金属基复合材料的种类与性能

合集下载

金属基复合材料

金属基复合材料

现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。

传统的单一材料已经很难满足这种需要。

因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。

其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。

作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。

现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。

金属基复合材料正是为了满足上述要求而诞生的。

1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。

金属基复合材料分为宏观组合型和微观强化型两大类。

前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。

根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。

用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。

(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。

强调具有电、热、磁等功能特性。

(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。

根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。

按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。

2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。

金属基复合材料特点

金属基复合材料特点

金属基复合材料特点一、金属基复合材料的特点1. 高强度和刚性:金属基复合材料具有很高的强度和刚性,比一般的金属材料更加坚固和耐用。

这种材料通常用于需要承受高强度和高压力的工程应用中。

2. 耐高温性能:金属基复合材料通常具有良好的耐高温性能,可以在高温环境下保持稳定的物理和化学性质。

这种特性使其在航空航天和发动机制造领域得到广泛应用。

3. 耐腐蚀性能:金属基复合材料具有出色的耐腐蚀性能,可以抵抗各种化学物质的侵蚀和腐蚀。

这使其成为在化学工业和海洋工程中广泛使用的材料。

4. 良好的导热性和导电性:金属基复合材料保留了金属材料良好的导热性和导电性,可以有效传递热量和电流,适用于需要热传导和电导的应用。

5. 易加工性:金属基复合材料在加工过程中具有较好的可塑性和可加工性,可以通过锻造、压铸、热处理等工艺加工成各种形状和尺寸,满足不同工业领域的需求。

6. 轻量化:金属基复合材料相比纯金属材料更轻,可以有效降低结构重量,提高整体性能。

因此,在航空航天、汽车制造等领域有着广泛的应用前景。

7. 良好的疲劳性能:金属基复合材料具有较好的疲劳性能,可以在多次载荷循环下保持稳定的性能,延长材料的使用寿命。

8. 损伤容限性:金属基复合材料在遭受外部冲击或应力时,具有较好的损伤容限性,能够有效减缓损伤扩张速度,延缓失效。

9. 界面结合强度高:金属基复合材料的金属基体和非金属增强相之间具有良好的界面结合强度,提高了材料的整体性能和稳定性。

10. 抗磨损性能:金属基复合材料具有良好的抗磨损性能,可以在高摩擦和磨损环境下保持长久的使用寿命,适用于摩擦材料和润滑部件。

二、金属基复合材料的优点1. 综合性能优异:金属基复合材料综合了金属材料和陶瓷、聚合物等非金属材料的优点,具有较好的强度、刚性、耐热耐腐等性能。

2. 可调性强:金属基复合材料的组分和结构可以根据具体需求进行调整和设计,以获得满足不同工程应用需求的材料。

3. 轻量化设计:金属基复合材料比纯金属材料更轻,可以实现结构轻量化设计,提高整体性能和效率。

金属基复合材料

金属基复合材料

四、挤压铸造法
挤压铸造法是制造金属基复合材料较理 想的途径,此工艺先将增强体制成预成型 体,放入固定模型内预热至一定温度,浇 人金属熔体,将模具压下并加压,迅速冷 却得到所需的复合材料。
挤压铸造法特点:可以制备出增强相非常 高体积分数(40 %~50 %)的金属基复合 材料,由于在高压下凝固,既改善了金属 熔体的浸润性,又消除了气孔等缺陷,因 此,挤压铸造法是制造金属基复合材料质 量较好,可以一次成型。
六、熔体浸渗法
熔体浸渗工艺包括压力浸渗和无压浸渗。 当前是利用惰性气体和机械装置作为压力 媒体将金属熔体浸渗进多气孔的陶瓷预制 块中,可制备体积分数高达50 %的复合材 料,随后采用稀释的方法降低体积分数。
三、原位生成法
原位生成法指增强材料在复合材料制造 过程中,并在基体中自己生成和生长的方 法,增强材料以共晶的形式从基体中凝固 析出,也可与加入的相应元素发生反应、 或者合金熔体中的某种组分与加入的元素 或化合物之间的反应生成。前者得到定向 凝固共晶复合材料,后者得到反应自生成 复合材料。

原位生成复合材料的特点:增强体是 从金属基体中原位形核、长大的热力学稳 定相,因此,增强体表面无污染,界面结 合强度高。而且,原位反应产生的增强相 颗粒尺寸细小、分布均匀,基体与增强材 料间相容性好,界面润湿性好,不生成有 害的反应物,不须对增强体进行合成、预 处理和加入等工序,因此,采用该技术制 备的复合材料的综合性能比较高,生产工 艺简单,成本较低。
一、搅拌铸造法
搅拌铸造法制备金属基复合材料起源于 1968年,由S.Ray在熔化的铝液中加入氧化 铝,并通过搅拌含有陶瓷粉末的熔化状态 的铝合金而来的。


搅拌铸造法的特点是:工艺简单,操作 方便,可以生产大体积的复合材料(可到 达500 kg),设备投入少,生产成本低, 适宜大规模生产。但加入的增强相体积分 数受到制,一般不超过20 %,并且搅拌后 产生的负压使复合材料很容易吸气而形成 气孔,同时增强颗粒与基体合金的密度不 同易造成颗粒沉积和微细颗粒的团聚等现 象。

金属基复合材料(MMC)

金属基复合材料(MMC)

3.熔渗
将增强材料制成多孔预制体,置基体金属熔 体的上方或内部,利用毛细力的使熔体作用渗 入预制中。也可将预制体和基体金属坯料装入 一可通入流动氮气的加热炉中。通过加热,基 体金属熔化,自发渗透入网络状增强材料预制 体中
三、喷涂与喷射沉积
喷涂沉积主要应用于纤维增强金属基复合材 料的须制层的制备,也可以获得复合层状复合 材料的坯料。喷射沉积则主要用于制备颗粒增 强金属基复合材料。喷射与喷涂沉积工艺的最 大特点是增强材料与基体金属的润湿性要求低; 增强材料与熔融金属基体的接触时间短,界面 反应量少。喷涂沉积制备纤维增强金属基复合 材料时,纤维的分布均匀,获得的薄单层纤维 增强预制层可以很容易地通过扩散结合工艺形 成复合材料结构形状和板材。喷涂与喷射沉积 工艺,可以与各种陶瓷纤维或颗粒复合,即基 体金属的选择范围广。
高温性能优良。合金化后的耐热性显著提高,可以作为 高温结构材料使用,如航空发动机的压气机转子叶片等, 长期使用最高温度已达540℃
在大气和海水中有优异的耐蚀性.在硫酸、盐酸、硝酸 相氢氧化纳等介质中都很稳定
导电与导热性差.导热系数只有铜的1/l 7和铝的l/10, 比电阻为铜的25倍
常用钛合金的性能
第五章 金属基复合材料(MMC)
第一节 概 述
一、MMC的沿革与发展
二、MMC的分类
1、按增强材料形态分类 纤维增强金属基复合材料 颗粒和晶须增强金属基复合材料 2、按金属基体分类 铝基复合材料 钛基复合材料 镁基复合材料 高温合金复合材料 金属间化合物复合材料
第二节 金属基体
热压
在真空或保护气氛下直接放入热压模 或平板进行热压合热压工艺参数主要为: 热压温度、压力和时间
扩散结合的优缺点:

6 金属基复合材料

6 金属基复合材料

6.2.2金属基复合材料的基本性能
5. 耐磨性好 6. 良好的疲劳性能和断裂韧性 良好的界面结合状态可有效传递载荷, 阻止裂纹的扩展, 提高材料的断裂韧性. 7. 不吸潮, 不老化,气密性好
6.2.3 金属基体在复合材料中的作 用
1. 固结增强体 2. 传递和承受载荷 3. 赋予复合材料一定形状, 保证复合材 料具有一定的可加工性. 4. 复合材料的强度、 刚度、密度、耐高 温、 耐介质、 导电、导热等性能均与基 体的相应性质密切相关.
二、钛及钛合金
钛及其合金由于具有比强度高、耐热性好、耐 蚀性能优异等突出优点,自1952年正式作为结构材 料使用以来发展极为迅速,在航空工业和化学工业 中得到了广泛的应用。化学性质十分活泼,缺点是 在真空或惰性气体中进行生产,成本高,价格贵。
钛基复合材料
二、钛及钛合金
(一)纯钛 钛是一种银白色的金属,密度小,熔点高,高的 比强度和比刚度,较高的高温强度。钛的热膨胀系数 很小,热应力较小,导热性差,切削、磨削加工性能 较差。在空气中,容易形成薄而致密的惰性氧化膜, 在氧化性介质中的耐蚀性优良,在海水等介质中也具 有极高的耐蚀性;钛在不同浓度的酸( HF 除外)以及 碱溶液和有机酸中,也具有良好的耐蚀性。 纯钛具有同素异构转变,在882.5℃以上直至熔点 具有体心立方晶格,称为β —Ti。在882.5℃以下具有 密排六方晶格,称为α —Ti。
(二)钛合金
钛合金分为α 型钛合金 β 型钛合金 α +β 型钛合金 以TA、TB和TC表示其牌号
三、铜及铜合金
在自然界中既以矿石的形式存在,又以纯金属的形 式存在。其应用以纯铜为主。铜及铜合金的产品中, 80%是以纯铜被加工成各种形状供应的。
(一)纯铜 呈紫红色,又称紫铜。属重金属范畴,无同素异构 转变,无磁性。最显著的特点是导电、导热性好,仅次于 银。 高的化学稳定性,在大气、淡水中具有良好的抗蚀 性,在海水中的抗蚀性较差。 纯铜具有立方面心结构,极优良的塑性,可进行冷热 压力加工。

金属基复合材料

金属基复合材料
蓝宝石晶须是迄今所发现的强度最高的固体形态,小直径的晶须强度较高且比粗的容易生长,所以在制造复合材料时被优先选用,为 了改善与金属的浸润性和便于制造需用金属涂层,厚度应小于0. 真空蒸发工艺能成功地把大量铝沉积到纤维上,但由于纤维与基体之间的剥离,用这种方法制得的复合材料强度相当低。 主要方法是将纤维夹在金属板之间进行加热,这种方法通常称为扩散结合。 1 蓝宝石晶须和蓝宝石杆 硼铝复合材料的增强纤维与基体 硼纤维具有一系列很突出的优点,它的比模量和比强度高、与固态铝和液态镁的化学相容性好、直径大,再现性好且价格适宜。 1)硼钛复合材料的界面组织结构
腐蚀、抗蠕变和耐疲劳等优异性能,主要用于制造高 温下工作的零部件。
(3)钛基复合材料 比任何其他的结构材料具有更高的比强度,且耐热性好
,抗蚀性能优异。
2.按增强体分类 (1)颗粒增强复合材料 (2)层状复合材料 (3)纤维增强复合材料 6.1.2 金属基复合材料中增强体的性质 连续纤维增强对金属基体的增强效果最好,对于纤维状增
除了上述制造工艺外,还有电沉积、金属粉末成型、铸造和 纤维缠绕配合等工艺。常用纤维缠绕加等离子喷涂基体这样 的工艺来制造平板和大直径圆环,具有极好的高温强度和耐 疲劳性能。
对表面磨损和腐蚀不敏感,具有良好的高温性能,但在 500℃以上暴露于氧气中,短时间纤维强度就会受损,可对 纤维表面进行涂层,如涂覆碳化硅层。
▪ (2)基体
▪ 基体应具有良好的综合性能:较高的断裂韧性,较强的阻止 纤维断裂处或劈裂处的裂纹扩展能力;较强的抗腐蚀性,较 高的强度等。对于高温下使用的复合材料,还要求基体具有 较好的抗蠕变性和抗氧化性。此外,基体应能熔焊或钎焊。 应用最普遍的是采用变形铝为基体用固态热压法制得的复合 材料。
强体,对其性能具有以下基本要求:

金属基复合材料

金属基复合材料

飞行器和卫星构件宜选密度小的轻金属合金-镁、铝合金为 基体,与高强、高模石墨纤维、硼纤维组成石墨/镁、石墨/铝、硼 /铝等复合材料; ② 高性能发动机要求:高比强、比模量,优良的耐高温性能在 高温氧化性气氛中工作。
而选用钛合金、镍基合金及金属间化合物,如碳化硅 / 钛、镥、 钨丝/镍基起合金复合材料,可用于喷气发动机叶片、转轴等重要 零件。
基本原理是: 液态金屑基体通过特殊的喷嘴,在隋性气体气流的作用下雾化成细小的液态金属沉,
喷向衬底.将颗粒加入到雾化的金属流中,与金属液滴混合在一起并沉积在衬底上,
凝固形成金属基复合材料。
共喷沉积法的特点:
①适用面广。可用于铝、铜、镍、钻等有色金同基体,也可用于铁、 金属间化合物基体,可加入SiC、Al2O3、、石墨等多种颗粒产品可以 是圆棒、圆锭、板带、管材等。 ②生产工艺简单、效率高。与粉末冶金法相比,不必先制成金属粉末, 然后再与颗粒混合、压型、烧结等工序,而是快速一次复合成坯料, 雾化速率可达25-100Kg/min,沉淀凝固迅速。 ③冷却速度大。所得复合材料基体金属的组织与快速凝固相近,晶粒 细、无宏观偏析、组织均匀。 ④颗粒分布均匀。在严格控制工艺参数的条件下颗粒在基体中的分布 均匀。 ⑤复合材料中的气孔卒较大。气孔率在2%-5%之间,但经挤压处理后可 消除气孔.获得致密材科。
液态法
液态法是制备金属基复合材料的主要方法:
真空压力浸渍法; 共喷沉积;
挤压铸造;
真空吸铸; 搅拌铸造等方法
共喷沉积法
共喷沉积法是制造各种颗粒增强金属基复合材料的有效 方法,1960年由Siager发明,随后由Ospray金属有限公 司发展成工业生产规模的制造技术,可用来制造铝、铜、 镍、铁、金属间化合物基复合材料。

复合材料第五章(1)金属基复合材料-金属基复合材料的分类

复合材料第五章(1)金属基复合材料-金属基复合材料的分类

增强相含量, vol % 50 50 35~40 35 50 50 18~20 20 35 45
抗拉强度, MPa
1200~1500 1300~1500 700~900 500~800
650 900 500~620 400~510 1500~1750 1300~1500
拉伸模量, GPa
200~220 210~230 95 ~ 110 100~150
工艺优点: 制品有一定形状(可制备各种型材)
47
(4) 粉末(冶金)法(Slurry Powder Metallurgy) 工艺特点:解决了使用金属箔材成本高问题
工艺优点:成本低
工艺关键:低温真空下聚合物粘接剂必须能够完全挥发
48
工艺概要: 1)制备基体粉末/聚合物粘接剂胶体(可将胶体轧制成薄带) 2)用胶体固定纤维,干燥获得粉末/纤维预制片 3)或按粉末法纤维/基体复合丝方法制备复合丝 4)真空扩散结合制备复合材料
49
图5.16 粉末(冶金)法制备金属基复合料材料示意图 50
2.2.3 液态法 — 非连续增强相金属基复合材料制备工艺
(1) 压铸法(Squeeze Casting) 工艺特点:压力、液态或半液态金属 工艺概要:压力作用下,液态或半液态金属以一定速度 充填增强材料预制体空隙中并快速凝固成型 工艺关键:熔融金属温度、模具预热温度、压力、加压速度
220 130 96 ~138 ~100 210 ~230 220
密度, g/cm3
2.6 2.85~3.0
2.6 2.4 3.3 2.9 2.8 2.8 3.9 3.7
13
(2)高的韧性和冲击性能
相对聚合物、陶瓷基复合材料而言,
金属基复合材料具有较高的韧性和耐冲击性能 !
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属基复合材料的种类与性能
摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。

金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。

单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。

金属基复合材料正是为了满足上述要求而诞生的。

关键词:金属;金属基复合材料;种类;性能特征;用途
1. 金属基复合材料的分类
1.1按增强体类型分
1.1.1颗粒增强复合材料
颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。

1.1.2层状复合材料
这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。

片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。

层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。

因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。

由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。

然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。

1.1.3纤维增强复合材料
金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。

长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。

连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。

纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。

短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。

当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。

1.2按基体类型分
主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。

目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。

在这里主要介绍这几种材料
1.2.1铝基复合材料
这是在金属基复合材料中应用最广的一种。

由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。

再制造铝基复合材料时通常并不是使用纯铝而是铝合金。

这主要是由于铝合金具有更好的综合性能。

1.2.2镍基复合材料
这种复合材料是以镍及镍合金为基体制造的。

由于镍的高温性能优良,因此这种复合材料主要是用于制作高温下工作的零部件。

人们研制镍基复合材料的一个重要目的是希望用它来制造燃气轮机的叶片,从而进一步提高燃气轮机的工作温度。

但目前由于制造工艺及可靠性等问题尚未解决,所以还未能取得满意的结果。

1.2.3钛基复合材料
钛比任何其他的结构材料具有更高的比强度。

此外,钛在中温时比铝合金能更好地保持其强度。

因此,对飞机结构来说,当速度从亚音速提高到超音速时,钛比铝合金显示出了更大的优越性。

随着速度进一步的加快,还需要改变飞机的结构设计,采用更细长的机翼和其他翼型,为此需要高刚度的材料。

而纤维增强钛恰好可以满足这种对材料刚度的要求。

钛基复合材料中最常用的增强体是硼纤维,这是由于钛与硼的热膨胀系数比较接近。

1.2.4镁基复合材料
以陶瓷颗粒、纤维或晶须作为增强体,可制成镁基复合材料,集超轻、高比刚度、高比强度于一身,该类材料比铝基复合材料更轻,具有更高的比强度和比刚度,将使航空航天方面的优选材料。

1.3按用途分
1.3.1结构复合材料
主要用作承力结构,它基本上有增强体和基体组成,它具有高比强度、高比模量、尺寸稳定、耐热等特点。

用于制造各种航天、航空、电子、汽车、先进武器系统等高性能构建。

1.3.2功能复合材料
是指除力学性能外还有其他物理性能的复合材料,这些性能包括电、磁、热、声、力学(指阻尼、摩擦)等。

该材料用于电子、仪器、汽车、航天、航空、武器等。

2.金属基复合材料的性能特征
金属基复合材料的增强体主要有纤维、晶须和颗粒,这些增强体主要是无机物(陶瓷)和金属。

无机纤维主要有碳纤维、硼纤维、碳化硅纤维、氧化铝纤维、氮化硅纤维等。

金属纤维主要有铍、钢、不锈钢和钨纤维等。

用于增强金属复合材料的颗粒主要是无机非金属颗粒,主要包括石墨、碳化硅、氧化铝、碳化硅、碳化钛、碳化硼等。

金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。

通过优化组合可以既具有金属特性,又具有高比强度、高比模量、耐热、耐磨等综合性能。

其主要性能有以下几点:
1.高比强度、比模量
2.导热、导电性能好
3.热膨胀系数小、尺寸稳定性好
4.良好的高温性能
5.良好的耐磨性
6.良好的断裂韧性和抗疲劳性能
7.不吸潮、不老化、气密性好
3.结束语
总之,金属基复合材料具有高比强度、比模量,良好的导热、导电性、耐磨性、高温性能,较低的热膨胀系数,高的尺寸稳定性等优点,它在航天、航空、电子、汽车、轮船、先进武器等方面均具有广泛的应用前景。

2。

相关文档
最新文档