高中微积分知识点总结
高等数学一-微积分总结-知识归纳整理

导数微分学微分微积分不定积分积分学定积分无穷级数第一章函数及其特性1.1 集合一、定义:由具有共同特性的个体(元素)组成。
二、表达方式:集合A,B,C……(大写字母)元素a,b,c……(小写字母)A={a,b,c}元素的罗列无重复,无顺序。
a属于A记作a∈A,1不属于A记作1∉A或1∈A三、分类有限集无限集空集Ф四、集合的运算1、子集:存在A、B两个集合,如果A中所有元素都在B中,则A叫做B的子集,A⊆B或B⊇A(空集是任何集合的子集)。
2、交集:存在A、B两个集合,由既在A中又在B中的元素组成的集合。
A B,A B⊆A,A B⊆B,Ф B=Ф(空集与任何集合的交集是Ф)。
3、并集:存在A、B两个集合,由所有在A、B中的元素组成的集合。
A B,A B⊇A,A B⊇B,Ф B=B。
4、补集:存在A、B两个集合,且A⊆B,由在B当中但不在A中的元素组成的集合,叫A的补集,B叫全集。
记作AB或A CB, ABA=Ф,ABA=B五、数、数轴、区间、邻域1、数实数虚数: 规定i2= -1,i叫虚数单位,ii3332==-2、数轴:规定了原点、正方向和单位长度的直线。
3、区间知识归纳整理(1)闭区间a ≤x ≤b,x ∈[a, b] (2)开区间a< x< b, x ∈(a, b) (3)半开区间a ≤x< b, x ∈[a, b)a< x ≤b, x ∈(a, b](4)无限区间 x ≤a, x ∈(-∞, a]x ≥b, x ∈[ b, +∞) x ∈R, x ∈(-∞, +∞)4、邻域:以x = x 0为圆心,以δ> 0(δ为非常小的正数)为半径作圆,与数轴相交于A 、B 两点,x 0 -δ< x 0 < x 0 +δ叫x 0的δ邻域。
例1 已知A={x ∈ -2≤x< 3},B={x ∈ -1< x ≤5},求A B , A B 解:A 、B 集合中x 的取值范围在数轴表示如下所以A B={x ∈ -1< x< 3}, A B={x ∈ -2≤x ≤5} 例2 已知A 、B 为两非空集合,则A B=A 是A=B 的[ (2) ] (1)充分条件 (2)充分必要条件 (3)必要条件 (4)无关条件注:如果A 成立,这么B 成立,即“A ⇒B ”,这么条件A 是B 成立的充分条件;如要使B 成立,必须有条件A ,但惟独A 不一定能使B 成立,则称A 是B 成立的必要条件;如果“A ⇒B ”,又有“B ⇒A ”,则称条件A 是B 成立的充分必要条件。
高考微积分知识点归纳

高考微积分知识点归纳微积分作为数学的一门重要分支,是高中数学中的一门重要课程,也是高考数学中的重点内容。
掌握微积分的核心知识点,对于顺利应对高考数学是至关重要的。
本文将归纳总结高考微积分的知识点,为大家进行复习提供一定的参考。
1. 函数与极限函数与极限是微积分学的基本概念之一。
在函数与极限这一章节中,核心的知识点主要有:(1) 函数的概念以及函数的性质,如奇偶性、周期性等;(2) 极限的概念,包括数列极限和函数极限;(3) 极限的运算法则,如极限的四则运算法则、复合函数的极限法则等;(4) 极限存在性的判定方法,如夹逼定理、单调有界准则等。
2. 导数与微分导数与微分是微积分学的核心知识点之一,也是高考中非常重要的内容。
在导数与微分这一章节中,重要的知识点包括:(1) 导数的概念及其几何意义,如切线的斜率、曲线的变化率等;(2) 常见函数的导数,如幂函数、指数函数、对数函数等;(3) 导数的性质与运算法则,如导数的四则运算法则、复合函数的导数法则等;(4) 高阶导数与高阶导数的计算方法;(5) 微分的概念及其应用,如利用微分近似计算、解决最优化问题等。
3. 积分与定积分积分与定积分也是微积分学的核心内容之一,它与导数具有密切的关系。
在积分与定积分这一章节中,重要的知识点包括:(1) 不定积分的概念与性质,如不定积分的线性性、基本积分表等;(2) 定积分的概念及其几何意义,如曲线下面积、曲线长度等;(3) 定积分的计算方法,如换元积分法、分部积分法、定积分性质的应用等;(4) 积分的应用,如求曲线的面积、求物体的体积、物理问题的应用等。
4. 微分方程微分方程是微积分学的一个重要分支,也是高考中的考点之一。
在微分方程这一章节中,重要的知识点有:(1) 常微分方程的分类与概念,如一阶微分方程、二阶线性微分方程等;(2) 常微分方程的求解方法,如分离变量法、齐次线性微分方程的求解法等;(3) 微分方程的应用,如人口模型、物理问题等。
高三微积分知识点归纳整理

高三微积分知识点归纳整理微积分是数学中的一个重要分支,也是高中数学的一部分。
在高三阶段,学生们将接触到更加深入的微积分知识,这些知识点将为他们后续的学习和考试提供基础。
为了帮助同学们更好地理解和掌握微积分的知识,下面将对高三微积分的一些重要知识点进行归纳整理。
一、导数与微分1. 导数的定义与性质:导数表示函数在某一点处的变化率。
导数的定义为:若函数f(x)在点x处的极限存在,则称此极限为函数f(x)在点x处的导数,记作f'(x)。
2. 常见函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 高阶导数与导数的运算:高阶导数表示对函数进行多次求导,导数的运算法则包括加法、减法、乘法、除法运算等。
4. 微分的定义:微分表示函数在某一点处的局部线性逼近。
微分的定义为:若函数f(x)在点x处的微分存在,则称此微分为函数f(x)在点x处的微分,记作df。
二、微分中值定理与应用1. 魏尔斯特拉斯中值定理:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一点c∈(a, b),使f'(c) = [f(b) - f(a)] / (b - a)。
2. 拉格朗日中值定理:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一点c∈(a, b),使f'(c) = [f(b) - f(a)] / (b -a)。
3. 柯西中值定理:若函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导且g'(x)≠0,则存在一点c∈(a, b),使[f'(c) / g'(c)] = [f(b) - f(a)] / (g(b) - g(a))。
4. 应用:利用微分中值定理可以证明函数的性质,解决一些极值、最值和曲线的切线问题。
三、不定积分与定积分1. 不定积分的概念:不定积分是函数的导数的逆运算,表示求函数的原函数。
高考微积分专题总结(全是精华)

高考微积分专题总结(全是精华)本文旨在对高考微积分专题进行总结,为考生提供精华内容,帮助他们更好地备考。
1. 导数与微分- 导数的定义:导数可以理解为函数某一点的瞬时变化率,是函数在该点的切线斜率。
- 导数的求法:常用的求导法则有常数法则、幂函数法则、和差法则、乘法法则、除法法则以及复合函数法则。
- 微分的定义:微分是函数在某一点附近的近似线性变化,可以通过导数来求得。
2. 极值与最值- 极值:函数在某一区间内的最大值或最小值。
- 极值的求法:可以使用导数的方法求函数的极值。
- 最值:函数在整个定义域内的最大值或最小值,也称为全局极值。
- 最值的求法:需要考虑函数的边界点和无界函数的趋势。
3. 定积分与不定积分- 定积分:定积分是用于计算曲线下面的面积或曲线长度的工具。
- 定积分的计算:可以通过牛顿—莱布尼兹公式、换元法和分部积分法来计算定积分。
- 不定积分:不定积分是通过求导的逆运算来得到的,表示函数的原函数。
- 不定积分的计算:可以通过基本积分公式、换元法和分部积分法来计算不定积分。
4. 微分方程- 微分方程的基本概念:微分方程是含有未知函数及其导数的方程。
- 微分方程的分类:常微分方程和偏微分方程。
- 微分方程的求解:可以使用分离变量法、变参数法和待定系数法等方法来求解微分方程。
5. 泰勒展开- 泰勒展开的基本思想:将一个函数在某一点附近展开成无穷级数的形式,以近似表示该函数。
- 泰勒展开的应用:可以用泰勒展开来计算函数的近似值、导数、积分等。
以上是高考微积分专题的一些精华内容,希望对考生备考有所帮助。
必修4-微积分知识点总结

必修4-微积分知识点总结
1. 导数与微分
- 导数的定义及其计算方法
- 微分的概念和应用
2. 导数的基本性质
- 导数的四则运算法则和链式法则
- 隐函数的导数和高阶导数
3. 极限与连续
- 极限的概念和性质
- 无穷小量与无穷大量的定义
- 连续函数的定义和性质
4. 幂指函数与对数函数的导数
- 幂函数和指数函数的导数公式
- 对数函数的导数公式和性质
5. 反函数与参数方程的求导
- 反函数的导数计算
- 参数方程的求导方法
6. 高阶导数与泰勒公式
- 高阶导数的定义和计算方法
- 泰勒公式及其应用
7. 常微分方程
- 常微分方程的概念
- 一阶线性常微分方程的求解方法
8. 微分方程的应用
- 生活中微分方程的应用案例
9. 偏导数与多元函数的微分
- 偏导数的定义和计算方法
- 多元函数的全微分和微分近似
10. 隐函数的偏导数和方向导数- 隐函数的偏导数计算
- 方向导数的概念和计算方法
11. 极值与最值
- 极值的定义和判断条件
- 最值的概念和计算方法
以上是必修4微积分课程的知识点总结。
希望对您的学习有帮助!。
(word完整版)高中微积分基本知识

高中微积分基本知识第一章、极限与连续一、数列的极限1. 数列定义:按着正整数的顺序排列起来的无穷多个数X!,K,X n丄叫数列,记作x n,并吧每个数叫做数列的项,第n个数叫做数列的第n项或通项界的概念:一个数列X n ,若M 0,s.t对nN*,都有X n M,则称人是有界的:若不论M有多大,总m N*,s.t x m M,则称x n是无界的若a x n b,则a称为x n的下界,b称为x n的上界X n有界的充要条件:x n既有上界,又有下界2. 数列极限的概念定义:设X n为一个数列,a为一个常数,若对0,总N , st当n N时,有x n a 则称a是数列x n的极限,记作lim x n a或x n a(n )n数列有极限时,称该数列为收敛的,否则为发散的几何意义:从第N 1项开始,x n的所有项全部落在点a的邻域(a ,a )3. 数列极限的性质①唯一性②收敛必有界③保号性:极限大小关系数列大小关系(n N时)二、函数的极限1. 定义:两种情形①x X o :设f (x)在点X o处的某去心邻域内有定义,A为常数,若对0,0,s.t当0 x x0时,恒有f (x) A 成立,则称f (x)在x x0时有极限A记作lim f (x) A或 f (x) A(x x°)X X0几何意义:对0, 0, s.t当0 X X o 时,f(x)介于两直线y A单侧极限:设f(x)在点x o处的右侧某邻域内有定义,A为常数,若对0 ,0 , s.t当0 x x0时,恒有f (x) A 成立,称f (x)在x0处有右极限A,记作lim f (x) A或f(x°) Ax xlim f (x) A的充要条件为:f(x°) f(x°) = Ax x垂直渐近线:当lim f (x) 时,x x0为f (x)在x0处的渐近线X x 0②x :设函数f (x)在x b 0上有定义,A为常数,若对0,X b, s.t 当x X时,有| f (x) A 成立,则称f (x)在x 时有极限A,记作lim f (x) A 或f (x) A(x )xlim f (x) A 的充要条件为:Jim f (x) Jim f (x) A水平渐进线:若lim f (x) A或lim f (x) A,则y A是f (x)的水平渐近线x x2. 函数极限的性质:①唯一性②局部有界性③局部保号性(②③在当0 |x x0时成立)三、极限的运算法则1. 四则运算法则设f(x)、g(x)的极限存在,lim f(x) A,lim g(x) B 贝V①lim f(x) g(x) A B②lim[ f (x)g(x)] AB③lim - (当B 0 时)g(x) B④lim cf (x) cA ( c为常数)⑤lim[f(x)]k A k( k为正整数)2. 复合运算法则设 y f [ (x)],若 lim (x) a ,则 lim f[ (x)] f (a)xx x可以写成lim f[ (x)] f[lim (x)](换元法基础)XxXx四、极限存在准则及两个重要极限1 •极限存在准则①夹逼准则设有三个数列x n, y n, z n,满足y n X n Z n ,②单调有界准则lim y nnlimz nna 则lim X n an有界数列必有极限3.重要极限sin x ① lim1 ② lim 1 1 Xe1或lim 1 x ex0 x x x x 0五、无穷大与无穷小1.无穷小:在自变量某个变化过程中lim f(x) 0,则称f (x)为X在该变化过程中的无穷小探若f(X)0,则f(X)为x在所有变化过程中的无穷小若f(X),则f(x)不是无穷小性质:1.有限个无穷小的代数和为无穷小2. 常量与无穷小的乘积为无穷小3. 有限个无穷小的乘积为无穷小4. 有极限的量与无穷小的乘积为无穷小5. 有界变量与无穷小的乘积为无穷小定理:lim f(x) A的充要条件是f(x) A (x),其中(x)为x在该变化中过程中的无穷小无穷小的比较:(趋于0的速度的大小比较)(x), (x),为同一变化过程中的无穷小若lim--c (c 0常数)则是的同阶无穷小(当c 1时为等价无穷小)若lim- kc ( c 0常数)则是的k阶无穷小若lim- -0 则是的高阶无穷小常用等价无穷小:(x 0) x: sinx: tanx: arcsinx: arctanx: In(1 x) : e x 1 ;1 cosx: ; (1 x) 1: x; a x 1 : xlna22•无穷大:设函数f (x)在x0的某去心邻域内有定义。
高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
3. 基本初等函数的导数公式。
- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。
- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。
1. 函数的单调性。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。
2. 函数的极值。
- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。
高三微积分知识点汇总总结

高三微积分知识点汇总总结迈向高考的高三学生,微积分是数学学科中重要的一环。
在高考数学中,微积分所占的分值较大,因此掌握好微积分的知识点对于高考取得理想成绩至关重要。
本文将围绕高三微积分的知识点进行汇总总结。
一、函数及其性质微积分的基础知识主要围绕函数展开。
函数是数学中最为基本的概念之一,我们需要了解函数的定义、性质和分类。
同时,函数的极限、连续性、可导性也是微积分中重要的概念。
在研究函数的极限时,我们需要掌握极限的定义、性质和相关的运算法则。
通过极限的概念,我们可以推导出导数的定义,并学习相关的性质和基本的运算法则。
另外,我们还需要理解函数的连续性及其相关定理,以及导数的定义和计算方法。
二、函数的应用函数的应用是微积分中重要的一部分,也是学生比较感兴趣的部分。
在高三阶段,我们需要学习函数在几何、物理等领域中的应用。
例如,通过对函数的研究,我们可以推导出函数的单调性、极值、最值等问题。
同时,我们还可以利用微积分的方法计算曲线的弧长、曲率等相关量。
在物理学中,微积分也被广泛应用。
例如,我们可以利用微积分的知识计算物体的速度、加速度,研究物体的运动规律等。
另外,微积分还可以应用于经济学、生物学等学科中,对于分析和解决实际问题具有重要意义。
三、定积分定积分是微积分中的一个重要概念,也是高考中的重点内容。
我们需要掌握定积分的定义、性质及其计算方法。
在计算定积分时,常用的方法包括换元法、分部积分法和变限积分法。
在应用中,定积分的重要性也不容忽视。
我们可以利用定积分求解曲线的弧长、曲面的面积和体积等问题。
同时,定积分还可以应用于求解物体的质量、重心等相关量。
四、微分方程微分方程是微积分中的一个重要内容,也是高三阶段比较难的一部分。
我们需要学习一阶和二阶微分方程的基本概念、求解方法和应用。
在求解微分方程时,我们常用的方法包括变量分离法、齐次方程法和常系数线性齐次微分方程的特征根法。
在应用中,微分方程常被用于描述物理、生物、经济等领域的问题,例如弹簧振动、人口增长等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分(下)知识点总结
6月26日
马上就要进入期末考试了,本学期的推送也将告一段落了,希望同学们期末考试能有个好成绩,现将本学期所做的推送归纳一下。
微积分(下)的主要知识点和考点归纳如下:
第6章定积分及其应用
1、定积分的计算(换元积分法、分部积分法、定积分的对称性问题);
2、定积分的应用(平面图形的面积、旋转体的体积);
3、反常积分(无穷区间上的反常积分、无界函数的反常积分)。
第7章多元函数微分学
1、空间解析几何基础(空间两点间的距离、平面方程:一般方程、截距式方程特殊的平面方程、球面方程);
2、多元函数的概念(二元函数的极限、二元函数的连续性);
3、偏导数(偏导数的定义、偏导数的计算、偏导数存在与函数连续性的关系、高阶偏导数);
4、全微分及其应用(全微分的定义、全微分的计算、可微与连续,偏导数存在之间的关系);
5、多元复合函数的微分法;
6、多元函数的极值(二元函数的极值、二元函数的最值、条件极值)。
第8章二重积分
1、二重积分的几何意义;
2、二重积分的性质;
3、二重积分的计算(在直角坐标系中计算二重积分、交换积分次序、在极坐标中计算二重积分)。
第9章无穷级数
1、常数项级数的概念和性质(常数项级数收敛与发散的定义、常数项级数的性质、级数收敛的必要条件);
2、三类常用的级数(等比级数、调和级数、p级数);
3、正项级数及其审敛法(比较判别法、比较判别法的极限形式、比值判别法、根值判别法);
4、任意项级数(交错级数及其莱布尼茨判别法、绝对收敛与条件收敛);
5、幂级数(求幂级数的收敛半径及收敛域、求幂级数的和函数);
6、函数展开成幂级数(常用的函数的幂级数展开式、间接展开法)。
第10章微分方程
1、微分方程的基本概念(微分方程的阶数、验证函数是微分方程的解);
2、可分离变量的微分方程;
3、齐次方程;
4、一阶线性微分方程及其常数变易法;
5、二阶常系数齐次线性微分方程解的结构及求解方法。
§6.3定积分的换元积分法和分部积分法知识点;
§6.4 定积分的应用知识点;
§6.5 反常积分的知识点;
第6章定积分及其应用练习题及答案;
§7.1 空间解析几何基础;
§7.2多元函数的概念知识点;
§7.3偏导数知识点;
§7.4 全微分及其应用知识点;
§7.5 多元复合函数与隐函数的微分法知识点;
§7.6 多元函数的极值及其应用知识点;
第7章多元函数微分学练习题及答案;
第8章二重积分的知识点;
第8章二重积分练习题及答案;
第9章无穷级数的知识点;
第9章常数项级数练习题及答案;
第9章幂级数练习题及答案;
§10.1 微分方程的基本概念知识点;
§10.2 一阶微分方程的分离变量法知识点;
§10.3 一阶线性微分方程知识点
本学期在做推送过程中遇到了很多困难,但总算坚持下来了,希望对同学们学习微积分(下)能有所帮助。
我会一如既往地做下去,后面如果时间允许,将把重心放在考研数学三的模块上,敬请期待吧!。