金属基复合材料综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属基复合材料综述

专业:

学号:

姓名:

时间:

金属基复合材料综述

摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。

关键词:金属基复合材料;分类;性能;应用;制备;发展趋势

Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development.

Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend.

1.引言

复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

2.金属基复合材料的发展历程及研究现状

20世纪60年代为满足发展高性能武器装备的军事需要,人们开始对金属基复合材料(MMCs)进行研究和开发。70年代末,军事领域也开始强调经济性和风险性,政府军事采购的数量明显减少,使得高性能MMCs的开发和应用变得相当困难。80 年代,成本低、加工性能好的非连续增强MMCs出现,使MMCs的研发复兴,也开始进入其它应用领域。至今,MMCs 已成为继金属材料、无机非金属材料、高分子材料之后的第四大类材料,应用前景广阔。MMCs 除了具有基体金属或合金具备的良好的导热、导电性能,抗苛刻环境能力,抗冲击、抗疲劳性能和断裂性能以外,MMCs还具有高强度、高刚度,出色的耐磨性能和更低的热膨胀系数(CTE)。基体材料的改变,增强体材料、尺寸、形状和基体材料的改变,增强体材料、尺寸、形状和分布的几乎没有穷尽的组合,使MMCs具有多样性。众多基体中,目前以铝、镁、钛基发展较为成熟。增强体中以SiC的使用量最大,远远超出了其它复合材料;其次是Al2O3。增强体不同,制造成本也有很大不同。连续纤维增强MMCs要比颗粒增强MMCs价格高很多,短纤维和晶须增强MMCs价格居中。

3.金属复合材料的性能

3.1结构性能

强度和刚度是结构应用的两个最重要的特性。轴向性能,石墨环氧复合材料(Gr)的比强度和比刚度远高于其它材料,Ti(f)和Al(f)的次之。平面增强的Gr是 (在平面内)准各向同性的,且Gr比钛基复合材料(TMCs)廉价,比其它MMCs易得,注定了它是最大单向结构效率的首选材料。典型的结构件必须承受多向载荷,因此单向复合材料的应用受到限制。非连续增强MMCs的比强度和比刚度适中,易于获得,是最具竞争力的结构材料。MMCs越来越多地应用于那些断裂敏感的场合,并被实践证明完全可以满足使用要求。

3.2热学管理性能

热学管理是MMCs的一项很重要的应用,应用范围很广,包括计算机处理器的芯片基片,功率半导体设备和远程通信中的微波元件封装。高的热导率是首要的性能,比热导率是运动系统中组件的一个非常重要的性能。CTE是热学管理中第二重要的性能。

3.3用于精密装置的性能

像磁盘驱动器、录像头、原子力显微镜的载物台、机械臂、惯性引导系统、人造卫星天

线、高速制造设备和推进系统,在运行时承受很大的热梯度和机械应力的同时还要保持严格的尺寸公差。对机械变形的抗力取决于材料的特性,比如刚度和密度,还有组件的几何形状和承受载荷的方式。特定质量下具有更高的E/ρ值的材料具有更好的抗弹性挠曲的能力。大的热导率能减小热梯度从而减小热诱导应力,所以增大λ/α有利于减小热诱导变形。3.4耐磨性能

耐磨性能是MMCs的众多性能中很重要的一项。硬质增强颗粒的加入从本质上增强了基体金属的耐磨性能。MMCs适于作耐磨材料,性价比更高,经济性能更好。

4.金属基复合材料的分类

金属基复合材料的增强体是一些不同几何形状的金属或非金属材料。目前,其增强相已有很多,重要的有氧化铝纤维、硼纤维、石墨(碳)纤维、SiC纤维、SiC晶须;颗粒型的有SiC、碳化硼、图化钛等;丝状的有钨、铍、硼、钢等。金属基复合材料按其增强材料的几何形态可划分为五类。

(1)连续纤维增强金属基复合材料纤维增强金属基复合材料是利用无机纤维(或晶须)及金属细线等增强金属得到质量轻且强度高的材料,纤维直径从3~150mm(晶须直径小于 1 mm),纵横比(长度直径)在102以上。

(2)短纤维增强金属基复合材料作为金属基复合材料增强体的短纤可分为天然纤维制品和短切纤维。天然纤维主要是一些植物纤维和菌类纤维索等,长度一般为35~150 mm;短切纤维一般是由连续纤维(长纤维)切割而成,长度 1~50 mm,用于金属基复合材料短纤维增强体的材料主要有Saffil-Al2O3、Al2O3-SiO2、SiC等。

(3)晶须增强金属基复合材料晶须是指在特定条件下以单晶的形式生长而成的一种高纯度纤维,其原子排列高度有序,几乎不含晶界位错等晶体结构缺陷,有异乎寻常的力学性能。

(4)颗粒增强金属基复合材料颗粒增强金属基复合材料是利用颗粒自身的强度,其基体起着把颗粒组合在一起的作用,颗粒平均直径在1微米以上,强化相的容积比可达90%。常用作金属基复合材料增强体的颗粒主要有:SiCAl2O3、TiC、TiB2、NiAl、Si3N4等陶瓷颗粒,以及石墨颗粒,甚至金属颗粒。

(5)混杂增强金属复合材料对上述四种单一的增强形式进行有机的组合就形成了混杂增强。增强体的混杂组合可分为三种:颗粒-短纤维(或晶须)连续纤维-颗粒、连续纤维-连续纤维、在短纤维或晶须的预制件中,易出现增强的粘结、团聚现象,颗粒的混入可以解决

相关文档
最新文档