核磁共振谱原理及方法

合集下载

核磁共振谱法的基本原理与操作指南

核磁共振谱法的基本原理与操作指南

核磁共振谱法的基本原理与操作指南核磁共振谱法(NMR)作为一种重要的分析技术,在化学、物理、生物等领域得到了广泛的应用。

本文旨在介绍核磁共振谱法的基本原理和操作指南,帮助读者更好地了解和掌握这一技术。

一、核磁共振谱法的基本原理核磁共振谱法是基于磁共振现象的一种谱学技术。

磁共振现象是指当物质处于外加恒定磁场的作用下,由于核自旋与外磁场相互作用,导致核能级分裂的现象。

核磁共振谱法通过探测不同核自旋态之间的能量差,从而获得样品的结构信息。

在核磁共振谱法中,主要采用的核是有核磁矩的核素,如氢(1H)、碳(13C)等。

当这些核自旋受到外加磁场的作用时,其能级将发生分裂。

核的共振频率与外磁场的大小和核磁矩有关,通过调整外加恒定磁场,可以使得核的共振频率与射频信号的频率相匹配。

当样品处于核磁共振谱仪中时,谱仪会向样品施加一个特定频率的射频信号,通过测量样品对射频信号的吸收和释放,得到核磁共振谱图。

二、核磁共振谱法的操作指南1. 样品的准备在进行核磁共振谱测量前,首先要准备样品。

样品需要具有高纯度,并溶解在适当的溶剂中。

同时,还需要注意样品的浓度和体积,以确保信号的强度和稳定性。

2. 仪器的调节在将样品放入核磁共振谱仪中之前,需要对仪器进行一些调节。

首先是外加恒定磁场的调节,其大小和均匀性会对实验结果产生较大影响。

然后是射频信号的调节,通常需要选择适当的频率和脉冲幅度。

3. 脉冲序列的选择核磁共振谱测量中,常常使用脉冲序列来控制样品的激发和检测过程。

根据需要测量的核种类和所需信息的不同,选择不同的脉冲序列,如单脉冲、自旋回波、激发回波等。

4. 谱图的解读获得核磁共振谱图后,需要对其进行解读和分析。

首先是对共振峰的观察,每个峰对应着不同的核自旋态能级间的能量差。

峰的位置和强度可以提供关于样品结构和化学环境的信息。

其次是对峰的线型进行分析,可以得到样品的动力学信息。

5. 数据的处理核磁共振谱测量得到的数据通常需要进行一定的处理,以获得更准确的结果。

【2024版】核磁共振光谱基本原理及实验操作

【2024版】核磁共振光谱基本原理及实验操作
在记录碳谱时,需设置足够的谱宽,以防止峰的折叠现象。由于常规碳谱不能反映碳原子的级数,而这对推导未知物结构或进行结构的指认是不利的,因而必须予以补充。早期多采用偏共振去耦,自80年代以后,陆续采用各种脉冲序列,最常用的叫做DEPT。DEPT脉冲序列中有一个脉冲,其偏转角为θ。当θ=90°时,只有CH出峰,当θ=135°时,CH,CH3出正峰,CH2出负峰,这两张谱图的结合,可指认出CH,CH2和CH3。对比全去耦谱图,则可知季碳(它们在DEPT谱中不出峰),于是所有碳原子的级数均可确定。
E=-μHHo
HO为外加磁场强度,μH为磁矩在外磁场方向的分量,μH=mh/2,所以
E=-mh/2Ho
由于自旋核在外磁场中有(2I+1)个能级,这说明自旋原子核在外加磁场中的能量是量子化的,不同能级之间的能量差为△E。根据量子力学选率,只有△m=±1的跃迁才是允许的,则相邻能级之间跃迁的能极差为
△E=△mh/2Ho
4核磁共振的产生
4.1拉莫尔进动
如图3-1所示,在外加磁场Ho中,自旋核绕自旋轴旋转,而自旋轴与磁场Ho又以特定夹角绕Ho旋转,类似一陀螺在重力场中运动,这样的运动称为拉莫尔进动。进动频率(又称拉莫尔频率)由下式算出
Wo=20=H0
而自旋角动量是量子化的,其在磁场方向的分量Pz和磁量子数(m)关系为Pz=mh/2,因为m共有2I+1个值,与此相应,Pz也有2I+1个值,与此相对应自旋核在z轴上的磁矩:
R为照射线圈,提供一定频率的电磁波;Helmholtz线圈为扫场线圈,其通直流电所产生的附加磁场用以调节磁场的强度;D为接收线圈,与放大器和记录系统相连。这三组线圈互相垂直,互不干扰。若所提供的照射频率和磁场强度满足某种原子核的共振条件时,则该核发生能级跃迁,核磁矩方向改变,在接收线圈D中产生感应电流(不共振时无感应电流)。感应电流被放大、记录,即得核磁共振信号。

核磁共振谱法

核磁共振谱法

核磁共振谱法( Nuclear(Magnetic(Resonance(Spectroscopy,NMR)是一种常用的分析技术,用于确定物质的分子结构和化学环境。

它利用核自旋的量子态之间的能级差异,以及核自旋与外加磁场之间的相互作用,来获得物质的结构和信息。

核磁共振谱法主要用于有机化合物和生物大分子的分析,如有机化合物的结构确定、化学反应的监测以及生物大分子的结构研究等。

下面是关于核磁共振谱法的详细分析:1.(核磁共振现象:核磁共振现象是指物质中具有核自旋的原子在外加磁场作用下,能量级的分裂和跃迁现象。

在外加磁场下,具有核自旋的原子核会分裂成多个能级,其能级差与外加磁场的强度成正比。

2.(化学位移(Chemical(shift):核磁共振谱法中的一个重要参数是化学位移,用来描述不同原子核在磁场中的化学环境。

化学位移通常用δ值表示,以标准物质( 如TMS,甲基硅烷)作为参考物质,其化学位移被定义为0。

3.(峰的积分关系:核磁共振谱中的峰通常对应于不同的核。

峰的积分面积与相应核的数量成正比,可以用来确定化合物中不同核的相对数量关系。

4.(倍频峰 Multiplet):对于具有多个等效核的化合物,峰展宽并分裂成多个子峰,称为倍频峰。

倍频峰的分裂模式与化合物中其他核之间的相互作用有关,可以提供化合物内部结构的信息。

5.(耦合常数 Coupling(constant):耦合常数用于描述倍频峰的分裂情况,表示分裂峰之间的距离。

它提供了有关邻近核之间的相互作用强度和距离的信息,用于推断化合物的结构。

6.(异常峰:在核磁共振谱中,有时会观察到异常峰,它们来自于特殊的核环境或结构。

异常峰可以提供有关物质中特殊官能团的存在和位置的信息。

通过分析核磁共振谱,可以确定物质的分子结构、官能团、取代基、化学环境等信息,从而帮助化学家和生物学家深入研究物质的性质和反应过程。

核磁共振谱技术的原理及应用

核磁共振谱技术的原理及应用

核磁共振谱技术的原理及应用核磁共振(Nuclear Magnetic Resonance, NMR)是一种用于分析化合物结构和物理性质的非常有效的技术。

该技术已经广泛应用于化学、材料科学、生物医学和环境科学等领域。

本文将对核磁共振谱技术的原理及其应用进行探讨。

一、核磁共振谱的原理核磁共振在物理学上指的是核磁矩在磁场中发生的现象。

在强磁场作用下,原子核呈现自旋状态,其周围产生一个磁场。

当原子核处于外加射频场的作用下,将产生核磁共振吸收谱,这个谱是一种特殊的光谱。

核磁共振谱的原理就是将物质放入强磁场中,利用核自旋量子数和核磁共振所产生的能量差异,测定样品中核原子的类型和数量。

核磁共振谱主要是用于分析样品的化学结构和分子排布,因为不同类型的原子核在相同的磁场作用下具有不同的共振频率,这使得核磁共振谱成为一种非常有效的分析化合物结构的工具。

例如,氢核磁共振谱的主要应用就是用于分析一些含有氢原子的有机化合物和生物分子。

二、基础核磁共振谱最常见的核磁共振谱是基础核磁共振谱,它仅测定样品中的氢信号。

此处的氢信号是指样品中H原子产生的核磁共振吸收信号,即氢原子在其发生共振现象时发出的能量。

基础核磁共振谱是用来确定原子的类型以及它们的磁环境。

对于氢原子,它们通常被归为三类:α(顺式)、β(反式)和γ(孤立的)。

除了氢核共振,还有碳共振。

由于碳是一种核磁共振活性低的元素,因此采用的谱仪比氢核共振谱仪复杂得多。

碳核磁共振谱,可以分析分子的骨架结构。

其分析范围更广泛,通常用于分析各种化合物、分子和聚合物。

三、高分辨核磁共振技术高分辨核磁共振技术(High-Resolution Nuclear Magnetic Resonance, HR-NMR)是一种针对复杂分子中信号重叠问题的高级核磁共振技术。

在高分辨核磁共振技术中,谱仪具有更高的分辨率,从而可以分离并分析分子中的多个组分。

这种技术能够让研究人员更加准确地分析分子结构,并且可提高谱图的信噪比。

核磁共振谱的原理及应用

核磁共振谱的原理及应用

核磁共振谱的原理及应用1. 原理介绍核磁共振谱(Nuclear Magnetic Resonance Spectrum,简称NMR)是一种利用核磁共振现象来研究物质结构和性质的分析技术。

核磁共振是指在外加磁场作用下,原子核固有的自旋产生共振现象。

核磁共振谱通过测量样品中原子核处于不同能级之间跃迁所吸收或发射的电磁辐射,来分析物质的结构和性质。

核磁共振谱的原理基于以下几个关键概念: - 原子核存在自旋,自旋是原子核的内禀性质。

- 原子核在磁场中具有能量分裂,形成能级结构。

- 原子核在外加磁场中能级分裂程度与外加磁场强度成正比。

- 原子核能从一个能级跃迁到另一个能级,吸收或发射与能级间跃迁对应的辐射频率的电磁波。

2. 应用领域核磁共振谱广泛应用于化学、生物、医学和材料科学等领域。

以下列举了几个常见的应用领域:2.1 化学•精确测量物质的结构,包括化学成分和空间结构。

•分析有机和无机化合物的组成。

•通过测量化学位移和耦合常数,判断化学键的种类、数量和环境情况。

2.2 生物•研究生物分子(如蛋白质、核酸等)的结构和相互作用。

•通过测量生物样品中特定原子核的信号强度,定量分析样品中特定分子的含量。

2.3 医学•诊断疾病,如核磁共振成像(MRI)用于检查人体内部器官和组织的状况。

•研究药物在人体内的分布和代谢过程。

•预测药物对人体的副作用和毒性。

2.4 材料科学•研究材料的结构和性质,如聚合物、晶体和金属。

•分析杂质和纯度。

•研究材料的相变和动态行为。

3. 核磁共振谱的操作步骤核磁共振谱的操作步骤通常包括样品制备、仪器设置、数据采集、数据处理和谱图解析。

以下是一般的操作步骤:1.样品制备:–准备纯度高和浓度适宜的样品溶液。

–选择合适的溶剂并溶解样品。

–确保样品没有杂质或气泡。

2.仪器设置:–将样品放置在核磁共振仪器中。

–设置合适的磁场强度和温度。

3.数据采集:–打开核磁共振仪器,开始数据采集。

–记录信号强度和频率。

核磁共振光谱技术的原理与应用

核磁共振光谱技术的原理与应用

核磁共振光谱技术的原理与应用核磁共振技术(NMR)是一种应用于化学、物理和生物学等领域的非常重要的技术,其主要基于物质所具有的核磁共振现象。

其主要原理是通过线圈产生的强磁场使样品中的核自旋在外界干扰下出现磁共振现象,通过测量不同核种类的共振谱图,可对样品进行精确的分析和定量。

一、核磁共振光谱技术的原理核磁共振技术的原理基于物质所具有的核磁共振现象,即核自旋在外界干扰下出现的能态跃迁所放出的电磁辐射。

这是因为物质中的原子核都具有自旋,而磁场会引起原子核自旋的定向,每种核自旋的数量和强弱不同,因此不同的核对外加磁场的反应也不同,它们会具有不同的共振频率,即信号在NMR光谱上的峰位位置不同。

因此,通过测量各种核的NMR信号,就可以获得其所在分子的结构、分布、运动和相互作用情况。

在实验过程中,首先把待分析的样品置于强磁场之中,并非常精确地调整外磁场的大小和方向。

这时,电子轨道对于磁场的响应可以忽略不计,而且核磁共振信号非常弱,为了探测到弱的共振信号,我们需要使用高灵敏度的电子学仪器。

当人们通过一定的方式加入能量到样品中时,如通过微波等电磁波辐射样品,样品吸收能量,相当于系统的能态跃迁,如果样品中存在其它原子核,则释放出特定频率的辐射信号。

二、核磁共振光谱技术的应用核磁共振技术在历史上是为了研究分子结构和运动,但是现在许多其他重要的应用已被发现。

与其他技术相比,核磁共振技术最吸引人的特点是非常高分辨率和选择性。

这种技术可以用于无机和有机化合物的分子结构解析、量子化学、物理化学、生命科学等领域。

1. 化学领域在化学分析中,核磁共振技术已经成为最常用的质谱分析技术之一。

因为它可以快速地提供高分辨率的分子结构信息,在用于无机气体分析和液体混合物分析时,它已经成为样品分辨率的标准方法。

此外,和其他方法相比,它更加可靠,能够检测出非常细微的物质成分。

2. 医疗领域核磁共振技术在医学中得到了广泛的应用,因为它可以获得生物分子和组织的非破坏性显像信息。

核磁共振原理及光谱分析方法讲解

核磁共振原理及光谱分析方法讲解
核磁共振原理及光谱分析 方法讲解
欢迎大家来到本次核磁共振原理及光谱分析方法的讲解。我们将介绍核磁共 振原理、核磁共振方法的基本步骤,以及红外光谱分析方法的介绍和工作原 理。
核磁共振原理介绍
核磁共振原理是基于原子核在磁场中的行为。通过外加磁场和辅助电磁辐射,可以观测和分析原子核的能级差异, 从而得到有关物质结构和性质的信息。
解读红外光谱谱图时,需要注意峰的位置、形状和强度。通过与已知物质的光谱进行比对,可以确定样品中存在的 官能团和化学键。
核磁共振与红外光谱分析方法 的比较和应用
核磁共振和红外光谱是常用的分析方法,两者可以互补使用,对物质的结构 和组成提供全面的信息。核磁共振适用于分析有机化合物和生物大分子,而 红外光谱适用于无机物和有机物的官能团鉴定。
红外光谱分析方法介绍
红外光谱分析是一种基于物质对红外光吸收的方法。不同的化学键和官能团具有特定的红外吸收峰,可以用于鉴定 物质的结构和组成。
红外光谱仪的工作原理
红外光谱仪通过将红外光传递到样品并测量样品对红外光的吸收程度。不同的化学键和官能团对红外光有不同的响 应,从而生成特征性的吸收光谱。
红外光谱谱图解读的基本技巧
核磁共振方法的基本步骤
样品制备
准备样品并将其置于核磁共振仪器中。
参数设置
设定核磁共振仪器的参数,如频率和增益。
信号获取
通过辅助电磁辐射和探测装置,获取核磁共振信号。
数据处理
对获取的核磁共振信号进行处理和分析,念
核磁共振谱图是通过分析不同原子核的共振信号,从而推断物质的分子结构和化学环境。信号的化学位移、积分曲 线和耦合常数等提供了丰富的信息。

有机化学第11章 波谱(核磁)

有机化学第11章 波谱(核磁)
δδ==(B(B样标品准-B-B标样准品)*)*11006/6/BB标标准准 质子的吸收峰与四甲基硅烷的吸收峰之间的距离称为δ值。
一般有机物中质子的δ值在0 ~ 10之间(见P462表11-8)。
4、影响化学位移的因素 1)δ伯H < δ仲H < δ叔H; 2) δ值随邻近原子电负性的增加而增加,随电负性大的 原子数目的增多而增加;
E
h
2
H0
E h
2
H0
实现核磁共 振的条件
CH3CH2OH
二、化学位移 1、定义
CH3CH2OH
由于化学环境的不同而引起的NMR吸收峰位置的不同,
称为化学位移。
2、化学位移的产生原因——屏蔽效应
屏蔽效应是有机化合物分子中的氢核与独立质子相比较, 由于分子中的电子对氢核有屏蔽作用,其核磁共振信号 出现在高磁场。
1HNMR谱图s(3H)为CH3
q(2H)为CH2
O CH3 CH2 C CH3
由于屏蔽效应,外加磁场的强度要略为增加,才能产生 核磁共振信号。显然,核周围的电子云密度越大,屏蔽 效应亦愈大,共振信号将移向高磁场区。
3、化学位移的表示方法——δ值 由于屏蔽效应所造成的磁场强度的改变数量很小,通常
难以准确地测出其绝对值,因此需要一个参考标准来对比。 常用的标准物质是四甲基硅烷,(CH3)4Si,简写为TMS, 它只有一个峰,而且一般质子的吸收峰都出现在它的左边
第十一章 有机波谱分析(2)
11.4 核磁共振谱(Nuclear Magnetic Resonance 简称 NMR)
一、基本原理
核磁共振是由原子核的自旋运动引起的。目前应用广
泛的是氢原子核(质子)的核磁共振谱,称为1HNMR。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的原子核还能绕核轴自旋。 自旋量子数I与质量数、原子序数有关 质量数 偶 偶 奇 原子序数 偶 奇 奇偶 自旋量子数 0 正整数 正半整数 核电荷的旋转产生一个沿核轴方向的小磁场, 就是自旋的原子核本身如一个小磁铁
3
I≠0的原子核称为磁性核
如1H的自旋量子数I=1/2,是磁性核。在外
1000
6000
3000
0
7.042 7.064 3.93
7.133
7.265
7.525 1.01
7.616
7.716
7.801 7.823 7.846
7.50 ppm (t1)
2.06 2.12 12.02
7.00
4.10
17
计算:
18
b-g
4000
a,h
3000
2000
i,j
1000
0
8.00 ppm (f1)
材料分析与检测
核磁共振谱
1
定义:
用频率为兆赫数量级,波长为1~1000m的
电磁波照射分子,这种电磁波能够与处于 强磁场中的磁性原子核作用,引起磁性原 子核发生磁能级的共振跃迁,记录原子核 对射频区电磁波的吸收,就得到核磁共振 谱,简称NMR.
2
简单原理:
所有原子核都带正电荷,自旋量子数I不为零


甲基取代基 影响表
9
-CH2和-CH取代基影响表
10
烯烃取代基影响表
11
苯环取代基影响表
12
苯环取代基影响表
13

谱图解析
6000
12.23
2.07
1.00
2.03
4.06
7.830 7.847 7.865
7.724
7.615
7.530
7.167
5000
4000
3000
2000
7
常见1H的化学位移
烷基中氢δ在0~5.5,与吸电子基团连接,δ值增 加,如甲苯δ=2.35,甲醇δ=3.99,可以查表。 甲基查表 -CH2计算:δ=1.25+∑σ i -CH计算:δ=1.5+∑σ i 烯烃中氢δ在4~6,计算 δ=5.25+Z同+Z顺+Z反,可以查表 苯环中氢δ在7左右,计算 δ=7.26+ ∑Si ,可以查表。
磁场H0中,1H有两种方式的取向:小磁场 与外磁场方向相同,能量较低;小磁场与 外磁场方向相反,能量较高 两种方式取向的能量差为△E
E

2
H 0
为旋磁比,与原子核有关 当外界电磁波提供的能量正好等于△E,原 子核就能够吸收能量,发生共振,从低能 级跃迁到高能级
4
检测能量被吸收的情况就能够得到原子的核磁共振 信号 △E与旋磁比、外磁场强度有关,H0越大,则△E 越大,核磁共振信号越强,仪器灵敏度越高 如1H-NMR,其γ=26.75×107,则共振条件为: H0=1.4×104G,在60MHz共振,称为60MHz核磁 H0=2.3×104G,在100MHz共振,100MHz核磁 H0=7.0×104G,在300MHz共振,300MHz核磁 I≠0的原子核都有核磁共振现象,其中I=1/2的原子 核最适合核磁共振研究。 1H、13C、31P和19F等最适合核磁共振 12C、16O和32S不能做核磁共振 5
7.50
7.00
19

化学位移
由核磁原理,如果不考虑电子屏蔽,则氢原子的 共振能量相同,无法对其进行分别 由于各种氢核在分子中位置不同,所受电子的屏 蔽程度不同,氢核磁共振将受到影响,谱图上谱 峰位置发生移动,称为化学位移 当外磁场H0的磁力线通过原子核周围时,外围电 子产生与H0相反的对抗磁场H’=H0δ,使原子核受到 的磁场强度降低,共振能量也降低 通常δ称为屏蔽常数,表示电子云对核屏蔽作用的 大小,因此氢核所处位置不同,δ值(化学位移值) 不同
15
b-d
计算值 a=7.13 b=7.73 c=7.89 d=7.87 e=7.74 f=7.42 g=7.50
6000
7.830 7.847 7.865
7.724
7.615
7.530
7.167
5000
4000
a
3000
2000
e
g
f
1000
0
7.50 ppm (t1)
16
5000
4000
2000
1000
0
14
7.50 ppm (t1)

如:
a=7.26+0.13-0.26=7.13 c=7.26+0.47+0.16=7.89 e=7.26+0.48=7.74 g=7.26+0.24=7.50
b=7.26+0.47+0=7.73 d=7.26+0.48+0.13=7.87 f=7.26+0.16=7.42

6
化学位移的表示方法
由于电子云屏蔽引起的磁场强度变化很小,
其绝对值难以精确测定,因此通常用标准物 质与样品比较,测定其吸收频率差 TMS,四甲基硅烷做内标物质 TMS稳定,12个氢,单峰,Si电负性大, TMS中氢受屏蔽较大,不与有机物中质子信 号重叠 样品 - 标准 6 定义化学位移δ = 10 标准
相关文档
最新文档