料类型丰富多样,每种材料都有其独特的优点和应用领域。

随着科技的不断进步和需求的不断增加,对基体材料的研发和应用也在不断深入,为复合材料的发展提供了更广阔的空间。

金属基复合材料应用举例

金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。

金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。

以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。

在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。

2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。

例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。

3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。

在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。

4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。

在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。

5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。

在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。

6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。

在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。

7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。

在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。

8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。

新材料的种类及应用

新材料的种类及应用

新材料的种类及应用新材料是指近年来研发出来的具有特殊性能或特殊结构的材料,通常由人工合成或改变原材料组成和结构而得到。

新材料广泛应用于各个领域,包括工业生产、科学研究、医疗保健、能源技术等。

新材料的种类繁多,根据其材料特性和应用领域的不同,可以分为以下几类:1. 金属基复合材料:这类材料由金属基体和一种或多种非金属基体组成。

它们通常具有高强度、高硬度、耐磨损和耐腐蚀等优点。

金属基复合材料广泛应用于航空航天、汽车制造、建筑和能源领域。

2. 高分子材料:高分子材料是由一种或多种单体聚合而成的大分子化合物。

高分子材料具有较低的密度、良好的绝缘性能和可塑性。

例如,聚乙烯、聚氯乙烯和聚苯乙烯等材料广泛应用于塑料制品、电子设备和纺织品等领域。

3. 纳米材料:纳米材料指的是颗粒尺寸在1到100纳米之间的材料。

纳米材料具有较大的比表面积和更高的化学反应性。

它们广泛应用于能源储存、催化剂、生物医学和环境保护等领域。

4. 超导材料:超导材料是在低温下具有零电阻的材料。

超导材料具有良好的电导率和磁性能,广泛应用于磁共振成像技术、超导电缆和电子器件等领域。

5. 光电功能材料:光电功能材料具有光学、电学和磁学等特殊性能。

例如,光电传感器、太阳能电池和液晶显示器等光电功能材料广泛应用于光学通信和电子设备等领域。

6. 生物材料:生物材料是指可与生物体相容性良好,并能在生物环境下发挥特殊功能的材料。

例如,人工关节、血管支架和骨修复材料等生物材料广泛应用于医学和健康领域。

7. 新型陶瓷材料:新型陶瓷材料具有高强度、高温稳定性和耐腐蚀性能。

例如,氧化铝、氧化锆和碳化硅等陶瓷材料广泛应用于航空航天、化工和电子器件等领域。

8. 智能材料:智能材料是指能够根据外界刺激作出相应响应的材料。

例如,压电材料、形状记忆合金和光变材料等智能材料广泛应用于传感器、控制系统和智能结构等领域。

以上只是新材料的一部分分类和应用领域的简单介绍。

随着科技和材料科学的不断进步,新材料的种类将继续增加,其应用领域也将更加广泛和多样化。

复合材料的基体材料

复合材料的基体材料
体型高聚物是链型(含带支链的)高分子化合物分子 间以化学键交联而形成的具有空间网状结构的高分子 化合物,一般弹性和可塑性较小,而硬度和脆性则较 大。一次加工成型后不再能熔化,故又称为热固性高 聚物。它具有耐热、耐溶剂、尺寸稳定等优点。如酚 醛树脂、硫化橡胶及离子交换树脂等都是体型高聚物。
基体材料
高分子化合物的物理形态
基体材料
环氧树脂
泛指分子中含有两个或两个以上环氧基团的 有机高分子化合物,分子结构是以分子链中 含有活泼的环氧基团为其特征
O 环氧基团:—CH—CH—
基体材料
性能和特性
1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应 各种应用对形式提出的要求,其范围可以从极低的粘度到高熔 点固体。 2、 固化方便。选用各种不同的固化剂,环氧树脂体系几乎可 以在0~180℃温度范围内固化。 3、 粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存 在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收 缩性低,产生的内应力小,这也有助于提高粘附强度。 4、 收缩性低。环氧树脂和所用的固化剂的反应是通过直接加 成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水 或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂 相比,在固化过程中显示出很低的收缩性(小于2%)。
基体材料
基体的作用
把纤维粘在一起; 分配纤维间的载荷; 保护纤维不受环境影响
基体材料
基体材料的工艺性
成型的基本过程:用树脂浸渍纤维—烘干定型— 固化 浸润性能、黏接性能、流动性能、固化性能(成 型方法选择和工艺参数确定的主要依据)。 固化:线形树脂在固化剂存在或加热条件下,发 生化学反应转变成不溶、不熔、具有体型结构的 固态树脂的全过程。黏流态——固态
基体材料

6 金属基复合材料

6 金属基复合材料

6.2.2金属基复合材料的基本性能
5. 耐磨性好 6. 良好的疲劳性能和断裂韧性 良好的界面结合状态可有效传递载荷, 阻止裂纹的扩展, 提高材料的断裂韧性. 7. 不吸潮, 不老化,气密性好
6.2.3 金属基体在复合材料中的作 用
1. 固结增强体 2. 传递和承受载荷 3. 赋予复合材料一定形状, 保证复合材 料具有一定的可加工性. 4. 复合材料的强度、 刚度、密度、耐高 温、 耐介质、 导电、导热等性能均与基 体的相应性质密切相关.
二、钛及钛合金
钛及其合金由于具有比强度高、耐热性好、耐 蚀性能优异等突出优点,自1952年正式作为结构材 料使用以来发展极为迅速,在航空工业和化学工业 中得到了广泛的应用。化学性质十分活泼,缺点是 在真空或惰性气体中进行生产,成本高,价格贵。
钛基复合材料
二、钛及钛合金
(一)纯钛 钛是一种银白色的金属,密度小,熔点高,高的 比强度和比刚度,较高的高温强度。钛的热膨胀系数 很小,热应力较小,导热性差,切削、磨削加工性能 较差。在空气中,容易形成薄而致密的惰性氧化膜, 在氧化性介质中的耐蚀性优良,在海水等介质中也具 有极高的耐蚀性;钛在不同浓度的酸( HF 除外)以及 碱溶液和有机酸中,也具有良好的耐蚀性。 纯钛具有同素异构转变,在882.5℃以上直至熔点 具有体心立方晶格,称为β —Ti。在882.5℃以下具有 密排六方晶格,称为α —Ti。
(二)钛合金
钛合金分为α 型钛合金 β 型钛合金 α +β 型钛合金 以TA、TB和TC表示其牌号
三、铜及铜合金
在自然界中既以矿石的形式存在,又以纯金属的形 式存在。其应用以纯铜为主。铜及铜合金的产品中, 80%是以纯铜被加工成各种形状供应的。
(一)纯铜 呈紫红色,又称紫铜。属重金属范畴,无同素异构 转变,无磁性。最显著的特点是导电、导热性好,仅次于 银。 高的化学稳定性,在大气、淡水中具有良好的抗蚀 性,在海水中的抗蚀性较差。 纯铜具有立方面心结构,极优良的塑性,可进行冷热 压力加工。

复合材料的基体材料

复合材料的基体材料

聚合物受热变化
提高树脂耐热性方法:
增加高分子链刚性:引入共轭双键、三键或环状结构; 进行结晶:-C-O-C-, -OH, -NH2等; 进行交联:交联键增加,提高分子间作用力。
25
三、耐腐蚀性能
树脂的腐蚀 物理作用:溶胀或溶解,导致结构破坏,性能下降 化学作用:化学键破坏或新的化学键 影响因素: 树脂结构 树脂含量 树脂固化交联密度
CH2 O
CH
31




一、 环氧树脂及其固化物的优缺点 (1) 力学性能高。环氧树脂具有很强的内聚力, 分子结构致密,所以它的力学性能高于酚醛树脂和不 饱和聚酯等通用型热固性树脂。 (2) 附着力强。环氧树脂固化体系中含有活性极 大的环氧基、羟基以及醚键、胺键、酯键等极性基团, 赋予环氧固化物对金属、陶瓷、玻璃、混凝士、木材 等极性基材以优良的附着力。 (3) 固化收缩率小。一般为1%~2%。是热固性 树脂中固化收缩率最小的品种之一(酚醛树脂为8%~ 10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4 %~8%)。线胀系数也很小,一般为6×10-5/℃。所 以固化后体积变化不大。 (4) 优良的电绝缘性优良。环氧树脂是热固性树 脂中介电性能最好的品种之一。
理性能将直接影响复合材料的性能。金属材料
分为结构金属材料和功能用金属基复合材料。
2
金属复合材料的优点
1 2 3 与陶瓷材料相 比,金属基复合 材料具有高韧性 和高冲击性能、 热膨胀系数小等 优点
与传统金属材 料相比,金属 基复合材料具 有较高的比强 度、比刚度和 耐磨性
与树脂基复合材 料相比,金属基 复合材料具有优 良的导电、导热 性,高温
聚合物形变:普弹形变、高弹形变、粘流形变
普弹形变:由聚合物分子的键长和键角改变引起, 变形较小(1%) 高弹形变:由大分子链的链段移动引起,是聚合物主 要变形形式(Tg以上) 强迫高弹形变(Tg以下):在外力作用量够大,时间 是够长条件下出现 决定因素:大分子链的柔韧性、大分子链间的交联密度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属基复合材料基体材料姓名:xx班级:xx学号:xx学院:xx金属基复合材料基体材料金属基复合材料是上世纪60年代发展起来的一门相对较新的材料科学,是复合材料的一个分支。

随着航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,这些都有力地促进了先进复合材料的迅速发展。

电子、汽车等民用工业的迅速发展又为金属基复合材料的应用提供了广泛的前景。

特别是近年来,由于复合材料成本的降低,制备工艺逐步完善,在21世纪金属基复合材料将会得到大规模的生产和应用。

本文主要介绍金属基复合材料的基体材料。

一、金属机体的作用:固结增强体,与增强体一道构成复合材料整体,保护纤维使之不受环境侵蚀;传递和承受载荷,在颗粒增强金属基复合材料中基体是主要承载相,在纤维增强金属基复合材料中,基体对力学性能的贡献也远大于在聚合物基体和陶瓷基体在复合材料中的贡献;赋予复合材料一定形状,保证复合材料具有一定的可加工性;复合材料的强度、刚度、耐高温、耐介质、导电、导热等性能均与基体的相应性质密切相关。

二、金属基体占得比重:基体在复合材料中占有很大的体积百分数。

在连续纤维增强金属基复合材料中基体约占50%一70%的体积,一般占60%左右最佳。

颗粒增强金属基复合材料中根据不同的性能要求,基体含量可在90%一25%范围内变化,多数额粒增强金属基复合材料的基体约占80%一90%。

而晶须、短纤维增强金属基复合材料基体含量在70%以上,一般在80一90%。

三、金属基体的优势:金属是最古老、最通用的工程材料之一,它们有许多成熟的成型、加工、连接方法可供金属基复合材料借鉴。

在使用寿命、性能测试等方面有丰富的技术资料;对金属基体自身的性能积累有丰富的数据,对它们在使用中的优缺点拥有丰富的经验。

弹性模量和耐热性高;强度高,还可以通过各种工程途径来进行强化;塑性、韧性好,是强而韧(strong and tough)的材料; 电、磁、光、热、弹等性能好,有应用于多功能复合材料的发展潜力。

四、金属基体的种类金属与合金的品种繁多,目前用作金属基体材料的主要有铝及铝合金、镁合金、钛合金、镍合金、钢与铜合金、锌合金、铅、钛铝金属间化合物等。

五、金属基体选取的原则基体材料成分的正确选择,对能否充分组合和发挥基体金属和增强物的性能特点,获得预期的优异综合性能满足使用要求十分重要。

所以,在选择基体金属时应考虑以下几方面:1、根据金属基复合材料的使用要求金属基复合材料构件的使用性能要求是选择金属基体材料最重要的依据。

在航天、航空技术中,高比强度和比模量以及尺寸稳定性是最重要的性能要求;作为飞行器和卫星的构件宜选用密度小的轻金属合金(如镁合金和铝合金)作为基体,与高强度、高模量的石墨纤维、硼纤维等组成石墨/镁、石墨/铝、硼/铝复合材料。

高性能发动机则要求复合材料不仅有高比强度和比模量,还要具有优良的耐高温性能,能在高温、氧化性气氛中正常工作。

此时不宜选用一般的铝、镁合金,而应选择钛合金、镍合金以及金属间化合物作为基体材料。

如碳化硅/钛、钨丝/镍基超合金(高温合金)复合材料可用于喷气发动机叶片、转轴等重要零件。

在汽车发动机中要求其零件耐热、耐磨、导热、一定的高温强度等,同时又要求成本低廉,适合于批量生产,因此选用铝合金作基体材料与陶瓷颗粒、短纤维组成颗粒(短纤维)/铝基复合材料。

如碳化硅/铝复合材料、碳纤维或氧化铝纤维/铝复合材料可制作发动机活塞、缸套等零件。

工业集成电路需要高导热、低膨胀的金属基复合材料作为散热元件和基板。

因此,可以选用具有高导热率的银、铜、铝等金属为基体与高导热性、低热膨胀的超高模量石墨纤维、金刚石纤维、碳化硅颗粒复合成具有低热膨胀系数和高导热率、高比强度、高比模量等性能的金属基复合材料。

2、根据金属基复合材料组成特点选用不同类型的增强材料如连续纤维、短纤维或晶须,对基体材料的选择有较大影响。

例如在连续纤维增强的复合材料中,基体的主要作用应是以充分发挥增强纤维的性能为主,基体本身应与纤维有良好的相容性和塑性,而并不要求基体本身有很高的强度。

因此,考虑到要充分发挥纤维的作用,希望选用塑性较好的基体。

实验证明,此时如果采用较高强度的合金材料,复合材料的性能将有所降低。

如碳纤维增强铝基复合材料中,纯铝或含有少量合金元素的铝合金作为基体比高强度铝合金要好得多,使用后者制成的复合材料的性能反而低。

在研究碳铝复合材料基体合金的优化过程中发现,铝合金的强度越高,复合材料的性能越低。

这可能与基体和纤维的界面状态、脆性相的存在、基体本身的塑性等有关。

相反。

对于非连续增强(颗粒、晶须、短纤维)金属基复合材料,基体的强度对复合材料具有决定性的影响,因此,要选用较高强度的合金来作为基体。

所以,要获得高性能金属基复合材料必须选用高强度铝合金作为基体,这与连续纤维增强金属基复合材料基体的选择完全不同。

如颗粒增强铝基复合材料一般选用高强度铝合金(如A365,6061,7075)为基体。

3、基体金属与增强物的相容性首先,由于金属基复合材料需要在高温下成型,制备过程中,处于高温热力学非平衡状态下的纤维与金属之间很容易发生化学反应,在界面形成反应层。

界面反应层大多是脆性的,当反应层达到一定厚度后,材料受力时将会因界面层的断裂伸长小而产生裂纹,并向周围纤维扩展,容易引起纤维断裂,导致复合材料整体破坏。

其次,由于基体金属中往往含有不同类型的合金元素,这些合金元素与增强物的反应程度不同,反应后生成的反应产物也不同,需在选用基体合金成分时充分考虑,尽可能选择既有利于金属与增强物浸润复合,又有利于形成合适稳定的界面合金元素。

如碳纤维增强铝基复合材料中,在纯铝中加入少量的Ti,Zr等合金元素可明显改善复合材料的界面结构和性质,大大提高复合材料的性能。

用铁、镍作为基体,碳纤维作为增强物是不可取的。

因为Ni,Fe元素在高温时能有效地促使碳纤维石墨化,破坏了碳纤维的结构,使其丧失了原有的强度,使复合材料性能恶化。

因此,选择基体材料时,应充分注意与增强物的相容性(特别是化学相容性),并尽可能在复合材料成型过程中抑制界面反应。

例如:对增强纤维进行表面处理;在金属基体中添加其他成分;选择适宜的成型方法;缩短材料在高温下的停留时间等。

六、一些常用金属基体铝、镁复合材料一般只能用在450 ℃左右、而钛合金基体复合材料可用到650℃、而镍、钴基复合材料可在1200℃使用。

另外,还有最近正在研究的金属间化合物为热结构复合材料的基体。

1、用于450 ℃以下的轻金属基体在这个温度范围内使用的金属基体主要是铝、镁和它们的合金,而且主要是以合金的形式被广泛的应用。

例如,用于航天飞机、人造卫星、空间站、汽车发动机零件、刹车盘等,并已形成工业规模生产。

铝是一种低密度、较高强度和具有耐腐蚀性能的金属。

在实际使用中,纯铝中常加入锌、铜、镁、锰等元素形成合金,由于加入的这些元素在铝中的溶解度极为有限,因此,这类合金通常称为沉淀硬化合金,A1--Cu--Mg、A1--Zn--Mg--Cu 等沉淀硬化合金。

近年来,为航空和航天工业开发出的A1--Li系列合金,进一步提高了铝的弹性模量,降低了材料的密度。

镁是一种比铝更轻的金属,但镁的机械性能较差,因此,通常是在镁中加入铝、锌、锰、锆及稀土元素而形成镁合金。

目前常用的镁合金主要包括Mg--Mn,Mg--Al--Zn,Mg---Cr等耐热合金,可作为连续或不连续纤维复合材料的基体。

对于不同类型的复合材料应选用合适的铝、镁合金基体。

例如,连续纤维增强金属基复合材料一般选用纯铝或含合金元素少的单相铝合金;而颗粒、晶须增强金属基复合材料则选择具有高强度的铝合金。

2、用于450-700 ℃的复合材料的金属基体通过各种研究表明,在这个温度范围内可以作为金属基复合材料基体使用的,目前主要是钛及其合金。

钛有两种晶形,α-钛具有六方密堆积排列结构,低于885℃时稳定;β-钛是体心立方结构,高于885℃时稳定。

金属铝能提高钛由α向β相转变的温度,所以铝是α相钛的稳定剂。

而大多数其他合金元素(Fe、Mn、Cr、Mo、V、Nb、Ta)能降低钛由α向β相转变的温度,所以是β相钛的稳定剂。

钛在较高的温度中能保持高强度,优良的抗氧化和抗腐蚀性能。

它具有较高的强度/质量比和模量/质量比,是一种理想的航空、宇航应用材料。

钛合金具有比重轻、耐腐蚀、耐氧化、强度高等特点,是一种可在450~700 ℃温度下使用的合金,主要用于航空发动机等零件上。

用高性能碳化硅纤维、碳化钛颗粒、硼化钛颗粒增强钛合金,可以获得更高的高温性能。

美国己成功地试制成碳化硅纤维增强钛复合材料,用它制成的叶片和传动轴等零件可用于高性能航空发动机。

3、用于600-900 ℃的复合材料的金属基体铁和铁合金是在此温度范围内使用的金属基体。

在金属基复合材料中使用的铁,主要是铁合金,按加工工艺分为变形高温合金和铸造高温合金。

其中,铁基变形高温合金是奥氏体可塑性变形高温合金,主要组成为15%~60%铁,25%~55%镍和11%~23%铬。

此外,根据不同的使用温度,分别加入钨、钼、铌、钒、钛等合金元素进行强化。

铁基铸造高温合金是以铁为基体,用铸造工艺成型的高温合金,基体为面心立方体结构的奥氏体。

铁基变形高温合金、铸造高温合金分别用于制造燃气涡轮发动机的燃烧室和涡轮轮盘、涡轮导向叶片等。

4、用于1000 ℃以上的金属基体用于1000 ℃以上的高温金属基复合材料的基体材料主要是镍基耐热合金和金属间化合物。

其中,研究较为成熟的是镍基高温合金,金属间化合物基复合材料尚处于研究阶段。

在金属基复合材料中使用的镍与铁相同,按照加工工艺不同,可形成镍基变形高温合金和镍基铸造高温合金。

镍基变形高温合金以镍为基体(含量一般大于50%),加入钨、钼、钴、铬、铌等合金元素,使用温度在650~1000℃,具有较高的强度、良好的抗氧化和抗燃气腐蚀能力,用于制造燃气涡轮发动机的燃烧室等。

镍基铸造高温合金是以镍为基体,用铸造工艺成型的高温合金,能在600~1100℃的氧化和燃气腐蚀气氛中承受复杂压力,并能长期可靠地工作,主要用于制造涡轮转子叶片和导向叶片及其他在高温条件下工作的零件。

另外,用钨丝、钍钨丝增强镍基合金还可以大幅度提高其高温性能。

如高温持久性能和高温蠕变性能,一般可提高1.3倍,主要用于高性能航空发动机叶片等重要零件。

5、金属间化合物使用温度可达1600℃金属间化合物种类繁多,而用于金属基复合材料的金属间化合物通常是一些高温合金,如铝化镍,铝化铁、铝化钛等,使用温度可达1600℃。

在这些高温合金的晶体结构中,原子主要以长程有序方式排列。

由于这种有序在金属间化合物中发生位错要比在无序合金中受到更大的约束,因此能使化合物在高温下保持强度。

相关文档
最新文档