(完整)高中微积分基本知识

合集下载

微积分基础知识

微积分基础知识

D : ( ,)
奇函数,
Hale Waihona Puke 有界函数,22双曲函数常用公式
sh( x y ) shxchy chxshy ;
ch( x y ) chxchy shxshy ;
ch2x sh2x 1;
sh2x 2shxchx ;
ch2x ch2 x sh 2 x.
23
几何解释:
a x 2 x1 x N 1
2
a
xN 2
a
x3
x
当n N时, 所有的点 xn都落在 [a , a ] 内, 只有有限个 (至多只有N 个) 落在其外.
34
( 1)n1 观察数列 {1 } 当 n 时的变化趋势. n
n=5 n=7
( 1) n1 xn 1 . n
计算与分析的能力
了解和使用现代数学语言和符号的能力
使用数学软件学习和应用数学的能力
8
第0章
基本知识
一、基本概念
1.集合: 具有某种特定性质的对象的全体.
组成集合的事物称为该集合的元素.
a M, a M, A { a1 , a 2 , , a n }
M { x P( x) }
18
可定义复合
注: 复合函数
代入法
设 y u, u 1 x 2 ,
y 1 x2
复合函数可以由两个以上的函数经过复合 构成.
x 例如 y cot , 2
y u,
x u cot v , v . 2
19
初等函数
定义: 由基本初等函数经过有限次四则运算及有限次复合 运算所构成并可用一个式子表示的显函数,称为初等函数。 例:

(word完整版)高中微积分基本知识

(word完整版)高中微积分基本知识

高中微积分基本知识第一章、极限与连续一、数列的极限1. 数列定义:按着正整数的顺序排列起来的无穷多个数X!,K,X n丄叫数列,记作x n,并吧每个数叫做数列的项,第n个数叫做数列的第n项或通项界的概念:一个数列X n ,若M 0,s.t对nN*,都有X n M,则称人是有界的:若不论M有多大,总m N*,s.t x m M,则称x n是无界的若a x n b,则a称为x n的下界,b称为x n的上界X n有界的充要条件:x n既有上界,又有下界2. 数列极限的概念定义:设X n为一个数列,a为一个常数,若对0,总N , st当n N时,有x n a 则称a是数列x n的极限,记作lim x n a或x n a(n )n数列有极限时,称该数列为收敛的,否则为发散的几何意义:从第N 1项开始,x n的所有项全部落在点a的邻域(a ,a )3. 数列极限的性质①唯一性②收敛必有界③保号性:极限大小关系数列大小关系(n N时)二、函数的极限1. 定义:两种情形①x X o :设f (x)在点X o处的某去心邻域内有定义,A为常数,若对0,0,s.t当0 x x0时,恒有f (x) A 成立,则称f (x)在x x0时有极限A记作lim f (x) A或 f (x) A(x x°)X X0几何意义:对0, 0, s.t当0 X X o 时,f(x)介于两直线y A单侧极限:设f(x)在点x o处的右侧某邻域内有定义,A为常数,若对0 ,0 , s.t当0 x x0时,恒有f (x) A 成立,称f (x)在x0处有右极限A,记作lim f (x) A或f(x°) Ax xlim f (x) A的充要条件为:f(x°) f(x°) = Ax x垂直渐近线:当lim f (x) 时,x x0为f (x)在x0处的渐近线X x 0②x :设函数f (x)在x b 0上有定义,A为常数,若对0,X b, s.t 当x X时,有| f (x) A 成立,则称f (x)在x 时有极限A,记作lim f (x) A 或f (x) A(x )xlim f (x) A 的充要条件为:Jim f (x) Jim f (x) A水平渐进线:若lim f (x) A或lim f (x) A,则y A是f (x)的水平渐近线x x2. 函数极限的性质:①唯一性②局部有界性③局部保号性(②③在当0 |x x0时成立)三、极限的运算法则1. 四则运算法则设f(x)、g(x)的极限存在,lim f(x) A,lim g(x) B 贝V①lim f(x) g(x) A B②lim[ f (x)g(x)] AB③lim - (当B 0 时)g(x) B④lim cf (x) cA ( c为常数)⑤lim[f(x)]k A k( k为正整数)2. 复合运算法则设 y f [ (x)],若 lim (x) a ,则 lim f[ (x)] f (a)xx x可以写成lim f[ (x)] f[lim (x)](换元法基础)XxXx四、极限存在准则及两个重要极限1 •极限存在准则①夹逼准则设有三个数列x n, y n, z n,满足y n X n Z n ,②单调有界准则lim y nnlimz nna 则lim X n an有界数列必有极限3.重要极限sin x ① lim1 ② lim 1 1 Xe1或lim 1 x ex0 x x x x 0五、无穷大与无穷小1.无穷小:在自变量某个变化过程中lim f(x) 0,则称f (x)为X在该变化过程中的无穷小探若f(X)0,则f(X)为x在所有变化过程中的无穷小若f(X),则f(x)不是无穷小性质:1.有限个无穷小的代数和为无穷小2. 常量与无穷小的乘积为无穷小3. 有限个无穷小的乘积为无穷小4. 有极限的量与无穷小的乘积为无穷小5. 有界变量与无穷小的乘积为无穷小定理:lim f(x) A的充要条件是f(x) A (x),其中(x)为x在该变化中过程中的无穷小无穷小的比较:(趋于0的速度的大小比较)(x), (x),为同一变化过程中的无穷小若lim--c (c 0常数)则是的同阶无穷小(当c 1时为等价无穷小)若lim- kc ( c 0常数)则是的k阶无穷小若lim- -0 则是的高阶无穷小常用等价无穷小:(x 0) x: sinx: tanx: arcsinx: arctanx: In(1 x) : e x 1 ;1 cosx: ; (1 x) 1: x; a x 1 : xlna22•无穷大:设函数f (x)在x0的某去心邻域内有定义。

高中数学微积分知识点

高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。

1. 导数的定义。

- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。

- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。

2. 导数的几何意义。

- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。

- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。

3. 基本初等函数的导数公式。

- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。

- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。

1. 函数的单调性。

- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。

2. 函数的极值。

- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。

(完整)高中数学选修2-2微积分基本定理

(完整)高中数学选修2-2微积分基本定理

[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分.知识点一 导数与定积分的关系f (x )d x 等于函数f (x )的任意一个原函数F (x )(F ′(x )=f (x ))在积分区间[a ,b ]上的改变量F (b )-F (a ).以路程和速度之间的关系为例解释如下:如果物体运动的速度函数为v =v (t ),那么在时间区间[a ,b ]内物体的位移s 可以用定积分表示为s =v (t )d t .另一方面,如果已知该变速直线运动的路程函数为s =s (t ),那么在时间区间[a ,b ]内物体的位移为s (b )-s (a ),所以有v (t )d t =s (b )-s (a ).由于s ′(t )=v (t ),即s (t )为v (t )的原函数,这就是说,定积分v (t )d t 等于被积函数v (t )的原函数s (t )在区间[a ,b ]上的增量s (b )-s (a ).思考 函数f (x )与其一个原函数的关系: (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos x ; (7)若f (x )=cos x ,则F (x )=sin x . 知识点二 微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么f (x )d x =F (b )-F (a ). 思考 (1)函数f (x )的原函数F (x )是否唯一?(2)用微积分基本定理计算简单定积分的步骤是什么? 答案 (1)不唯一.(2)①把被积函数f (x )变为幂函数、正弦函数、余弦函数、指数函数等初等函数与常数的和或差;②用求导公式找到F (x ),使得F ′(x )=f (x ); ③利用微积分基本定理求出定积分的值.题型一 求简单函数的定积分 例1 计算下列定积分. (1)3d x ;(2)(2x +3)d x ; (3) (4x -x 2)d x ;(4)(x -1)5d x . 解 (1)因为(3x )′=3,所以3d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10. (3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203.(4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以 (x -1)5d x =16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6=16. 反思与感悟 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②若F (x )是f (x )的原函数,则F (x )+C (C 为常数)也是f (x )的原函数.随着常数C 的变化,f (x )有无穷多个原函数,这是因为F ′(x )=f (x ),则[F (x )+C ]′=F ′(x )=f (x )的缘故.因为⎠⎛ab f (x )d x=[F (x )+C ]|b a =[F (b )+C ]-[F (a )+C ]=F (b )-F (a )=F (x )|b a ,所以利用f (x )的原函数计算定积分时,一般只写一个最简单的原函数,不用再加任意常数C 了. 跟踪训练1 求下列函数的定积分: (1)⎝⎛⎭⎫x +1x 2d x ;(2)x (1+x )d x . 解 (1)⎝⎛⎭⎫x +1x 2d x =⎠⎛12⎝⎛⎭⎫x 2+2+1x 2d x =⎠⎛12x 2d x +⎠⎛122d x +⎠⎛121x2d x =13x 3⎪⎪⎪ 21+2 x ⎪⎪⎪ 21 +⎝⎛⎭⎫-12⎪⎪⎪21=13×(23-13)+2×(2-1)-⎝⎛⎭⎫12-1 =296. (2)⎠⎛49x (1+x )d x=⎠⎛49(x +x )d x=⎝⎛⎭⎫23x x +12x 2⎪⎪⎪94=⎝⎛⎭⎫23×9×3+12×92-⎝⎛⎭⎫23×4×2+12×42 =2716. 题型二 求分段函数的定积分 例2 求函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1),x 2,x ∈[1,2),2x ,x ∈[2,3]在区间[0,3]上的定积分.解 由定积分的性质知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x 2d x +⎠⎛232x d x=x 44⎪⎪⎪10+x 33⎪⎪⎪21+2x ln 2⎪⎪⎪32=14+83-13+8ln 2-4ln 2 =3112+4ln 2. 反思与感悟 (1)分段函数在区间[a ,b ]上的定积分可分成几个定积分的和的形式.(2)分段的标准是确定每一段上的函数表达式,即按照原函数分段的情况分就可以. 跟踪训练2 求下列定积分: (1)⎠⎛02|x 2-1|d x ;(2) ⎠⎜⎛0π21-sin 2x d x .解 (1)∵y =|x 2-1|=⎩⎪⎨⎪⎧1-x 2,0≤x <1,x 2-1,1≤x ≤2,∴⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝⎛⎭⎫x -x 33⎪⎪⎪10+⎝⎛⎭⎫x 33-x ⎪⎪⎪21=⎝⎛⎭⎫1-13+⎝⎛⎭⎫83-2-⎝⎛⎭⎫13-1 =2.(2) ⎠⎜⎛0π21-sin 2x d x=⎠⎜⎛0π2|sin x -cos x |d x=⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2 (sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=⎝⎛⎭⎫22+22-1+(-1)-⎝⎛⎭⎫-22-22 =22-2.题型三 定积分的简单应用例3 已知f (a )=⎠⎛01 (2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛01 (2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10 =23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.反思与感悟 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪训练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2.① 又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01 (ax 2+bx +c )d x=⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪10 =13a +12b +c , ∴13a +12b +c =-2,③ 由①②③式得a =6,b =0,c =-4.1.⎠⎜⎛0π4cos 2xcos x +sin x d x 等于( )A.2(2-1)B.2+1C.2-1D.2-2答案 C解析 结合微积分基本定理,得⎠⎜⎛0π4cos 2x -sin 2xcos x +sin x d x =⎠⎜⎛0π4 (cos x -sin x )d x =(sin x +cos x )⎪⎪⎪π40=2-1. 2.下列定积分的值等于1的是( )A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛01x d x =12x 2⎪⎪⎪ 10=12,⎠⎛01(x +1)d x =⎝⎛⎭⎫12x 2+x ⎪⎪⎪ 10=12+1=32,⎠⎛011d x =x ⎪⎪⎪10=1,⎠⎛0112d x=12x ⎪⎪⎪10=12.故选C.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x = . 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪20-x 23⎪⎪⎪20=83-43=43. 4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x <1,3-x ,1≤x ≤2,则⎠⎛02f (x )d x = .答案176解析 ⎠⎛02f (x )d x =⎠⎛01(x 2+1)d x +⎠⎛12(3-x )d x=⎝⎛⎭⎫x 33+x ⎪⎪⎪10+⎝⎛⎭⎫3x -x 22⎪⎪⎪21=176.5.已知函数f (x )为偶函数,且⎠⎛06f (x )d x =8,则⎠⎛-66 f (x )d x = .答案 16解析 因为函数f (x )为偶函数, 且⎠⎛06f (x )d x =8,所以⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.函数y =⎠⎛0x cos x d x 的导数是( )A.cos xB.-sin xC.cos x -1D.sin x 答案 A解析 (sin x )′=cos x ,⎠⎛0x cos x d x =sin x ⎪⎪⎪x0=sin x ,故选A. 2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A.F (x )=13x 3B.F (x )=x 3C.F (x )=13x 3+1D.F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3. ⎠⎛-40|x +2|d x 等于( )A. ⎠⎛-40 (x +2)d xB. ⎠⎛-40 (-x -2)d xC.⎠⎛-4-2(x +2)d x +⎠⎛-202(-x -2)d xD.⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴⎠⎛-40|x +2|d x =⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x .故选D.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32B.43C.23D.-23 答案 B解析 ⎠⎛-11f (x )d x =⎠⎛-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+x |10=13+1=43,故选B. 5.⎠⎜⎛0π2sin 2x2d x 等于( )A.π4 B.π2-1 C.2 D.π-24答案 D解析 ⎠⎜⎛0π2sin 2x 2d x =⎠⎜⎛0π21-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 6.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D. S 3<S 2<S 1答案 B 解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.二、填空题7.⎠⎛-11 (1-x 2+x )d x = .答案 π2解析 ⎠⎛-11 (1-x 2+x )d x =⎠⎛-111-x 2d x +⎠⎛-11x d x ,根据定积分的几何意义可知⎠⎛-111-x 2d x 等于半径为1的半圆的面积, 即⎠⎛-111-x 2d x =π2,⎠⎛-11x d x =12x 2|1-1=0,∴⎠⎛-11 (1-x 2+x )d x =π2.8.若⎠⎛0T x 2d x =9,则常数T 的值为 .答案 3解析 ⎠⎛0T x 2d x = 13x 3⎪⎪⎪t 0=13T 3=9,即T 3=27,解得T =3. 9.设函数f (x )=ax 2+c (a ≠0),⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0= .答案33解析 由⎠⎛01f (x )d x =f (x 0),得⎠⎛1(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =ax 20+c ,∴a 3=ax 20,∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33.故填33. 10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a = .答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3⎪⎪⎪a=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1. 三、解答题11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛01bx d x =13a +12b =176. 由⎩⎨⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.即f (x )=4x +3. 12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x=⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x=x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2 =-512+432+4ln 2.13.求定积分⎠⎛-43|x +a |d x .解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛-43(x +a )d x =⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛-a3 (x +a )d x=⎝⎛⎭⎫-x 22-ax ⎪⎪-a-4+⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛-43[-(x +a )]d x =⎝⎛⎭⎫-x 22-ax ⎪⎪⎪3-4=-7a +72. 综上,得⎠⎛-43|x +a |d x =⎩⎪⎨⎪⎧7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).。

高中数学微积分知识点总结

高中数学微积分知识点总结

高中数学微积分知识点总结微积分是数学中重要的分支之一,涵盖了许多关键的概念和技巧。

在高中数学教育中,微积分被广泛教授,并且是进入大学数学学习的基础。

本文将总结高中数学微积分的关键知识点,帮助学生巩固学习成果,并为他们进一步深入研究提供基础。

1. 导数导数是微积分的核心概念之一。

它描述了函数在某一点上的变化率。

导数的计算方法包括使用基本的求导法则,如常数规则,幂函数规则,指数函数规则和三角函数规则。

在计算导数时,我们还可以使用链式法则和隐式微分法。

2. 函数的极值函数的极值是函数图像上的最大值和最小值。

根据导数的性质,我们可以通过求导来找到函数的极值点。

具体来说,函数在导数为零或导数不存在的点可能具有极值。

然后,我们可以通过二阶导数的符号来确定这些点是极大值还是极小值。

3. 定积分定积分是微积分中的另一个关键概念,用于计算曲线下的面积或曲线长度。

定积分的计算需要求出积分上下限之间的函数的面积。

我们使用不定积分来计算定积分,并使用积分上下限来确定曲线的范围。

4. 微分方程微分方程是关于未知函数及其导数的方程。

高中数学中,主要学习了一阶微分方程。

求解微分方程的一般步骤包括分离变量,积分,以及解释常数。

解方程时,需要根据给定初始条件来求解常数。

5. 泰勒展开泰勒展开是将一个函数在某点周围展开为幂级数的表达式。

它可以用来近似计算复杂函数的值。

泰勒展开的基本思想是使用函数值及其各阶导数的信息来逼近函数的形式。

具体的展开公式取决于所考虑的阶数。

以上是高中数学微积分的一些关键知识点的总结。

通过掌握这些知识,学生们将能够更好地理解微积分的基本概念和方法,并为进一步深入研究打下坚实的基础。

希望本文对高中数学学生的学习有所帮助,并激发他们对微积分的兴趣和探索精神。

让我们一起享受微积分带来的挑战和成就吧!。

(完整word版)高中微积分基本知识(良心出品必属精品)

(完整word版)高中微积分基本知识(良心出品必属精品)

高中微积分基本知识第一章、 极限与连续 一、 数列的极限 1.数列定义:按着正整数的顺序排列起来的无穷多个数1,,,n x x 叫数列,记作{}n x ,并吧每个数叫做数列的项,第n 个数叫做数列的第n 项或通项 界的概念:一个数列{}n x ,若0M ∃>,..s t 对*n N ∀∈,都有n x M ≤,则称{}n x 是有界的: 若不论M 有多大,总*m N ∃∈,..s t m x M >,则称{}n x 是无界的 若n a x b ≤≤,则a 称为n x 的下界,b 称为n x 的上界{}n x 有界的充要条件:{}n x 既有上界,又有下界2.数列极限的概念定义:设{}n x 为一个数列,a 为一个常数,若对∀0ε>,总∃N ,..s t 当n N >时,有n x a ε-< 则称a 是数列{}n x 的极限,记作lim n n x a →∞=或()n x a n →→∞数列有极限时,称该数列为收敛的,否则为发散的 几何意义:从第1N +项开始,{}n x 的所有项全部落在点a 的ε邻域(,)a a εε-+3. 数列极限的性质①唯一性 ②收敛必有界 ③保号性:极限大小关系⇒数列大小关系(n N >时) 二、 函数的极限 1.定义:两种情形①0x x →:设()f x 在点0x 处的某去心邻域内有定义,A 为常数,若对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立, 则称()f x 在0x x →时有极限A记作0lim ()x xf x A →=或0()()f x A x x →→几何意义:对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,()f x 介于两直线y A ε=± 单侧极限:设()f x 在点0x 处的右侧某邻域内有定义,A 为常数,若对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立,称()f x 在0x 处有右极限A ,记作0lim ()x x f x A +→=或0()f x A +=lim ()x x f x A →=的充要条件为:00()()f x f x +-==A 垂直渐近线:当0lim ()x xf x →=∞时,0x x =为()f x 在0x 处的渐近线②x →∞:设函数()f x 在0x b ≥≥上有定义,A 为常数,若对0ε∀>,,..X b s t ∃>当x X >时,有()f x A ε-<成立,则称()f x 在x →∞时有极限A ,记作lim ()x f x A →∞=或()()f x A x →→∞lim ()x f x A →∞=的充要条件为:lim ()lim ()x x f x f x A →+∞→-∞==水平渐进线: 若lim ()x f x A →+∞=或lim ()x f x A →-∞=,则y A =是()f x 的水平渐近线2.函数极限的性质:①唯一性 ②局部有界性 ③局部保号性(②③在当00x x δ<-<时成立) 三、 极限的运算法则 1.四则运算法则设()f x 、()g x 的极限存在,lim (),lim ()f x A g x B ==则①lim ()()f x g x A B ±=± ②lim[()()]f x g x AB = ③()lim()f x Ag x B= (当0B ≠时) ④lim ()cf x cA = (c 为常数) ⑤lim[()]k k f x A = (k 为正整数) 2.复合运算法则设[()]y f x ϕ=,若0lim ()x x x a ϕ→=,则0lim [()]()x xf x f a ϕ→=可以写成0lim [()][lim ()]x x x xf x f x ϕϕ→→= (换元法基础)四、极限存在准则及两个重要极限 1.极限存在准则 ①夹逼准则设有三个数列{}n x ,{}n y ,{}n z ,满足n n n y x z ≤≤ , lim lim n n n n y z a →∞→∞== 则lim n n x a →∞=②单调有界准则 有界数列必有极限 3.重要极限①0sin lim 1x x x →= ②1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或()10lim 1x x x e →+= 五、无穷大与无穷小 1.无穷小:在自变量某个变化过程中lim ()0f x =,则称()f x 为x 在该变化过程中的无穷小 ※ 若()0f x =,则()f x 为x 在所有变化过程中的无穷小 若()f x ε=,则()f x 不是无穷小性质:1.有限个无穷小的代数和为无穷小 2.常量与无穷小的乘积为无穷小 3.有限个无穷小的乘积为无穷小 4.有极限的量与无穷小的乘积为无穷小 5.有界变量与无穷小的乘积为无穷小定理:lim ()f x A =的充要条件是()()f x A x α=+,其中()x α为x 在该变化中过程中的无穷小无穷小的比较:(趋于0的速度的大小比较)(),()x x ααββ==,为同一变化过程中的无穷小若lim c αβ=(0c ≠常数) 则α是β的同阶无穷小 (当1c =时为等价无穷小) 若lim kc αβ=(0c ≠常数) 则α是β的k 阶无穷小 若lim0αβ= 则α是β的高阶无穷小 常用等价无穷小:(0x →)sin tan arcsin arctan ln(1)1x x x x x x x e +-;21cos 2x x-;(1)1x x βααβ+-;1ln x a x a - 2.无穷大:设函数()f x 在0x 的某去心邻域内有定义。

高考数学中的微积分基本知识总结

高考数学中的微积分基本知识总结

高考数学中的微积分基本知识总结高考是每一个学生求学生涯中的重要节点,数学是其中不可或缺的一部分。

而微积分是高考数学中的重要考点,通常也是难点。

因此,在备考高考的过程中,掌握微积分基本知识是必不可少的。

本文将从微积分的概念、符号和运算、重要定理和应用四个方面,对高考数学中的微积分基本知识进行总结。

一、微积分的概念微积分是数学中的一个重要分支,它是求解变化率和变化量问题的数学工具。

它包括微分和积分两个部分。

微分是指函数在某一点的导数,表示函数曲线在该点处的切线斜率;积分是求解函数的面积或曲线弧长问题。

微积分是一个相对而言比较抽象的概念,但在实际的物理和工程问题中却具有广泛的应用。

二、符号和运算微积分中有许多特殊的符号和运算,掌握这些符号和运算是掌握微积分的关键。

其中最基本的符号和运算如下:1. 函数的导数函数的导数是指函数在某一点的切线斜率,用dy/dx或y'表示。

其中dy表示函数y的微小增量,dx表示函数x的微小增量,dy/dx表示函数y对函数x的改变速率。

2. 函数的微分函数的微分是指函数在某一点处的导数与自变量的微小增量之积,用dy表示。

其中函数的微分表示了函数在某一点处的微小改变量。

3. 积分积分是求解函数在某一区间内的面积,用∫f(x)dx表示。

其中f(x)表示被积函数,dx表示积分变量,积分的区间表示在这一区间内求解函数的面积。

三、重要定理微积分中有一些重要的定理,这些定理对于解题非常有帮助。

其中最重要的定理有如下几个:1. 中值定理中值定理是微积分中的一个基本定理,它是导数存在的一个重要结果。

中值定理表示:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在x0∈(a,b),使得f(b)-f(a)=f'(x0)×(b-a)。

2. 拉格朗日中值定理拉格朗日中值定理是几何意义上的中值定理,它是微积分中的一个重要定理。

拉格朗日中值定理表示:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在x0∈(a,b),使得f(b)-f(a)=f'(x0)×(b-a)。

高三微积分知识点汇总总结

高三微积分知识点汇总总结

高三微积分知识点汇总总结迈向高考的高三学生,微积分是数学学科中重要的一环。

在高考数学中,微积分所占的分值较大,因此掌握好微积分的知识点对于高考取得理想成绩至关重要。

本文将围绕高三微积分的知识点进行汇总总结。

一、函数及其性质微积分的基础知识主要围绕函数展开。

函数是数学中最为基本的概念之一,我们需要了解函数的定义、性质和分类。

同时,函数的极限、连续性、可导性也是微积分中重要的概念。

在研究函数的极限时,我们需要掌握极限的定义、性质和相关的运算法则。

通过极限的概念,我们可以推导出导数的定义,并学习相关的性质和基本的运算法则。

另外,我们还需要理解函数的连续性及其相关定理,以及导数的定义和计算方法。

二、函数的应用函数的应用是微积分中重要的一部分,也是学生比较感兴趣的部分。

在高三阶段,我们需要学习函数在几何、物理等领域中的应用。

例如,通过对函数的研究,我们可以推导出函数的单调性、极值、最值等问题。

同时,我们还可以利用微积分的方法计算曲线的弧长、曲率等相关量。

在物理学中,微积分也被广泛应用。

例如,我们可以利用微积分的知识计算物体的速度、加速度,研究物体的运动规律等。

另外,微积分还可以应用于经济学、生物学等学科中,对于分析和解决实际问题具有重要意义。

三、定积分定积分是微积分中的一个重要概念,也是高考中的重点内容。

我们需要掌握定积分的定义、性质及其计算方法。

在计算定积分时,常用的方法包括换元法、分部积分法和变限积分法。

在应用中,定积分的重要性也不容忽视。

我们可以利用定积分求解曲线的弧长、曲面的面积和体积等问题。

同时,定积分还可以应用于求解物体的质量、重心等相关量。

四、微分方程微分方程是微积分中的一个重要内容,也是高三阶段比较难的一部分。

我们需要学习一阶和二阶微分方程的基本概念、求解方法和应用。

在求解微分方程时,我们常用的方法包括变量分离法、齐次方程法和常系数线性齐次微分方程的特征根法。

在应用中,微分方程常被用于描述物理、生物、经济等领域的问题,例如弹簧振动、人口增长等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中微积分基本知识第一章、 极限与连续一、 数列的极限 1. 数列 定义:按着正整数的顺序排列起来的无穷多个数 1,,,n x x 叫数列,记作{}n x ,并吧每个数叫做数列的项,第n 个数叫做数列的第n 项或通项 界的概念:一个数列{}n x ,若0M ∃>,..s t 对*n N ∀∈,都有n x M ≤,则称{}n x 是有界的: 若不论M 有多大,总*m N ∃∈,..s t m x M >,则称{}n x 是无界的 若n a x b ≤≤,则a 称为n x 的下界,b 称为n x 的上界{}n x 有界的充要条件:{}n x 既有上界,又有下界2. 数列极限的概念 定义:设{}n x 为一个数列,a 为一个常数,若对∀0ε>,总∃N ,..s t 当n N >时,有n x a ε-< 则称a 是数列{}n x 的极限,记作lim n n x a →∞=或()n x a n →→∞数列有极限时,称该数列为收敛的,否则为发散的 几何意义:从第1N +项开始,{}n x 的所有项全部落在点a 的ε邻域(,)a a εε-+3. 数列极限的性质①唯一性 ②收敛必有界 ③保号性:极限大小关系⇒数列大小关系(n N >时) 二、 函数的极限 1.定义:两种情形①0x x →:设()f x 在点0x 处的某去心邻域内有定义,A 为常数,若对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立, 则称()f x 在0x x →时有极限A记作0lim ()x x f x A →=或0()()f x A x x →→几何意义:对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,()f x 介于两直线y A ε=± 单侧极限:设()f x 在点0x 处的右侧某邻域内有定义,A 为常数,若对0ε∀>,0δ∃>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立,称()f x 在0x 处有右极限A , 记作0lim ()x x f x A +→=或0()f x A += 0lim ()x x f x A →=的充要条件为:00()()f x f x +-==A 垂直渐近线:当0lim ()x x f x →=∞时,0x x =为()f x 在0x 处的渐近线②x →∞:设函数()f x 在0x b ≥≥上有定义,A 为常数,若对0ε∀>,,..X b s t ∃>当x X >时,有()f x A ε-<成立,则称()f x 在x →∞时有极限A ,记作lim ()x f x A →∞=或()()f x A x →→∞lim ()x f x A →∞=的充要条件为:lim ()lim ()x x f x f x A →+∞→-∞==水平渐进线: 若lim ()x f x A →+∞=或lim ()x f x A →-∞=,则y A =是()f x 的水平渐近线2.函数极限的性质:①唯一性 ②局部有界性 ③局部保号性(②③在当00x x δ<-<时成立) 三、 极限的运算法则1. 四则运算法则设()f x 、()g x 的极限存在,lim (),lim ()f x A g x B ==则 ①lim ()()f x g x A B ±=± ②lim[()()]f x g x AB = ③()lim()f x Ag x B= (当0B ≠时) ④lim ()cf x cA = (c 为常数) ⑤lim[()]k k f x A = (k 为正整数) 2. 复合运算法则设[()]y f x ϕ=,若0lim ()x x x a ϕ→=,则0lim [()]()x x f x f a ϕ→=可以写成0lim [()][lim ()]x x x x f x f x ϕϕ→→= (换元法基础)四、极限存在准则及两个重要极限 1.极限存在准则 ①夹逼准则设有三个数列{}n x ,{}n y ,{}n z ,满足n n n y x z ≤≤ , lim lim n n n n y z a →∞→∞== 则lim n n x a →∞=②单调有界准则 有界数列必有极限 3. 重要极限①0sin lim 1x x x →= ②1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或()10lim 1x x x e →+= 五、无穷大与无穷小 1.无穷小:在自变量某个变化过程中lim ()0f x =,则称()f x 为x 在该变化过程中的无穷小 ※ 若()0f x =,则()f x 为x 在所有变化过程中的无穷小若()f x ε=,则()f x 不是无穷小 性质:1.有限个无穷小的代数和为无穷小 2.常量与无穷小的乘积为无穷小 3.有限个无穷小的乘积为无穷小4.有极限的量与无穷小的乘积为无穷小5.有界变量与无穷小的乘积为无穷小定理:lim ()f x A =的充要条件是()()f x A x α=+,其中()x α为x 在该变化中过程中的无穷小无穷小的比较:(趋于0的速度的大小比较)(),()x x ααββ==,为同一变化过程中的无穷小若limc αβ=(0c ≠常数) 则α是β的同阶无穷小 (当1c =时为等价无穷小) 若limkc αβ=(0c ≠常数) 则α是β的k 阶无穷小 若lim0αβ= 则α是β的高阶无穷小 常用等价无穷小:(0x →)sin tan arcsin arctan ln(1)1x xxxxxx e +-;21cos 2x x-;(1)1x x βααβ+-;1ln x a x a - 2.无穷大:设函数()f x 在0x 的某去心邻域内有定义。

若对于0M ∀>,0δ∃>..s t 当00x x δ<-<时,恒有()f x M >称()f x 当0x x →时为无穷大,记作0lim ()x x f x →=∞定理:lim ()f x 1lim ()1lim ()f x f x ⎧⎫⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎩⎭无穷大为无穷小无穷小为无穷大 (下:趋于某点,去心邻域不为0)※ 无穷大的乘积为无穷大, 其和、差、商不确定六、连续函数 1.定义设函数()y f x =在0x 某邻域有定义,若对0ε∀>,0δ∃>..s t 当00x x δ<-<时,恒有: 0()()f x f x ε-<也可记作 00lim ()()x x f x f x →= 或 0lim 0x y ∆→∆=00()()f x f x -=(或00()()f x f x +=)为左(或右)连续2.函数的间断点第一类间断点:左右极限存在⎧⎨⎩左右极限相等,该处无定义可去间断点左右极限不等跳跃间断点第二类间断点:无穷间断点,震荡间断点等3.连续函数的运算若函数()f x 与()g x 都在x 处连续,则函数()()f x g x ±,()()f x g x ,()()f xg x (()0g x ≠) 定理:[()]y f g x =,00()g x u =,若()g x 在0x 处连续,()f g 在0u 处连续,则[()]y f g x =在0x 处连续4. 闭区间连续函数的性质① 最值定理:()f x 在[,]a b 上连续, 则12,x x ∃,对一切[,]x a b ∈有 12()()()f x f x f x ≤≤②介值定理:()f x 在[,]a b 上连续,对于()f a 与()f b 之间的任何数u ,至少∃一点ξ,..s t ()f u ξ=第二章、 导数一、导数的概念定义:设函数()y f x =在点0x 的某邻域有定义,如果极限 000()()limx f x x f x x∆→+∆-∆ 存在,则称函数()y f x =在点0x 可导,极限值为函数()y f x =在点0x 处的导数,记为'0()f x单侧导数:设函数()y f x =在点0x 处的左侧00(,]x x δ-有定义,若极限 000()()lim x f x x f x x-∆→+∆-∆ 存在,则称此极限为函数()y f x =在点0x 处的左导数,记为'0()f x -,类似有右导数'0()f x +导函数:函数()y f x =在某区间上可导,则 '0()()()limx f x x f x f x x∆→+∆-=∆性质:①函数()y f x =在点0x 处可导的充要条件''00()()f x f x -+= ②可导⇒连续导数的几何意义: 函数点处的切线斜率 二、求导法则1.函数的和、差、积、商的求导法则定理:若(),()u u x v v x ==都在x 处可导,则函数()()u x v x ±在x 处也可导,且 '''[()()]()()u x v x u x v x ±=±定理:若(),()u u x v v x ==都在x 处可导,则函数()()u x v x 在x 处也可导,且 '''[()()]u x v x u v uv =+推论:若1,,n u u 都在x 处可导,则函数12n u u u 在x 处也可导,且 ''''12121212[]n n n n u u u u u u u u u u u u =++定理:若(),()u u x v v x ==都在x 处可导,则函数()()u x v x 在x 处也可导,且 '''2()()u x u v uv v x v ⎡⎤-=⎢⎥⎣⎦ 2.反函数的求导法则定理:设函数()x g y =在y I 上单调可导,它的值域为x I ,而'()0g y ≠,则其反函数1()()y g x f x -==在区间x I 上可导,并且有''1()()f xg x = 4. 复合函数的求导法则定理:若函数()u x ϕ=在0x 可导,函数()y f u =在点00()u x ϕ=可导,则复合函数(())y f x ϕ=在0x 处可导'''[(())](())()f x f x x ϕϕϕ= 或 dy dy dudx du dx=(连锁规则) 三、高阶导数定义:若函数()y f x =的导数''()y f x =仍可导,则''()y f x =导数为()y f x =的二阶导数,记作2""2,(),d y y f x dx , 类似的,有n 阶导数()(),(),n n n n d y y f x dx四、隐函数求导对于[,()]0F x y x =,或[,()][,()]F x y x G x y x =,若求dy dx求导法:方程两侧对x 求导微分法:方程两侧求微分公式法:''x yF dydx F =- ,将方程化成[,]F x y =0,将F 看成关于x,y 的二元函数,分别对x,y 求偏导'',x y F F 五、参数方程所确定的函数求导()()x t y t ϕψ=⎧⎨=⎩ ,''''()/()t t y dy dy dt dy dx t dx dt dx dt dt t x ψϕ====导数公式 基本函数:导数运算法则:'''()u v u v ±=± ''()Cu Cu ='''()uv u v uv =+ '''2()u u v uv v v-= ()()()()n n n u v uv±=± ()()()()nn k n k k n k uv C u v -==∑ 高阶导数()()[()]()n n n Cf ax b Ca f ax b +=+ ()*(),(),0n m m n mn x A x n N m n -=∈>=若则 ()11!(1)n nn n x x+⎛⎫=- ⎪⎝⎭()()ln x n x n a a a = ()1(1)!(log )(1)ln n n a nn x x a --=- ()(sin )sin()2n n x x π=+()(cos )cos()2n n x x π=+※1.1()()n n o x o x x += 2.'000()()lim ()x f x f x f x x x ∆→-≠-,需补充条件()f x 在0x 处可导或该极限存在'0C ='1()x x μμμ-='()ln x x a a a ='1(log )ln a x x a ='(sin )cos x x ='(cos )sin x x =-'2(cot )csc x x =-'(sec )sec tan x x x ='(csc )csc cot x x x=-'(arcsin )x ='(arccos )x ='21(arctan )1x x =+'21(arccot )1x x =-+第三章、微分一、微分的概念定义:设函数()y f x =在某区间I 上有定义,00,x x x I +∆∈,若00()()y f x x f x ∆=+∆-可表示为()y A x o x ∆=∆+∆ (其中A 与x ∆无关) ,则称A x ∆为y 在0x 处的微分,记作dy A x =∆ ※dy y ∆与的区别: 当y 为自变量时,dy y =∆当y 为因变量时,dy y ≈∆,()y dy o x ∆=+∆,dy 为y 的线性主部 定理:对于一元函数()y f x =,⇔可导可微性质:一阶微分形式不变性,对于高阶微分()()()n n n d y f x dx = 二、微分的几何意义 “以直代曲”①有限增量定理:'()y f x x x θ∆=+∆∆ (01)θ<< ②,L Hospital 法则:型未定式定值法:(),()f x g x 在0x 的某去心邻域有定义,且0lim ()lim ()0x x x x f x g x →→==,(),()f x g x 在0x 的某去心邻域可导,且'()0g x ≠0''()lim ()x x f x A g x →=,则有00''()()lim lim ()()x x x x f x f x g x g x →→= ∞∞,0∞,1∞,∞-∞,00,0∞类似四、函数的单调性与极值 1.单调性:定理:设函数()y f x =在[,]a b 上连续,在(,)a b 上可导,则2.极值定义:设函数()y f x =在点0x 某邻域有定义,若对该邻域内一切x 都有 0()()f x f x >则0()f x 是函数()f x 的一个极大值,点0x 为函数()f x 的一个极大值点。

相关文档
最新文档