复合材料概论金属基复合材料

合集下载

第六章金属基复合材料

第六章金属基复合材料
44
复合材料强度同组分性能间的关系 可用如下的公式表示:
C *F.VFM.VM
式中,C*表示复合材料的抗拉强度,即复合 材料原始面积上的应力; F为所有纤维上的平均 应力; M是基体在断裂时的平均应力;VF和VM 是纤维和基体的体积分数。
45
如果没有孔隙及第三相存在,则应有
VFVM1
对于脆性材料或高强度材料,这种要求 是非常重要的。
由于复合材料的强度取决于纤维的束强 度,这种束强度与每个纤维的强度有关。因 此,需使各个纤维的强度驱于一致。
29
(G)抗损伤或抗磨损性能。 脆性纤维对湿暴露或表而磨损特别敏感, 这些缺点对一般复合工艺都有不利影响。
30
下表列出了一些重要的增强纤维及其性能
下图给出了二维阻滞力的示意图。
61
负荷
二维裂纹的扩展
箭头表示纤维上的剪切应力
62
如果这些力平均分配在最近邻的六根纤 维上及平均纤维应力是2.8GPa时,则在纤维 断裂时,加给邻近纤维的局部附加张应力就 是2.8GPa,或者说每邻近纤维上的附加张应 力是0.45GPa。
63
纤维断裂处的附加应力值最大,而在离 开断头端的距离等于临界剪切传递长度处, 附加应力减小到零。
而与树脂基复合材料相比,它又具有 优良的导电性与耐热性;
与陶瓷基材料相比,它又具有高韧性 和高冲击性能。
3
金属基复合材料的这些优良的性能决 定了它已从诞生之日起就成了新材料家族 中的重要一员,它已经在一些领域里得到 应用并且其应用领域正在逐步扩大。
4
一、金属基复合材料的种类
金属基复合材料是以金属为基体,以 高强度的第二相为增强体而制得的复合材 料。因此,对这种材料的分类既可按基体 来进行、也可按增强体来进行。

金属基复合材料

金属基复合材料

四、挤压铸造法
挤压铸造法是制造金属基复合材料较理 想的途径,此工艺先将增强体制成预成型 体,放入固定模型内预热至一定温度,浇 人金属熔体,将模具压下并加压,迅速冷 却得到所需的复合材料。
挤压铸造法特点:可以制备出增强相非常 高体积分数(40 %~50 %)的金属基复合 材料,由于在高压下凝固,既改善了金属 熔体的浸润性,又消除了气孔等缺陷,因 此,挤压铸造法是制造金属基复合材料质 量较好,可以一次成型。
六、熔体浸渗法
熔体浸渗工艺包括压力浸渗和无压浸渗。 当前是利用惰性气体和机械装置作为压力 媒体将金属熔体浸渗进多气孔的陶瓷预制 块中,可制备体积分数高达50 %的复合材 料,随后采用稀释的方法降低体积分数。
三、原位生成法
原位生成法指增强材料在复合材料制造 过程中,并在基体中自己生成和生长的方 法,增强材料以共晶的形式从基体中凝固 析出,也可与加入的相应元素发生反应、 或者合金熔体中的某种组分与加入的元素 或化合物之间的反应生成。前者得到定向 凝固共晶复合材料,后者得到反应自生成 复合材料。

原位生成复合材料的特点:增强体是 从金属基体中原位形核、长大的热力学稳 定相,因此,增强体表面无污染,界面结 合强度高。而且,原位反应产生的增强相 颗粒尺寸细小、分布均匀,基体与增强材 料间相容性好,界面润湿性好,不生成有 害的反应物,不须对增强体进行合成、预 处理和加入等工序,因此,采用该技术制 备的复合材料的综合性能比较高,生产工 艺简单,成本较低。
一、搅拌铸造法
搅拌铸造法制备金属基复合材料起源于 1968年,由S.Ray在熔化的铝液中加入氧化 铝,并通过搅拌含有陶瓷粉末的熔化状态 的铝合金而来的。


搅拌铸造法的特点是:工艺简单,操作 方便,可以生产大体积的复合材料(可到 达500 kg),设备投入少,生产成本低, 适宜大规模生产。但加入的增强相体积分 数受到制,一般不超过20 %,并且搅拌后 产生的负压使复合材料很容易吸气而形成 气孔,同时增强颗粒与基体合金的密度不 同易造成颗粒沉积和微细颗粒的团聚等现 象。

复合材料概论

复合材料概论

1、复合材料的定义由两种或两种以上的物理和化学性质不同的物质组合而成的一种多相固体材料。

2、同质复合材料和异质材料增强材料和基体材料属于同种物质的复合材料为同质材料。

异质材料则是不同物质。

3、金属基复合材料的性能在金属基体中加入了适量的高强度、高模量、低密度的纤维、晶须、颗粒等增强物,明显提高了复合材料的比强度和比模量。

4、树脂基复合材料、金属基复合材料和陶瓷基复合材料性能区别树脂基复合材料的使用温度一般为60℃~250℃,其导热性能为0.35~0.45W/m·K金属基复合材料为400~600℃,其导热性能为50~65W/m·K和陶瓷基复合材料性能为1000~1500℃,0.7~3.5W/m·K。

陶瓷基复合材料大于金属基复合材料的硬度,金属基复合材料大于树脂基复合材料的硬度。

5、复合材料结构的分类从固体力学角度,分为三个“结构层次”:一次结构、二次结构、三次结构。

一次结构:由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能;二次结构:由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何;三次结构:通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。

6、复合材料选择基体的原则①金属基复合材料的使用要求:高性能发动机要求有高强度比、比模量性能,要求具有优良的耐高温性能,能在高温、氧化性气氛中正常工作。

在汽车发动机中要求其零件耐热、耐磨、导热,一定的高温强度等,又要求成本低廉,适合批量生产。

②金属基复合材料组成特点:对于连续纤维增强金属基复合材料,纤维是主要承载物体,纤维本身具有很高的强度和模量。

对于非连续增强金属基复合材料,基体是主要承载物,基体的强度对非连续增强基复合材料具有决定性的影响。

③基体金属与增强物的相容性。

7、与树脂相比水泥基体的特征①水泥基体为多孔体系;②纤维与水泥的弹性模量比不大;③水泥基材的断裂延伸率较低,仅是树脂基体的1/10~1/20;④水泥基材中含有粉末或颗粒状的物料,与纤维呈点接触,故纤维的掺量受到很大限制;⑤水泥基材呈碱性,对金属纤维可起保护作用,但对大多数矿物纤维是不利的。

金属基复合材料

金属基复合材料

03
主要性能 特点
线膨胀系数小,尺寸稳定性好 04 良好的抗疲劳性能和断裂韧性
增强物在金属基体中的分布以及金属、增强物本身的特性可以有效地传 递载荷,又能阻止裂纹的扩展,提高了材料的断裂韧性。
05
二次加工性能较好
目前成熟的各种金属材料加工工艺及设备,可有效 实现金属基复合材料的二次加工
Part 2
制造方法 喷涂与喷射沉积法
原位复合法
03
此法主要由金属材料表面强 化技术衍生而来
04
包括:物理气相沉积法、化 学气相沉积法、热喷涂法、 化学镀和电镀法、复合镀法 等。
Part 4
发展前景
优劣势分析
现代科学技术的发展对材料的要求日益提高,使普通的单一材 料越来越难以满足客观形势的需要。复合材料将多种材料的优 点集于一身,扬长避短,兼有高强度、高模量和轻比重等一系列 优点。它的工作温度高,层间剪切强度高,并具有导电导热、耐 磨损、不吸湿不放气、尺寸稳定、不老化等一系列金属属性, 是一种优良的结构材料
主要性能特点
主要类别
制造方法
发展展望
Part 1
主要性能特点
高比强度、高比模量 01 由于在金属基体中加入了适量的高强度、高模量、低密度的纤维、晶须、颗粒等
增强物,明显提高了复合材料的比强度和比模量,特别是高性能连续纤维。
02
导热性能好,使用温度范围大
金属基复合材料中的金属基体占有很高的体积分数,一般在60%以上,因此仍保 持金属所特有的良好的导热性和导电性。增强纤维、晶须、颗粒住高温下又都具 有很高的高温强度和模量
金属基复合材料
Metal Matrix Composite
第二组
主讲人:黄妃
简介 Introduction

金属基复合材料ppt课件

金属基复合材料ppt课件

(3)、热膨胀系数小、尺寸稳定性好
金属基复合材料中的碳纤维、碳化硅纤维、晶须、颗 粒、硼纤维等均具有很小的热膨胀系数,又具有很高的 模量,特别是高模量、超高模量的石墨纤维具有负的热 膨胀系数。加入相当含量的增强物不仅大幅度提高材料 的强度和模量,也使其热膨胀系数明显下降,并可通过 调整增强物的含量获得不同的热膨胀系数,以满足各种 应用的要求。
铝基复合材料是在金属基复合材料中应用得最广
的一种。由于铝的基体为面心立方结构,因此具有良好的塑 性和韧性,再加之它所具有的易加工性、工程可靠性及价格 低廉等优点,为其在工程上应用创造了有利的条件。
在制造铝基复合材料时,通常并不是使用纯铝而是用各 种铝合金。
铝基复合材料
• 大型运载工具的首选材料。如波音747、757、767 • 常用:B/Al、C/Al、SiC/Al • SiC纤维密度较B高30%,强度较低,但相容性好。 • C纤维纱细,难渗透浸润,抗折性差,反应活性较高。 • 基体材料可选变形铝、铸造铝、焊接铝及烧结铝。它们
(2)、导热导电性能
虽然有的增强体为绝缘体,但在复合材料中占 很小份额,基体导电及导热性并未被完全阻断, 金属基复合材料仍具有良好的导电与导热性。
为了解决高集成度电子器件的散热问题,现已 研究成功的超高模量石墨纤维、金刚石纤维、金 刚石颗粒增强铝基、铜基复合材料的热导率比纯 铝、铜还高,用它们制成的集成电路底板和封装 件可有效迅速地把热量散去,提高了集成电路的 可靠性。
氧化铝和硅酸铝短纤维增强铝基复合材料的室温 拉伸强度并不比基体合金高,但它们的高温强度明显 优于基体,弹性模量在室温和高温都有较大的提高, 热膨胀系数减小,耐磨性能得到改善。
• 纤维增强复合材料的强度和刚性与纤维方向密纤维使材料具有明显的各向异性。纤维采 用正交编织,相互垂直的方向均具有好的性能。纤维 采用三维编织,可获得各方向力学性能均优的材料。

复合材料第五章(1)金属基复合材料-金属基复合材料的分类

复合材料第五章(1)金属基复合材料-金属基复合材料的分类
解决方法:表面Zn、Ti或Na、Sn涂层处理 (增加润湿性,防止过量Al4C3生成)
42
图5.11 熔池法纤维 / 基体复合丝示意图
43
2.2.2 固态法 — 连续增强相金属基复合材料制备工艺
(1)真空热压扩散结合(Vaccum Press / Diffusion Bonding)
工艺特点:制备连续纤维金属基复合材料传统工艺
强度:与颗粒在基体中分布的平均间距Dp有关 (Dp越小,屈服强度越高)
模量:与颗粒形状有关
(长径比值增大,对混合定律偏差减小)
29
(2)断裂韧性
影响因素:颗粒大小、颗粒及晶须取向 等
随着直径d增加、体积含量减少,复合材料断裂韧性增加
PRMMC的断裂韧性一般要优于WRMMC
(晶须前沿会造成应力集中,容易引发裂纹)
偏析、偏聚、孔隙等缺陷少 复合材料性能明显改善
46
(3) 模压成型(Mold Forming)
工艺特点: 属于扩散结合 工艺概要: 预制体在模具中加压进行扩散结合 工艺优点: 制品有一定形状(可制备各种型材)
47
(4) 粉末(冶金)法(Slurry Powder Metallurgy)
工艺特点:解决了使用金属箔材成本高问题 工艺优点:成本低
38
(3)PVD法纤维/基体 复合丝
纤维/基体复合丝制备:基体金属物理气相沉积到纤维表面
复合材料制备: 基体与基体之间扩散结合
有利于材料界面改善 可控制纤维体积比(沉积层厚度)
39
(4)粉末法纤维/基体 复合丝 1)基体粉末与聚合物粘接剂混合制备成胶体 2)纤维通过毛细管胶槽,表面涂敷一层基体粉末胶体
Al
2.7 660 23.1 218 72.4

金属基复合材料

金属基复合材料

⾦属基复合材料以⾦属或合⾦为基体,并以纤维、晶须、颗粒等为增强体的复合材料。

按所⽤的基体⾦属的不同,使⽤温度范围为350~120℃。

其特点在⼒学⽅⾯为横向及剪切强度较⾼,韧性及疲劳等综合⼒学性能较好,同时还具有导热、导电、耐磨、热膨胀系数⼩、阻尼性好、不吸湿、不⽼化和⽆污染等优点。

例如碳纤维增强铝复合材料其⽐强度3~4×107mm,⽐模量为6~8×109mm,⼜如⽯墨纤维增强镁不仅⽐模量可达1.5×1010mm,⽽且其热膨胀系数⼏乎接近零。

⾦属基复合材料按增强体的类别来分类,如纤维增强(包括连续和短切)、晶须增强和颗粒增强等,按⾦属或合⾦基体的不同,⾦属基复合材料可分为铝基、镁基、铜基、钛基、⾼温合⾦基、⾦属间化合物基以及难熔⾦属基复合材料等。

由于这类复合材料加⼯温度⾼、⼯艺复杂、界⾯反应控制困难、成本相对⾼,应⽤的成熟程度远不如树脂基复合材料,应⽤范围较⼩。

树脂基复合材料通常只能在350℃以下的不同温度范围内使⽤。

近些年来正在迅速开发研究适⽤于350℃~1200℃使⽤的各种⾦属基复合材料。

⾦属基复合材料是以⾦属或合⾦为基体与各种增强材料复合⽽制得的复合材料。

增强材料可为纤维状、颗粒状和晶须状的碳化硅、硼、氧化铝及碳纤维。

⾦属基体除⾦属铝、镁外,还发展有⾊⾦属钛、铜、锌、铅、铍超合⾦和⾦属间化合物,及⿊⾊⾦属作为⾦属基体。

⾦属基复合材料除了和树脂基复合材料同样具有⾼强度、⾼模量外,它能耐⾼温,同时不燃、不吸潮、导热导电性好、抗辐射。

是令⼈注⽬的航空航天⽤⾼温材料,可⽤作飞机涡轮发动机和⽕箭发动机热区和超⾳速飞机的表⾯材料。

⽬前不断发展和完善的⾦属基复合材料以碳化硅颗粒铝合⾦发展最快。

这种⾦属基复合材料的⽐重只有钢的1/3,为钛合⾦的2/3,与铝合⾦相近。

它的强度⽐中碳钢好,与钛合⾦相近⽽⼜⽐铝合⾦略⾼。

其耐磨性也⽐钛合⾦、铝合⾦好。

⽬前已⼩批量应⽤于汽车⼯业和机械⼯业。

金属基复合材料概述

金属基复合材料概述

Si、Al—cu和Al—Fe等体系。增强体主要有Sic颗粒、 A1203颗粒、Bc4颗粒、TiC颗粒等。其中采用SiC颗 粒增强的铝基复合材料具有性能高、价格低、密度 小等优点,是目前应用最广泛的铝基复合材料,在 国外已经实现规模化生产。美国DwA公司用SiC颗 粒增强6092铝基复合材料代替铝合金制造F—16战 斗机的垂直尾翼,提高寿命17倍。Eurocopter公司已
按照基体和增强体的不同,金属基复合材料可 按照如下分类。 按基体材料分为:黑色金属基(钢、铁)、有色 金属基(铝基、锌基、镁基、铜基、钛基、镍基)、耐 热金属基、金属间化合物基复合材料等。目前铝基、 镁基、钛基复合材料发展较为成熟,已逐步应用于 航空航天、电子、汽车等工业领域。 按增强体分为:连续纤维增强金属基复合材料; 非连续增强金属基复合材料(颗粒、短纤维、晶须增 强金属基复合材料);混杂增强金属复合材料、层板金 属基复合材料;自生增强金属基复合材料(包括反应、 定向凝固、大变形等途径自生颗粒、晶须、纤维状增 强体)等。其中,自生复合材料的增强相在热力学上 是稳定的,界面结合强度高,而且增强体的尺寸和体 积分数可以通过工艺参数控制,是目前研究的热点。
Hale Waihona Puke 在金属基体中加入适量的高强度、高模量、低 密度的纤维、晶须及颗粒等增强体,可显著提高 复合材料的比强度和比模量。如:碳纤维密度只有
1.85咖m3,最高强度可达7,oooMPa,比铝合金强度
高出10倍以上。石墨纤维的最高模量可达900GPa, 比普通钢材要高4倍以上,而B纤维、Sic颗粒的密度
2金属基复合材料的分类
4典型的金属基复合材料
4.1铝基复合材料 铝及铝合金具有密度低、塑韧性好、导热导电 性较好等优点,但其熔点低、耐磨性差的缺陷限制 了其在更广范围和更高领域的应用。而铝基复合材 料通过增强相的加入使之具有高比强度、高比刚度、 耐磨性好、尺寸稳定性好以及易于加工等一系列优 良特性,在航空航天、汽车、电子等工业领域具有十 分广泛的应用前景。 铝基复合材料常用的基体有Al—M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档