金属材料硬度的分类与用途
不同材料硬度

不同材料硬度硬度是物质抵抗变形和划伤的能力,是一个材料的重要性能指标。
不同材料的硬度有所不同,主要受材料的结构、成分和加工工艺等因素的影响。
本文将从金属、塑料和陶瓷三个方面,分别介绍它们的硬度特点。
首先,金属材料的硬度主要取决于其晶粒结构和晶界的强度。
一般来说,金属的硬度越高,其强度和耐磨性就越好。
例如,铝、铜等较软的金属,在加工过程中容易变形,而钢、铸铁等硬度较高的金属则具有较好的耐磨性和抗变形能力。
此外,金属的硬度还与其组织状态、热处理工艺等因素有关,通过合理的热处理可以提高金属的硬度和强度。
其次,塑料材料的硬度主要受分子链结构和交联程度的影响。
一般来说,分子链越长、交联越密的塑料,其硬度越高。
例如,聚乙烯、聚丙烯等线性结构的塑料硬度较低,而聚氯乙烯、聚苯乙烯等交联结构的塑料硬度较高。
此外,塑料的硬度还与填充剂的种类和含量有关,如玻璃纤维增强的塑料比普通塑料硬度更高。
最后,陶瓷材料的硬度一般较高,主要取决于其晶粒大小和结晶度。
陶瓷的硬度通常比金属和塑料都要高,因此具有较好的耐磨性和抗腐蚀性。
例如,氧化铝、碳化硅等工程陶瓷硬度极高,常用于制作耐磨零部件和化工设备。
此外,陶瓷的硬度还与其成分、烧结工艺等因素有关,通过控制这些因素可以调节陶瓷的硬度和强度。
综上所述,不同材料的硬度受多种因素的影响,包括结构、成分、加工工艺等。
了解材料的硬度特点,有助于选择合适的材料并进行相应的加工和应用,从而更好地满足工程和产品的需求。
在实际工程中,需要根据具体情况综合考虑材料的硬度以及其他性能指标,以达到最佳的设计和应用效果。
硬度计常用的硬度分类硬度试验是机械性能试验中最简单易行

硬度计常用的硬度分类硬度试验是机械性能试验中最简单易行的一种试验方法。
为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。
1.里氏硬度(Dietmar Leeb)里氏硬度是根据最新的里氏硬度测试原理利用最先进的微处理器技术设计而成2.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
3.洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和*锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和*锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
4. 维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用载荷值除以材料压痕凹坑的表面积,即为维氏硬度值(HV)。
5 努氏硬度(HK)适用于高硬度材料的硬度测试(一般HV1000硬度以上的硬度测量)。
6.还有肖氏硬度计7.韦氏硬度计(HW)适用于铝合金类产品的韦氏硬度值测量。
以上硬度只是常用的几种,另外还有肖氏(HS)硬度、邵氏(HS)硬度、巴氏硬度、摩氏硬度等。
实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。
因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。
ISO硬质合金用途分类

P类
P50
,
不 M10
有 色 钢 M20 , 金 M类 属 高 M30 锰 钢 M40 金 短 K01 属 切 屑 的 K10 黑 色 金 属 K类 , 有 K20 色 金 K30 属 , 非
车削,铣削,钻孔,镗孔,拉削,刮削
要求高韧性硬质合金的车削,铣削,刨削 ,镗孔,拉削 车削,铣削,刨削,插削,适于不利条件* 下加工,可以用大切削角 车削,铣削,刨削,插削,适于不利条件* 下加工,可以用大切削角K40�I源自O硬质合金用途分类 硬质合金用途分类
主要类别 符号 材质 长 切 屑 的 黑 色 金 属 分类号 被加工材料 P01 P10 P20 P30 P40 钢,钢铸件 钢,钢铸件 钢,钢铸件,长切屑的 可锻铸铁 钢,钢铸件,长切屑的 可锻铸铁 钢,有夹砂和孔隙的钢 铸件 钢,有夹砂和孔隙的钢 铸件 钢,钢铸件,锰钢,灰 口铸铁,合金铸铁 钢,钢铸件,奥氏体钢 或锰钢,灰口铸铁 钢,钢铸件,奥氏体钢 ,灰口铸铁,耐热合金 软钢,低抗拉强度钢, 有色金属 非常硬的灰口铸铁,肖 氏硬度85以上的冷硬铸 件,高硅铝合金,淬硬 钢,硬纸板,陶瓷 布氏硬度220以上的灰口 铸铁,短切屑的可锻铸 铁,淬硬钢,硅铝合金 ,铜合金,塑料玻璃, 硬橡胶,硬纸板,陶瓷 ,石头 布氏硬度220的灰口铸铁 ,有色金属,紫铜,铝 低硬度的灰口铸铁,压 缩木材 软木,硬木,有色金属 使用情况分类 用途和工作条件 精车,精镗,高速切削,小切屑截面,尺 寸精确和精度高,无振动工序 车削,仿形切削,车螺纹和铣削,高切削 速度,小或中切削截面 车削,仿形切削,铣削,中切削速度和切 削截面,小切削截面刨削 车削,铣削,刨削,中或低切削速度,中 或大切削截面,在不利条件*下加工 车削,刨削,插削,低切削速度,大切削 截面,可以用于不利条件*下加工的大切削 角和在自动机床上使用 适于要求韧性很高的硬质合金的工序:车 削,刨削,插削,低切削速度,大切削截 面,可以在不不利条件*下以大切削角交工 和在自动机床上使用 车削,中或高切削速度,小或中切削截面 车削,铣削,中切削速度和切削截面 车削,铣削,刨削,中切削速度,中或大 切削截面 车削,切断,特别适于自动机床 车削,精车,镗削,铣削,刮削
金属冶炼中的金属材料的硬度与韧性

通过控制轧制过程中的变形量、轧制温度和轧制速度,可以细化金属的 晶粒尺寸,提高其韧性。
03
合金化
通过添加合金元素,可以改变金属的相变温度、塑性和断裂韧性,进而
影响其韧性。
金属冶炼过程中硬度与韧性的协同控制
协同控制原理
在金属冶炼过程中,同时调整硬 度与韧性相关的工艺参数和合金 元素含量,可以实现金属材料硬
加工工艺
适当的加工工艺可以改善金属材料的硬度和韧性。例如,通过细化晶 粒、消除内应力等方法可以提高金属材料的硬度和韧性。
04 金属冶炼中硬度与韧性的控制
金属冶炼过程中的硬度控制
硬度控制原理
金属材料的硬度取决于其内部微观结构,通过控制冶炼过程中的温度、压力和合金元素 含量等参数,可以调整金属的晶格结构和位错密度,进而改变其硬度。
01
开发更准确、更快速、更便捷的硬度测试方法,提高检测效率
和精度。
无损检测技术
02
研究无损检测技术,如超声波、X射线等,以非破坏性方式检测来自金属材料的硬度与韧性。
在线检测技术
03
开发在线检测技术,实现金属材料在生产过程中的实时检测,
提高生产效率和产品质量。
硬度与韧性理论研究的深入
材料微观结构研究
深入研究金属材料的微观结构与硬度与韧性的关系,揭示 其内在机制和规律。
度和韧性的协同优化。
工艺优化
根据具体的金属材料和用途,选择 合适的冶炼工艺参数和热处理工艺 ,以实现硬度和韧性的最佳配合。
合金设计
通过合理选择和搭配合金元素,可 以实现在提高硬度的同时保持良好 的韧性,或者在保持韧性的同时提 高硬度。
05
金属材料的硬度与韧性的未来 发展
新材料的研究与开发
24种常用金属材料的性能和用途

24种常用金属材料的性能和用途1、45——优质碳素结构钢,是最常用中碳调质钢主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。
小型件宜采用调质处理,大型件宜采用正火处理。
应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。
轴、齿轮、齿条、蜗杆等。
焊接件注意焊前预热,焊后消除应力退火。
2、Q235A(A3钢)——最常用的碳素结构钢主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。
应用举例: 广泛用于一般要求的零件和焊接结构。
如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。
3、40Cr——使用最广泛的钢种之一,属合金结构钢主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。
应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。
4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。
5、35——各种标准件、紧固件的常用材料主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。
冷态下可局部镦粗和拉丝。
淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件。
硬度的分类及表示方法

金属材料抵抗硬的物体压陷表面的能力,称为硬度。
根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。
对于管材一般常用的有布氏、洛氏、维氏硬度三种。
A、布氏硬度(HB)用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。
布氏硬度值是以试验力除以压痕球形表面积所得的商。
以HBS(钢球)表示,单位为N/mm2(MPa)。
其计算公式为:式中:F--压入金属试样表面的试验力,N;D--试验用钢球直径,mm;d--压痕平均直径,mm。
测定布氏硬度较准确可靠,但一般HBS 只适用于450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。
在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。
举例:120HBS10/1000/30:表示用直径10mm钢球在1000Kgf(9.807KN)试验力作用下,保持30s(秒)测得的布氏硬度值为120N/ mm2(MPa)。
B、洛氏硬度(HR)洛氏硬度试验同布氏硬度试验一样,都是压痕试验方法。
不同的是,它是测量压痕的深度。
即,在初邕试验力(Fo)及总试验力(F)的先后作用下,将压头(金钢厂圆锥体或钢球)压入试样表面,经规定保持时间后,卸除主试验力,用测量的残余压痕深度增量(e)计算硬度值。
其值是个无名数,以符号HR表示,所用标尺有A、B、C、D、E、F、G、H、K等9个标尺。
其中常用于钢材硬度试验的标尺一般为A、B、C,即HRA、HRB、HRC。
硬度值用下式计算:当用A和C标尺试验时,HR=100-e 当用B标尺试验时,HR=130-e 式中e--残余压痕深度增量,其什系以规定单位0.002mm表示,即当压头轴向位移一个单位(0.002mm)时,即相当于洛氏硬度变化一个数。
e值愈大,金属的硬度愈低,反之则硬度愈高。
各种金属材料硬度及用途

各种金属材料硬度及用途金属材料是目前广泛应用于各个行业领域的一种重要材料,其硬度对于其应用性能起到至关重要的作用。
本文将介绍各种金属材料的硬度及其常见的应用。
1.铁铁是一种常见的金属材料,其硬度可根据不同的处理方式和添加元素而有所变化。
普通钢的硬度通常在140至180HB之间,但经过热处理后,其硬度可达到600HB以上。
铁的主要应用领域包括建筑结构、机械制造以及汽车制造等。
2.铝铝是一种轻质且具有良好的导电性和导热性的金属材料。
普通纯铝的硬度较低,通常在20至30HB之间。
然而,通过合金化处理,如添加硬化元素,如铜和镁,可显著提高铝的硬度。
合金铝常用于航空航天、汽车制造、电子设备和建筑等领域。
3.铜铜是一种常见的导电金属,其硬度较低,通常在40至60HB之间。
由于其良好的导电性和导热性,铜广泛用于电子设备、电线电缆和管道等领域。
4.钛钛是一种轻质且具有优异强度的金属材料,其硬度通常在160至350HB之间。
钛具有良好的抗腐蚀性能,因此被广泛应用于航空航天、医疗器械和化学工业等高要求领域。
5.镁镁是一种轻质金属,其硬度相对较低,约40HB。
然而,镁具有良好的强度和刚性,非常适合用于结构材料。
此外,镁还具有良好的导热性和电磁屏蔽性能,被广泛应用于汽车制造、电子设备以及航空航天等领域。
6.不锈钢不锈钢是一种由铁、铬和其他合金元素组成的金属材料,其硬度范围广泛,一般为150至250HB。
不锈钢具有良好的耐腐蚀性、高温强度和可塑性,广泛应用于化工、制药、食品加工和建筑等行业。
7.钨钨是一种高密度金属,其硬度非常高,通常为350至450HB。
由于其高融点和优异的热稳定性,钨被广泛应用于航空航天、电子设备、矿山开采和制造业等领域。
总之,金属材料的硬度对其应用性能起着决定性的作用。
以上介绍的金属材料不仅在硬度上有所差异,而且在应用领域上也存在较大差异。
因此,选择合适的金属材料对于不同的应用非常重要。
各种金属材料的硬度表

各种金属材料的硬度表1. 介绍硬度是一个材料所抵抗外力侵蚀的能力,也是评估材料在受力状态下变形性能的重要指标之一。
硬度测试是材料表征和材料选择中常用的手段之一。
不同的金属材料的硬度值可以用来区分其性质和用途。
本文将介绍几种常见金属材料的硬度及其应用。
2. 硬度测试方法硬度测试有多种方法,常见的包括洛氏硬度测试、巴氏硬度测试、维氏硬度测试和布氏硬度测试等。
这些测试方法均基于不同原理,通过在材料上施加一定压力,测量压痕的各种参数来计算硬度值。
3. 铝合金铝合金是一种常见的金属材料,具有较低的密度和良好的机械性能。
不同的铝合金根据含量和添加的合金元素不同,其硬度也有所差异。
以下是几种常见铝合金的硬度范围:•1XXX系列:纯铝,硬度较低,约15-30 HB。
•2XXX系列:铝铜合金,硬度较高,约60-150 HB。
•5XXX系列:铝镁合金,硬度适中,约40-120 HB。
•6XXX系列:铝硅镁合金,硬度较高,约60-160 HB。
•7XXX系列:铝锌合金,硬度较高,约80-170 HB。
铝合金具有良好的可加工性和抗腐蚀性,广泛应用于航空航天、汽车和建筑等领域。
4. 不锈钢不锈钢是一种具有良好耐腐蚀性的金属材料,常用于制作厨具、建筑和化工设备等。
不锈钢的硬度因含铬量和合金元素的不同而有所差异。
以下是常见不锈钢的硬度范围:•304不锈钢:硬度约为70-90 HRB。
•316不锈钢:硬度约为70-90 HRB。
•410不锈钢:硬度约为160 HB。
不锈钢的硬度较低,易于加工,常用于制作装饰品和家具等。
5. 钢材钢材是一种含碳量较高的金属材料,具有良好的韧性和强度。
不同类型的钢材在硬度上也存在一定差异。
以下是几种常见钢材的硬度范围:•低碳钢:硬度约为60-80 HRB。
•中碳钢单钢:硬度约为85-100 HRB。
•高碳钢单钢:硬度约为100-170 HB。
•不锈钢:硬度约为160-280 HB。
•合金钢:硬度约为150-300 HB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料硬度的分类与用途
金属材料出厂的基础硬度:HRB190~229,相似HRC19~29,这个硬度是可加工硬度,金属通过热处理淬火后的硬度等级,及用途:
①HRC28~33(只提高了基体硬度但不耐磨,适合于做连接板),
②HRC33~38(有一定硬度和强度但不耐磨,适用:和等高板、强度要求不高的垫板),
③HRC38~43(弹性硬度,适用于定位基座用,可做φ4以下的定位销和做垫板用,但不耐磨)
④HRC43~48(达到硬度和强度,普遍用于二块板连接作为定位销用,焊接夹具的螺纹定位销就是用45号钢淬火后,达到此硬度,但还是不耐磨。
用弹簧钢丝绕制弹簧,经时效后达到此硬,弹性较好。
)
⑤HRC48~53(可做耐冲击的φ5以上定位销,可以防磨损;汽车底盘的弹簧钢板,经处理后达到此硬度可以耐冲击。
)
⑥HRC53~58(防磨、耐用,可用于焊接φ6以上定位销、定位套、定位板,可提高夹具奉命。
)
⑦HRC58~63(高硬度、高强度、高耐磨,此硬度:适用于冲模凸凹模,φ8以上的定位销、定位套、定位板,及各种定位零件用,对提高夹具使用奉命起关键作用。
但在侧面受到重大冲击时φ8以下的定位销可能会脆断。
)
⑧HRC62~66(高硬度、高强度、高耐磨,此硬度:可以做锉刀、铣刀、铰刀、丝锥。
)
我们设计焊接夹具时,在选用材料后,热处理硬度可参考以上说明。
2017年3月7日。