一元二次方程求根公式讲解学习
一元二次方程的求根公式推导过程

一元二次方程的求根公式推导过程《初中生看过来:一元二次方程求根公式推导》同学们,咱们今天来聊聊一元二次方程的求根公式是咋来的。
比如说有个一元二次方程:$x^2 + 3x 4 = 0$。
咱们想把这个方程的解找出来,就得推导求根公式。
咱们先假设方程$ax^2 + bx + c = 0$,其中$a$不等于 0。
然后呢,我们用配方法来搞一搞。
先把方程两边同时除以$a$,得到$x^2 + \frac{b}{a}x +\frac{c}{a} = 0$。
\[\begin{align}x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}=\frac{b^2}{4a^2} \frac{c}{a}\\(x + \frac{b}{2a})^2=\frac{b^2 4ac}{4a^2}\end{align}\]然后开平方,就得到了求根公式:$x = \frac{b \pm \sqrt{b^2 4ac}}{2a}$。
是不是挺神奇的?以后遇到一元二次方程,就可以用这个公式轻松求解啦!《高中生朋友,一起探索一元二次方程求根公式》嘿,高中生们!咱们来深入探究一下一元二次方程的求根公式是怎么推导出来的。
我们都知道一般形式是$ax^2 + bx + c = 0$,($a≠0$)。
咱们开始动手推导。
先把方程两边同除以$a$,变成$x^2 +\frac{b}{a}x + \frac{c}{a} = 0$。
然后,我们想办法把左边凑成一个完全平方式。
给方程两边加上$\frac{b^2}{4a^2}$,就得到了$(x + \frac{b}{2a})^2 = \frac{b^2 4ac}{4a^2}$。
以后解题的时候,这个公式可是大有用处,能让咱们快速求出方程的根。
《大学生,重温一元二次方程求根公式推导》亲爱的大学生们,今天咱们来重温一下一元二次方程求根公式的推导过程。
比如说有个方程$3x^2 + 2x 5 = 0$。
一般式是$ax^2 + bx + c = 0$,且$a≠0$。
一元二次方程的公式法讲解

一元二次方程的公式法讲解一元二次方程是高中数学中经常遇到的一种形式,它的一般形式为ax²+bx+c=0,其中a、b、c分别为已知系数。
为了求解这种类型的方程,人们发展出了一元二次方程的公式法。
一元二次方程的公式法是一种通过一元二次方程的一般形式,利用特定的公式来求解方程的方法。
这个公式被称为二次方程的求根公式,它可以帮助我们快速地计算出方程的根。
二次方程的求根公式如下:x = (-b ± √(b²-4ac)) / 2a其中,±表示两个解,√表示平方根。
这个公式中的√(b²-4ac)被称为判别式,它的值决定了方程的根的性质。
当判别式大于0时,方程有两个不相等的实根。
当判别式等于0时,方程有两个相等的实根。
当判别式小于0时,方程没有实根,但有两个共轭复根。
通过这个公式,我们可以很方便地求解一元二次方程。
首先,我们需要确定方程中的系数a、b、c的值。
然后,我们将这些值代入到求根公式中,计算出方程的根。
例如,考虑方程2x²+5x-3=0。
根据公式法,我们可以得到:x = (-5 ± √(5²-4*2*(-3))) / 2*2= (-5 ± √(25+24)) / 4= (-5 ± √49) / 4根据公式,我们可以得到两个根:x₁ = (-5 + 7) / 4 = 2/4 = 1/2x₂ = (-5 - 7) / 4 = -12/4 = -3因此,方程2x²+5x-3=0的根为x=1/2和x=-3。
公式法是求解一元二次方程的一种常用方法,它的优点是计算简单、快速。
通过这个公式,我们可以直接求解方程的根,无需进行其他繁琐的计算步骤。
需要注意的是,使用公式法求解一元二次方程时,我们需要注意判别式的值。
判别式的正负与方程的根的性质有关,可以帮助我们判断方程有几个实根或复根。
一元二次方程的公式法是一种简洁高效的求解方法。
一元二次方程的求根公式是啥

一元二次方程的求根公式是啥求根公式分为两个部分:计算判别式和计算根的表达式。
首先,计算判别式,判别式是Δ = b^2 - 4ac。
判别式Δ 可以帮助我们判断方程有多少个实根,根的类型以及相应的解。
如果Δ>0,方程有两个实根(不相等),公式为x=(-b±√Δ)/(2a)。
如果Δ=0,方程有一个实根(重根),公式为x=-b/(2a)。
如果Δ<0,方程没有实根,存在复数解,公式为x=(-b±i√,Δ,)/(2a),其中i是虚数单位。
接下来,我们将详细解释三种情况的求根公式。
1.当Δ>0时,方程有两个实根(不相等),根的公式为x=(-b±√Δ)/(2a)。
在这种情况下,我们需要计算两个不同的实根。
例如,给定方程2x^2+5x-3=0,则有a=2,b=5,c=-3由判别式Δ = b^2 - 4ac = 5^2 - 4(2)(-3) = 49,显然Δ > 0。
根据一元二次方程的求根公式,我们计算两个实根:x1=(-5+√49)/(2*2)=(-5+7)/4=2/4=0.5x2=(-5-√49)/(2*2)=(-5-7)/4=-12/4=-3因此,方程2x^2+5x-3=0的两个实根分别为0.5和-32.当Δ=0时,方程有一个实根(重根),根的公式为x=-b/(2a)。
在这种情况下,方程只有一个解,解是重根。
例如,给定方程x^2+6x+9=0,则有a=1,b=6,c=9根据判别式Δ = b^2 - 4ac = 6^2 - 4(1)(9) = 0,显然Δ = 0。
根据一元二次方程的求根公式,我们计算重根:x=-6/(2*1)=-6/2=-3因此,方程x^2+6x+9=0的一个实根是-33.当Δ<0时,方程没有实根,存在复数解,根的公式为x=(-b±i√,Δ,)/(2a)。
在这种情况下,方程没有实数解,但可以使用复数单位i表示解。
例如,给定方程x^2+2x+5=0,则有a=1,b=2,c=5根据判别式Δ = b^2 - 4ac = 2^2 - 4(1)(5) = -16,显然Δ < 0。
求根公式解一元二次方程过程

求根公式解一元二次方程过程在我们学习数学的漫长旅程中,一元二次方程可是个重要的“小伙伴”。
而求根公式就像是打开一元二次方程神秘大门的一把神奇钥匙。
先来说说啥是一元二次方程。
简单讲,就是形如 ax² + bx + c = 0 (a ≠ 0)这样的式子。
那求根公式又是啥呢?它就是 x = [-b ± √(b² - 4ac)] / (2a)。
咱们来一步步拆解这个公式,搞清楚它到底是咋用的。
比如说有个方程 x² + 2x - 3 = 0 ,这里 a = 1,b = 2,c = -3 。
先算 b² - 4ac ,也就是2² - 4×1×(-3) = 16 。
然后把数字代入求根公式,x = [-2 ± √16] / (2×1),算出来就是 x₁ = 1 ,x₂ = -3 。
我记得我以前教过一个学生小明,他一开始对这个求根公式那叫一个头疼。
每次做题,不是这里记错符号,就是那里算错数字。
有一次做作业,他碰到一个方程 2x² - 5x + 2 = 0 ,算来算去就是算不对。
我就坐在他旁边,看着他愁眉苦脸的样子,问他:“小明,你先跟老师说说,你第一步算的啥?”小明抓抓脑袋说:“老师,我先算的 b² - 4ac ,可是我好像算错了。
”我让他重新算一遍,这才发现他把符号弄错了。
我就耐心地跟他说:“小明啊,这符号可不能马虎,一步错步步错呀。
”在我的指导下,小明终于算出了正确答案,那开心的样子,就像解开了一个超级大难题。
其实啊,用求根公式解一元二次方程,就像是走迷宫,只要每一步都走对,就能顺利找到出口。
在计算 b² - 4ac 的时候,要特别小心符号。
如果 b² - 4ac 大于 0 ,方程就有两个不同的实数根;等于 0 呢,就有两个相同的实数根;小于 0 ,那就是没有实数根,只有复数根啦。
一元二次方程求根公式和常见解法

一元二次方程求根公式和常见解
法
一、一元二次方程的概述
1、定义:等号两边都是等式,只含有一个未知数,未知数的最高次数是2且最高次项的系数不为0,这样的整式方程叫做一元二次方程.
2、求根公式:$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}(b^2-4ac \ge 0)$。
3、一元二次方程的一般形式:
一元二次方程的一般形式是$ax^2+bx+c=0(a\not=0)$.其中$ax^2$是二次项,$a$ 是二次项系数;$bx$ 是一次项,
$b$ 是一次项系数;$c$ 是常数项.
4、一元二次方程的根:
使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根.
5、一元二次方程的常见解法:
(1)直接开平方法(2)配方法(3)公式法(4)因式分解法(5)利用根与系数的关系
二、一元二次方程的例题
例:如果方程$(m-\sqrt{2})x^{m^2}+3mx-1=0$ 是关于$x$ 的一元二次方程,那么 $m$ 的值是____.
答案:$-\sqrt{2}$解析:由一元二次方程的定义知
$m^2=2$,即 $m=\pm\sqrt{2}$,又 $\because m-
\sqrt{2}\not=0,\therefore m \not=\sqrt{2},\therefore m=-\sqrt{2}$.。
一元二次方程的解法求根公式的使用技巧

一元二次方程的解法求根公式的使用技巧一元二次方程的解法是数学中的基础知识,在解决实际问题时起到了重要的作用。
其中,求根公式是一种常见的解法,它可以帮助我们快速求解一元二次方程的根。
本文将介绍一元二次方程的求根公式的使用技巧。
一、一元二次方程的形式一元二次方程通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c为实数,并且a ≠ 0。
根据这个方程的形式,我们可以使用求根公式来求解方程的根。
二、一元二次方程的求根公式一元二次方程的求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,√表示开方运算。
这个公式中的分子部分可以分为两个部分,分别是-b和√(b^2 - 4ac)。
根据这个公式,我们可以通过将方程中的系数代入公式中,快速求得方程的根。
三、使用技巧在使用一元二次方程的求根公式时,有一些技巧可以帮助我们更加高效地求解方程的根。
1. 化简方程在应用求根公式之前,我们可以先对方程进行化简。
例如,如果方程的系数存在公因子,我们可以将其提取出来,以简化计算过程。
2. 辨别方程的根的性质根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的性质。
- 当Δ>0时,方程有两个不相等的实数根;- 当Δ=0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根,但存在两个共轭复数根。
通过辨别方程的根的性质,我们可以在求根过程中有所侧重,提高求解的效率。
3. 使用解根公式的步骤使用一元二次方程的求根公式时,可以按照以下步骤进行:Step 1: 计算判别式Δ的值。
Δ = b^2 - 4acStep 2: 根据Δ的值进行分类讨论。
- 当Δ>0时,应用求根公式计算两个不相等的实数根;- 当Δ=0时,应用求根公式计算两个相等的实数根;- 当Δ<0时,应用求根公式计算两个共轭复数根。
Step 3: 将方程系数代入求根公式,计算出根的近似值。
一元二次方程求根公式及讲解

主讲:黄冈中学高级教师一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为.该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程没有实数根.二、重难点知识总结1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。
(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。
(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。
(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。
如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。
(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。
2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b2-4ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10所以所以(2)原方程可化为因为a=1,,c=2所以所以.(3)原方程可化为因为a=1,,c=-1所以所以;所以.总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行.例2、用适当方法解下列方程:① ②③ ④⑤ ⑥⑦分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。
一元二次方程的求根公式

教学目标:
1、会用配方法解方程ax2+bx+c=0 (a≠0)
2、理解方程ax2+bx+c=0(a≠0)的求根公式
复习: 用配方法解方程2x -5x+2=0
2
5 解:两边都除以2,得 x x 1 0 2
2
系数化为1 移项 配方
5 移项,得 x x 1 2 2
2
2
5 25 5 配方,得 x x 1 2 16 4
5 9 x 即 4 16
2
5 3 开方,得 x 4 4
,x2=2
开方
1 x2 2
∴ x1 2
定解
概括总结
1.对于二次项系数不为1的一元二次方程, 用配方法求解时首先要怎样做 ?
首先要把二次项系数化为1
2.用配方法解一元二次方程的一般步骤:
(1)系数化为1 (2)移项 (3)配方 (4)开方 (5)求解 (6)定根
=
用配方法解一般形式的一元二次方程 ax2+bx+c=0
(a≠0)
∵a≠0 4a2>0 ∴当b2-4ac≥0 时
用配方法解一般形式的一元二次方程 ax2+bx+c=0
(a≠0)
∵a≠0 当b2-4ac≥0 时
一元二次方程的求根公式: 一元二次方程 ax2+bx+c=0 (a≠0)的求根公式为:
利用这个求根公式可 以求出所有一元二次 方程的根。
总结:
1、配方法解方程:ax2+bx+c=0 (a≠0)
2、一元二次方程的求根公式的推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程求根公
式
一元二次方程求解
一、一周知识概述
1、一元二次方程的求根公式
将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为
.
该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法.
说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0);
(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;
(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.
2、一元二次方程的根的判别式
(1)当b2-4ac>0时,方程有两个不相等的实数根;
(2)当b2-4ac=0时,方程有两个相等的实数根;
(3)当b2-4ac<0时,方程没有实数根.
二、重难点知识
1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。
(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。
(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。
(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往
能起到简化作用,思考于“因式分解法”之后,“公式法”之前。
如方程
;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若
配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑
运用。
(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方
程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。
2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点:
(1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才
能确定a、b、c,求出b2-4ac;
(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;
(3)根的判别式是指b2-4ac,而不是
三、典型例题讲解
例1、解下列方程:
(1);
(2);
(3).
分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,解:(1)因为a=1,,c=10
所以
所以
(2)原方程可化为
因为a=1,,c=2
所以
所以.
(3)原方程可化为
因为a=1,,c=-1
所以
所以;
所以.
总结:
(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;
(2)用求根公式法解方程按步骤进行.
例2、用适当方法解下列方程:
① ②
③ ④
⑤ ⑥
⑦
分析:
要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。
就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法,而开平方法、因式分解法是特殊方法。
⑴ 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式
求值,所以对某些方程,解法又显得复杂了。
如①,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。
⑵ 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。
若方程中的一次项系数有因数是
偶数,则可使用,计算量也不大。
如②,因为224比较大,分解时较繁,此题中一次项系数是-2。
可以利用用配方法来解,经过配方之后得到
,显得很简单。
⑶ 直接开平方法一般解符合型的方程,如第①小题。
⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。
解:①
两边开平方,得
所以
②
配方,得
所以
所以
③
配方,得
所以
所以
④
因为
所以 =4+20=24 所以
所以
⑤
配方:
所以
所以
⑥
整理,得
所以
⑦
移项,提公因式,得
所以
小结:
以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。
例3、已知关于x的方程ax2-3x+1=0有实根,求a的取值范围.
解:当a=0时,原方程有实根为
若a≠0时,当原方程有两个实根.
故,综上所述a的取值范围是.
小结:
此题要分方程ax2-3x+1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a≠0两种情况.
例4、已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.
解:(1)因为方程x2-4x+k=0有两个不相等的实数根,
所以b2-4ac=16-4k>0,得k<4.
(2)满足k<4的最大整数,即k=3.
此时方程为x2-4x+3=0,解得x1=1,x2=3.
①当相同的根为x=1时,则1+m-1=0,得m=0;
②当相同的根为x=3时,则9+3m-1=0,得
所以m的值为0或
例5、设m为自然数,且3<m<40,方程有两个整数根求m的值及方程的根。
解:,
∵方程有整数根,
∴4(2m+1)是完全平方数。
∵3<m<40∴7<2m+1<81
∴2m+1值可以为9,25,49
∴m的值可以为4,12,24。
当m=4时方程为解得x=2或x=8
当m=12时方程为解得x=26或x=16
当m=24时方程为解得x=52或x=38
总结:
本题先由整数根确定2m+1是完全平方数,再由3<m<40中m为整数确定m的值,再分别试验求x,是本题特点。