一元微积分多元微积分高等数学复习提纲(同济大学版)
多元微积分复习提纲

微积分复习提纲一、多元函数微分学及其应用1、会求多元函数的偏导数,进而会求函数的全微分df 或者梯度函数f grad ①多元显函数的偏导数,见P16 例1---例3,P24习题1 ②多元抽象函数的偏导数,见P28 例5---例7,P36 习题3 ③高阶偏导数,见P19 例8,P24习题2,P36 习题4④复合函数的偏导数,见P26例1,例3,例4,P36习题1,2 2、会求由方程确定的隐函数的偏导数 ①“显”方程确定的隐函数求偏导数,(公式法),见P34 例12,P36习题6,7 ②抽象方程确定的隐函数求偏导数,(直接法),见P34 例13,P36习题8③由方程组()()⎩⎨⎧==0,,0,,z y x G z y x F 确定的隐函数⎩⎨⎧==)()(x z z x y y 的导数dx dz dx dy ,,(直接法:在方程两端同时对x 求导,求导过程中把z y ,都看做是x 的函数,然后解方程组即可), 见P35例14,P37习题9④由方程组()()⎩⎨⎧==0,,,0,,,v u y x G v u y x F 确定的隐函数⎩⎨⎧==),(),(y x v v y x u u 的偏导数(直接法)见P37习题93、多元函数微分学的几何应用①空间曲线⎪⎩⎪⎨⎧===)()()(x z x y t x ωφϕ在点()0000,,z y x M 处的切线方程及法平面方程,见P46 例1,例2, P50习题1、2②空间曲线()()⎩⎨⎧==0,,0,,z y x G z y x F 在点()0000,,z y x M 处的切线方程及法平面方程见P46 例3, P50习题2③曲面()0,,=z y x F 在点()0000,,z y x M 处的切平面方程与法线方程 见P46 例5,例6, P50习题3 二、多元函数积分学及其应用 1、二重积分的计算步骤:1)画出积分区域D ,2)根据积分区域选择适当的坐标系来计算此二重积分 3)化二重积分为二次积分4)做两次定积分,计算此积分的值注:多元函数对某个自变量积分的时候,要把其他的自变量看做常数。
同济版高数知识点总结大一

同济版高数知识点总结大一同济版高数是大一学生必修的一门课程,内容包含了数学的基础知识和应用技巧。
在学习过程中,我们需要掌握一些重要的知识点,下面就给大家总结一下。
1. 极限与连续在高数中,极限是一个重要的概念。
我们需要了解函数的极限及其性质。
其中包括常用的极限运算法则,如加减乘除法则、复合函数极限法则等。
另外,我们还需要学习函数的连续性及其判定方法,如极限存在的条件、间断点的分类及判断等。
2. 导数与微分导数是高数中的另一个重要概念,它描述了函数在某一点上的变化率。
我们需要学习导数的定义、求导公式及运算法则,如常用函数的导数、高阶导数等。
此外,还需要了解函数的微分、微分中值定理等相关概念和应用。
3. 不定积分与定积分不定积分与定积分是高数中的重要内容。
不定积分是求函数的原函数,我们需要学习求不定积分的方法和技巧,如常用函数的积分公式、换元积分法、分部积分法等。
定积分是计算曲线下面的面积,我们需要了解定积分的定义、性质和计算方法,如区间分割法、定积分的几何应用等。
4. 一元函数的应用在大一高数中,我们会学习一元函数的应用知识。
包括函数极值与最值、函数的图像与性质、函数的模型与应用等。
其中,函数的极值与最值是我们需要重点掌握的内容,涉及到函数极值的判定条件、求极值的方法和应用问题的解答。
5. 多元函数与偏导数除了一元函数,高数课程还会介绍多元函数的知识。
我们需要了解多元函数的定义、极限、连续性及偏导数的计算方法。
尤其是偏导数的求解,需要掌握偏导数的定义以及常见函数的偏导数计算技巧。
以上是同济版高数大一知识点的简要总结。
在学习过程中,需要理解概念、掌握公式和运算技巧,并且进行大量的练习和应用实践,才能真正掌握这些知识点。
希望大家能够认真学习,取得好成绩!。
大学微积分总复习提纲

2
微积分(一) calculus
第二章 极限与连续
极限的描述性定义与左右极限
极限四则运算
未定式求极限(因式分解/有理化/同除最高次项)
求极限
夹逼定理 两个重要极限
无穷小量X有界函数(注意无穷小量性质)
等价代换(加减不能代换,乘除可以代换)
洛必达法则(注意运用条件,与上述方法结合)
必考:先分清极限类型,选择相应方法
微积分(一) calculus
第一章 函数
初等函数 分段函数
定义域、值域 奇偶性 周期性 有界性 反函数
选择题或填空题:与换元法结合考察上述知识点
1
微积分(一) calculus
第一章 函数
经济学函数
需求与供给函数 成本函数 收益函数 利润函数 库存函数
边际与弹性 最优化问题
应用题必考:与求导、求极值、最值知识点结合
5
微积分(一) calculus
第三章 导数与微分
导数的定义与左右导数 (求分段点导数,判断可导性与连续性,求极限)
必考:判断分段函数分段点可导性,与连续性、可微 结合考察;与求极限及无穷小量基本性质结合考察。
6
微积分(一) calculus
第三章 导数与微分
基本公式
求导数
四则运算 链式法则 反函数求导
9
微积分(一) calculus
第五章 多元函数微分学
ห้องสมุดไป่ตู้
求极限
极限定义与不同方向的极限 极限四则运算 未定式求极限(因式分解/有理化) 夹逼定理 无穷小量X有界函数(注意无穷小量性质) 等价代换(加减不能代换,乘除可以代换) 换元法后,使用洛必达法则
必考:先分清极限类型,选择相应方法
高等数学(同济大学教材第五版)复习提纲

⾼等数学(同济⼤学教材第五版)复习提纲⾼等数学(同济⼤学教材第五版)复习提纲第⼀章函数与极限:正确理解、熟练掌握本章内容,求各类函数的极限,尤其是未定式与幂指函数求极限第⼆章导数与微分:正确理解、熟练掌握本章内容,各类函数的求导与微分的基本计算第三章微分中值定理与导数的应⽤:熟练掌握本章的实际应⽤,研究函数的性态,证明相关不等式第四章不定积分:正确理解概念,会多种积分⽅法,尤其要⽤凑微分以及⼀些需⽤⼀定技巧的函数类型第五章定积分:正确理解概念,会多种积分⽅法,有变限函数参与的各种运算第六章定积分的应⽤:掌握定积分的实际应⽤第七章空间解析⼏何和向量代数:熟练掌握本章的实际应⽤⾼等数学(1)期末复习要求第⼀章函数、极限与连续函数概念理解函数概念,了解分段函数,熟练掌握函数的定义域和函数值的求法。
2.函数的性质知道函数的单调性、奇偶性、有界性和周期性,掌握判断函数奇偶性的⽅法。
3.初等函数了解复合函数、初等函数的概念;掌握六类基本初等函数的主要性质和图形。
4.建⽴函数关系会列简单应⽤问题的函数关系式。
5.极限:数列极限、函数极限知道数列极限、函数极限的概念。
6.极限四则运算掌握⽤极限的四则运算法则求极限. 7.⽆穷⼩量与⽆穷⼤量了解⽆穷⼩量的概念、⽆穷⼩量与⽆穷⼤量之间的关系,⽆穷⼩量的性质。
8.两个重要极限了解两个重要极限,会⽤两个重要极限求函数极限。
9.函数的连续性了解函数连续性的定义、函数间断点的概念;会求函数的连续区间和间断点,并判别函数间断点的类型;知道初等函数的连续性,知道闭区间上的连续函数的⼏个性质(最⼤值、最⼩值定理和介值定理)。
第⼆章导数与微分1.导数概念:导数定义、导数⼏何意义、函数连续与可导的关系、⾼阶导数。
理解导数概念;了解导数的⼏何意义,会求曲线的切线和法线⽅程;知道可导与连续的关系,会求⾼阶导数概念。
2.导数运算熟记导数基本公式,熟练掌握导数的四则运算法则、复合函数的求导的链式法则。
《高等数学(一)微积分》讲义

2、极限的求法, )
1)数列极限 lim an = A , 函数极限 lim f ( x ) = A .
n→∞ x
2)函数极限与单侧极限之间的关系
⎧ f ( x0 + ) = lim+ f ( x ) = A x → x0 ⎪ lim f ( x ) = A. ⇔ ⎨ x → x0 f ( x0 − ) = lim− f ( x ) = A ⎪ x → x0 ⎩
知识点:设 a0 ≠ 0, b0 ≠ 0, m , n ∈ N ,
⎧ am b m ⎪ n a x + L + a1 x + a0 ⎪ 则 lim m n =⎨0 x →∞ b x + L + b x + b n 1 0 ⎪∞ ⎪ ⎩ m=n m<n m>n
6/69
5n − 4 n − 1 例 6.(1) lim n+1 n→∞ 5 + 3n+ 2
5
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5:
x+5 . 求 lim 2 x →∞ x − 9
解:
1 5 1 5 lim( + 2 ) + 2 x+5 x →∞ x x = 0 = 0. lim 2 = lim x x = x →∞ x − 9 x →∞ 9 9 1 1− 2 lim(1 − 2 ) x →∞ x x
2
x 2 ⋅ (3 x ) 3 所以 lim = lim = x → 0 (1 − cos 2 x )ln(1 + x ) x → 0 (2 x 2 ) ⋅ x 2
(3) lim x[ln( x + 2) − ln x ] = lim x ln(1 +
同济高数下册总结

高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后属类型的相应解法求出其通解.一阶微分方程的解法小结:二阶微分方程的解法小结:非齐次方程()y py qy f x '''++=的特解*y 的形式为:主要:一阶1、可分离变量方程、线性微分方程的求解; 2、二阶常系数齐次线性微分方程的求解; 3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法1、显函数的偏导数的求法 在求xz∂∂时,应将y 看作常量,对x 求导,在求z y ∂∂时,应将x 看作常量,对y 求导,所运用的是一元函数的求导法则与求导公式.2、复合函数的偏导数的求法设()v ,u f z =,()y ,x u ϕ=,()y ,x v ψ=,则x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂,yvv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 几种特殊情况:1)()v ,u f z =,()x u ϕ=,()x v ψ=,则dxdv v z x u du dz dx dz ⋅∂∂+∂∂⋅= 2)(),z fx v =,()y ,x v ψ=,则x v v f x f x z ∂∂⋅∂∂+∂∂=∂∂,yvu f y z ∂∂⋅∂∂=∂∂ 3)()u f z =,()y ,x u ϕ=则x u du dz x z ∂∂⋅=∂∂,yudu dz y z ∂∂⋅=∂∂3、隐函数求偏导数的求法 1)一个方程的情况设()y ,x z z =是由方程()0=z ,y ,x F 唯一确定的隐函数,则()0≠-=∂∂z zx F F F x z, ()0≠-=∂∂zzy F F F y z或者视()y ,x z z =,由方程()0=z ,y ,x F 两边同时对()x y 或求导解出()z zx y∂∂∂∂或. 2)方程组的情况 由方程组()()⎩⎨⎧==00v ,u ,y ,x G v ,u ,y ,x F 两边同时对()x y 或求导解出()z zx y ∂∂∂∂或即可.二、全微分的求法 方法1:利用公式dz zudy y u dx x u du ∂∂+∂∂+∂∂=方法2:直接两边同时求微分,解出du 即可.其中要注意应用微分形式的不变性:zz du dv uv dz z z dx dyxy ∂∂⎧+⎪∂∂⎪=⎨∂∂⎪+∂∂⎪⎩三、空间曲线的切线及空间曲面的法平面的求法1)设空间曲线Г的参数方程为 ()()()⎪⎩⎪⎨⎧===t z t y t x ωψϕ,则当0t t =时,在曲线上对应点()0000z ,y ,x P 处的切线方向向量为()()(){}000t ,t ,t T '''ωψϕ=,切线方程为()()()000000t z z t y y t x x '''ωψϕ-=-=- 法平面方程为 ()()()()()()0000000=-+-+-z z t y y t x x t '''ωψϕ2)若曲面∑的方程为()0=z ,y ,x F ,则在点()0000z ,y ,x P 处的法向量{}P z y x F ,F ,F n =,切平面方程为()()()()()()0000000000000=-+-+-z z z ,y ,x F y y z ,y ,x F x x z ,y ,x F z y x 法线方程为()()()000000000000z ,y ,x F z z z ,y ,x F y y z ,y ,x F x x z y x -=-=- 若曲面∑的方程为()y ,x f z =,则在点()0000z ,y ,x P 处的法向量()(){}10000-=,y ,x f ,y ,x f n y x,切平面方程为()()()()()00000000=---+-z z y y y ,x f x x y ,x f y x 法线方程为()()1000000--=-=-z z y ,x f y y y ,x f x x y x 四、多元函数极值(最值)的求法 1 无条件极值的求法设函数()y ,x f z =在点()000y ,x P 的某邻域内具有二阶连续偏导数,由(),0x f x y =,(),0y f x y =,解出驻点()00,x y ,记()00y ,x f A xx =,()00y ,x f B xy =,()00y ,x f C yy =.1)若20AC B ->,则()y ,x f 在点()00,x y 处取得极值,且当0A <时有极大值,当0A >时有极小值.2) 若20AC B -<,则()y ,x f 在点()00,x y 处无极值.3) 若02=-B AC ,不能判定()y ,x f 在点()00,x y 处是否取得极值.2 条件极值的求法函数()y ,x f z =在满足条件()0=y ,x ϕ下极值的方法如下:1)化为无条件极值:若能从条件()0=y ,x ϕ解出y 代入()y ,x f 中,则使函数(,)z z x y =成为一元函数无条件的极值问题.2)拉格朗日乘数法作辅助函数()()()y x y x f y x F ,,,λϕ+=,其中λ为参数,解方程组求出驻点坐标()y ,x ,则驻点()y ,x 可能是条件极值点.3 最大值与最小值的求法若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值. 主要:1、偏导数的求法与全微分的求法;2、空间曲线的切线及空间曲面的法平面的求法3、最大值与最小值的求法三、多元函数积分学复习要点七种积分的概念、计算方法及应用如下表所示:*定积分的几何应用定积分应用的常用公式: (1)面积()()[]⎰-=dx x g x f S b a(X -型区域的面积)(2)体积()⎰=dx x A V b a (横截面面积已知的立体体积)()2b xx a V f x dx π=⎰ ((),,,0y f x x a x b y ====所围图形绕x 轴旋转所得的立体体积)()xy 2b a V x f x dx π=⋅⎰ ((),,,0y f x x a x b y ====所围图形绕y 轴旋转的立体体积)()2()b y c a V f x c dx π==-⎰ ((),,,y f x x a x b y c ====所围图形绕轴y c =旋转的立体体积)(3)弧长()()()b a b S βαθ⎧⎪⎪=⎨⎪⎪⎩⎰⎰⎰直角坐标形式参数方程形式极坐标形式 计算时注意:(1)正确选择恰当的公式;(2)正确的给出积分上下限;(3)注意对称性使问题简化;(4)注意选择恰当的积分变量以使问题简化.计算多元函数的积分时要注意利用对称性简化积分的计算: 1)、对二、三重及第一类的线面积分,若积分区域关于变量x 对称,则当被积函数关于x 为奇函数时,该积分为0,当被积函数关于变量x 为偶函数时,则该积分为相应一半区域积分的二倍.2)、对第二类的线面积分,关于积分变量的对称性理论与上相同,关于非积分变量的对称性理论与上相反.3)、若积分区域,x y的地位平等(即将表示区域的方程,x y互换不变),则将被积函数中,x y互换积分不变.此称之为轮换对称性.所以:()() ()()()()()()01()1() z z p x p yp y p x p y z u p x z ux y u uϕϕ∂∂-''+=+=''∂∂--。
高等数学(同济版)复习资料

第一章 函数与极限第一节 映射与函数一、集合(一).集合的相关概念1.集合:集合是数学中一个不加定义的原始概念,一般是这样描述的:描述性定义:具有某种特定性质的事物的总体称为集合,用大写字母A ,B ,C ,┄ 表示;组 成集合的事物称为元素,用小写字母a ,b ,c ,┄ 表示.2.空集:不含任何元素的集合称为空集,记作 ∅ .3.几何与元素的关系:元素a 属于集合A , 记作A a ∈;元素a 不属于集合A , 记作A a ∈或A a ∉.4.集合的分类:有限集:含有有限个元素的集合;无限集:不是有限集的集合.5.集合的表示法:(1).列举法:按某种方式列出集合中的全体元素.例:有限集合n i i n a a a a A 121}{},,,{=== .(2).描述法:x x M {=所具有的特征}. 例:}01{2=-=x x M 表示方程012=-x 的解集.6.几种常用的数集:自然数集:}{},,,2,1,0{n n N == ;正整数集:},,,2,1{ n N =+; 整数集:}/{ N x N x x Z +∈-∈=; 有理数集:,N q ,p p Q +∈∈⎨⎧=Z p 与 q 互质⎬⎫;实数集合:x R {=x 为有理数或无理数}.(二).集合之间的关系及运算1.集合之间的关系包含关系: 设有集合A 和B ,若A x ∈必有B x ∈,则称 A 是 B 的子集 , 或称 B 包含 A ,记作B A ⊂ 或A •B ⊃. 相等关系:若B A ⊂且A B ⊂,则称 A 与 B 相等,记作B A =.例如, Z N ⊂,Q Z ⊂,R Q ⊂.下列关系成立 :(1). A A ⊂;A A =;A ⊂Φ.(2). B A ⊂且C B ⊂⇒C A ⊂.2.集合之间的运算:对集合A 与 B ,有下列几种基本运算并集:A x B A ∈={ 或B x ∈};交集:A x B A ∈={ 且B x ∈};差集:A x B A ∈={\且B x ∉};余集(补集):I x A I A c ∈=={\且A x ∉},其中I 称为全集,I A ⊂; 直积:{}B y A x y x B A ∈∈=⨯,),( (笛卡尔直积).特例:2R R R =⨯为平面上的全体点集.(三).区间和邻域1.有限区间{} b x a x b a <<=),(; {} b x a x b a ≤<=],(;{} b x a x b a <≤=),[; {} b x a x b a ≤≤=],[.2.无限区间:{} a x x a ≥=∞+),[; {} b x x b ≤=-∞],(; {}R x x ∈=∞+-∞),(.3. 邻域点a 的δ 邻域: {}{}δδδδ<-=+<<-=a x x a x a x a U ),(;点a 的去心δ 邻域: {}δδ<-<=a x x a U 0),( ;点a 的左δ 邻域: ),(a a δ-;点a 的右δ 邻域: ),(δ+a a .其中, a 称为邻域中心, δ 称为邻域半径.4. 区间的直积:{}],[],,[),(],[],[d c y b a x y x d c b a ∈∈=⨯.二、实数集及其完备性1. 实数集的性质:(1). 封闭性:任意两个实数进行加、减、乘、除 (分母不为零) 运算后,其结果仍然是实数.(2). 有序性:任意两个实数a 和b ,必满足且仅满足下列三种关系之一:a < b ,a > b ,a = b .且若a < b ,b < c ,则a < c .(3). 稠密性:任意两个不相等的实数之间仍有实数.(4). 完备性:实数集与数轴上的点存在一一对应的关系,即任意一个实数都对应数轴上唯一的一个点;反之, 数轴上任意一点也对应唯一的一个实数.2. 实数集的确界存在定理(1). 定义1. 设R A ⊂,且Φ≠A ,若R L ∈∃,使得A x ∈∀,都有L x ≤(或L x ≥),则称数集A 有上界(或下界),并称L 是A 的一个上界(或下界).若数集A 既有上界又有下界,则称A 有界,否则称A 无界.(2). 定义2. 设R A ⊂,且Φ≠A ,若R ∈∃β(或R ∈α)满足下列条件:①. A x ∈∀,有β≤x (或)α≥x ;②. 0>∀ε,A x ∈∃0, 使 εβ->0x (或εα+<0x ),则称β为数集A 的上确界(或α为数集A 的下确界),记为A sup =β(或A inf =α)注:1°.上确界是集合的上界中最小的,下确界是集合的下界中最大的.2°.数集的确界和它的最值是区别的,最值属于集合,而确界不一定属于集合.(3). 确界存在定理: 有上界(或下界)的非空实数集必有上确界(或下确界).三、映射1. 映射:设 X , Y 是两个非空集合,若存在一个对应法则f ,使得X x ∈∀,有唯一确定的Y y ∈与之对应,则称f 为从 X 到 Y 的映射, .:Y X f →元素 y 称为元素 x 在映射 f 下的像, 记作).(x f y =元素 x 称为元素 y 在映射 f 下的原像.集合 X 称为映射 f 的定义域,记作f D ,即X D f =;集合 X 中的元素的像所组成的集合称为映射 f 的值域,记作f R 或)(X f ,即Y X x x f X f R f ⊂∈==}|)({)(.注:1°.映射的三要素:定义域, 对应法则, 值域.2°.元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一.2. 映射的分类:满射:若Y X f =)(,则称 f 为满射.单射:若2121,,x x X x x ≠∈∀,有)()(21x f x f ≠,则称 f 为单射.双射:若 f 既是满射又是单射,则称 f 为双射或一一映射.注:映射又称为算子,在不同数学分支中有不同的惯用名称, 例如:映射f :X (≠ ∅ ) →Y (数集)称为X 上的泛函;映射f :X (≠ ∅ ) →X (数集)称为X 上的变换;映射f :X (数集或其子集) →R 称为X 上的函数.3. 逆映射:对单射f :X →Y ,称映射g :R f → X 为f 的逆映射,记作-f ,其定义域f f R D =-, 值域为X R f =-.4.复合映射:称映射g :X → Y 1,f :Y 2 → Z (21Y Y ⊂)确定的从X 到Z 的映射为映射g 和 f 构成的复合映射,记作Z X g f →: ,即)]([)(x g f x g f = .注:g 的值域g R 必须包含在f 的定义域f D ,即f g D R ⊂.四、函数1. 函数的概念: 设数集R D ⊂,称映射R D f →:为定义在D 上的函数,记为↓↓↓↓∈=.),(D x x f y因 映 自 定 值域:{}D x x f y y D f R f ∈===),()(变 变 义 函数图形: {}D x x f y y x C ∈==),(),(.量 射 量 域对应规律的表示方法: 解析法(公式法)、图象法、列表法.注:记号f 和法则f (x )的含义不同,f 表示自变量x 和因变量y 之间的对应法则,而f (x )表示与自变量x 对应的函数值,在不至于混淆的情况下,习惯上仍用f (x )表示函数.2. 函数的几种数学表达式:(1). 显函数:)(x f y =. 如: ]1,1[,12-∈-=x x y .(2). 隐函数:0),(=y x f . 如: 0,122≥=+y y x .(3). 参数方程表示的函数:I t t y t x ∈⎩⎨⎧==),(),(ψϕ.如],0[,sin ,cos π∈⎩⎨⎧==t t y t x . (4). 分段函数:在定义域的不同子集上用不同的表达式.例1. 符号函数⎪⎩⎪⎨⎧<-=>==0,10,00,1sgn x x x x y ,定义域:),(∞+-∞=D ,值域:}1,0,1{-=f R ,对任何x ,有||sgn x x x ⋅=.例2. 绝对值函数⎩⎨⎧<-≥==0,0,||x x x x x y .例3. 取整函数n x y ==][,当1+<≤n x n ,Z n ∈.例如:075=⎥⎦⎤⎢⎣⎡,1]2[=,3][=π,4]5.3[-=-. 例4. 狄利克雷函数⎩⎨⎧∉∈=Q x Q x x f ,0,1)(. 3.函数的几种特性: 设函数D x x f y ∈=,)(,且有区间D I ⊂.(1).有界性:I x ∈∀,若0>∃L ,使得 L x f ≤)((或L x f ≥)(),则称)(x f 在I 上有上界(或下界),并称L 为)(x f 在I 上的一个上界(或下界).I x ∈∀,若0>∃M ,使得M x f ≤|)(|成立,则称)(x f 在I 上有界.(2).单调性:I x x ∈∀21,,当21x x <,总有)()(21x f x f <))()((21x f x f <,则称)(x f 在I 上是单调增加 (单调减少) 的.单调增加函数和单调减少函数统称为单调函数.(3).奇偶性:设函数)(x f 的定义域D 关于原点对称, D x ∈-∀,若)()(x f x f =-恒成立,则称)(x f 为偶函数,若)()(x f x f -=-恒成立,则称)(x f 为奇函数.注:奇函数的图形关于原点对称;偶函数的图形关于y 轴对称.(4).周期性:D x ∈∀,若0>∃l ,使得D l x ∈+,都有)()(x f l x f =±,则称)(x f 为周期函数,称 l 为周期(一般指最小正周期).注: 周期函数不一定存在最小正周期.例如:常量函数C x f =)(; 狄利克雷函数⎩⎨⎧∉∈=Q x Q x x f ,0,1)(. 4.反函数与复合函数:相对于逆映射和复合映射的概念,有反函数和复合函数的概念.(1).反函数的概念及性质定义:若函数)(:D f D f →为单射,则存在一新映射D D f f →-)(:1使)(D f y ∈∀,有 x y f =-)(1,其中y x f =)(,称此映射1-f 为f 的反函数.习惯上, 函数D x x f y ∈=,)(的反函数记成)(,)(1D f x x f y ∈=-.性质:①. y =f (x ) 单调递增(或递减),其反函数)(1x f y -=存在,且也单调递增(或递减). ②.函数y =f (x )与其反函数)(1x f y -=的图形关于直线x y =对称.(2). 复合函数 :设有函数链,),(f D u u f y ∈=与,),(D x x g u ∈=且f g D R ⊂,则称函数)()]([D x x g f y ∈=为由)(x g u =与)(u f y =确定的复合函数,记作))((][x g f )x (g f =, 其中u 称为中间变量,有时也称)(x g u =为内函数,)(u f y =为外函数.注:构成复合函数的条件f g D R ⊂不可少.5. 初等函数(1). 基本初等函数: 反三角函数、对数函数、幂函数、三角函数、指数函数.(2). 初等函数: 由常数及基本初等函数经过有限次四则运算和复合步骤所构成, 并可用一个式子表示的函数, 称为初等函数. 否则称为非初等函数.注:符号函数、取整函数以及狄利克雷函数都是非初等函数.第二节 数列的极限一、数列极限的定义1. 数列:称自变量取正整数的函数为数列,记作)(n f x n =或}{n x ,n x 称为通项(一般项).2. 数列极限(1).引例(刘徽割圆术): 对给定的圆,用其内接内接正126-⨯n 边形的面积n A 逼近其面积.容易得到内接内接正126-⨯n 边形的面积序列: ,,,,21n A A A ,当n 无限增大时, n A 无限接近S . S 称为数列}{n A 的极限.对于数列,我们关心的主要问题是:当n 无限增大时,n x 的变化趋势如何?例如:①.数列⎭⎬⎫⎩⎨⎧-+n n )1(1随着n 的无限增大而无限接近常数1. ②.数列})1{(n -随着n 的无限增大没有确定的变化趋势.③.数列}2{n 随着n 的无限增大而无限增大.但是,仅仅凭直觉观察得到极限和用“无限增大” 、“无限接近”来描述极限是远远不够的,例如:我们不能根据观察而判断出数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11的极限,因此,需要用精确、定量的数学语言来定义极限.下面以数列⎭⎬⎫⎩⎨⎧-+n n )1(1为例来介绍数列极限.我们知道点n x 与点a 之间的距离a x n -是刻画数n x 与a 接近程度的一个度量.当n 无限增大时,数列⎭⎬⎫⎩⎨⎧-+n n )1(1无限接近1,也就是说当n 无限增大时,nn x n n 11)1(11=--+=-可以无限的变小,例如 如果要求10111<=-n x n ,那么只要10>n ,即从数列第11项起,后面的所有项与1的距离都小于1/10; 如果要求310111<=-n x n ,那么只要1000>n ,即从数列第1001项起,后面的所有项与1的距离都小于1/103;上述过程实际上说明了如下事实:无论要求n x 与1多么接近,即1-n x 多么小,只要n 足够大,就可以使1-n x 变得那么小,n 足够大的程度由1-n x 小的程度来决定. 为了刻画n x 与1的接近程度,我们引入任意给定的正数ε,那么上述事实可描述成:不论给了多么小的的正数ε,总存在一个正整数N (比如上述过程中的[]ε1=N ),当N n >时,总有ε<-1n x ,数1就叫做数列}{n x 当∞→n 时的极限.将这个例子中的思想方法和表述方式用于一般数列,就得到了如下数列极限的定义:(2). 数列极限:若数列}{n x 与常数a 满足:0>∀ε,+∈∃N N ,使得N n >∀时,总有ε<-a x n ,则称该数列}{n x 以a 为极限,或称数列}{n x 收敛于a ,记作a x n n =∞→lim 或)(∞→→n a x n . 数列收敛:a x n n =∞→lim ⇔0>∀ε,+∈∃N N ,使得N n >∀时,总有ε<-a x n . 数列发散:对任意常数a ,若00>∃ε,+∈∀N N ,N n >∃0,使得00ε≥-a x n ,则数列}{n x 发散.数列收敛的几何意义:对于点a 的任意ε邻域),(εa U ,总存在一个项数N ,使得数列}{n x 中自第1+N 项开始后面的一切项都落在点a 的ε邻域),(εa U 内,在这个邻域之外至多只能有}{n x 的有限项N x x x ,,,11 .(数列的收敛性及其极限值与它前面的有限项无关,改变数列中的有限项的值,并不能改变其收敛性及其极限值.)注:在数列极限定义中,1°.正数ε必须是任意给定的,ε可以充分小,只有这样,不等式ε<-a x n 才能体现出n x 无限接近a 的要求,因此在讨论极限问题时常常要限定ε的范围,例如:为了使]/1[ε是正整数,需要限定1<ε,此时1]/1[>ε.此外,εc ,ε, ,2ε也都是任意给定的正数,它们只是形式不同,没有本质的区别,今后证明极限问题时经常要用到.2°.正整数N 是依赖于ε的给定而确定的(常记为)(εN ),它给出了一个项号,只要n 增大到这一项之后,就有ε<-a x n .3°.对应于给定的一个ε,N 并不是唯一的.4°.一般地,为了比较简便地得到一个N ,可适当放大a x n -,使之小于某一个以n 为变量的简单且趋于零的表达式,令它小于ε后求出N .例1. 证明:1)1(lim =-+∞→nn nn . 证明:对于0>∀ε,要使不等式ε<=--+=-n n n a x n n 11)1(成立,只要ε1>n ,取⎥⎦⎤⎢⎣⎡=ε1N .于是, 0>∀ε,当N n >时,有ε<=--+nn n n 11)1(,即1)1(lim =-+∞→n n n n . 例2. 证明:0)1()1(lim 2=+-∞→n nn . 证明:对于0>∀ε(假定1<ε),要使不等式ε<+<+=-+-=-11)1(10)1()1(22n n n a x n n 成立,只要11->εn ,取⎥⎦⎤⎢⎣⎡-=11εN . 于是, 0>∀ε,当N n >时,有ε<+=-+-22)1(10)1()1(n n n ,即0)1()1(lim 2=+-∞→n n n . 例3. 对1||<q ,证明:0lim 1=-∞→n n q . 证明:对于0>∀ε(假定1<ε),要使不等式ε<=-=---110n n n qq a x 成立,只需εln ln )1(<-q n ,(注意到0ln <q .) 即q n ln ln 1ε+>,取⎥⎦⎤⎢⎣⎡+=q N ln ln 1ε.于是, 0>∀ε,当N n >时,有ε<=---110n n qq ,即0lim 1=-∞→n n q . 二、收敛数列的性质1.极限的唯一性: 定理1. 若数列}{n x 收敛,则它的极限是唯一的(收敛数列的极限是唯一). 证法(一):用反证法.证明:假设a x n n =∞→lim 与b x n n =∞→lim 同时成立,且b a <.取2a b -=ε,由极限定义, 对0>∀ε,⎪⎩⎪⎨⎧<->∀∈∃<->∀∈∃++εεb x N n N N a x N n N N n n ,,,,2211,取},max{21N N N =,N n >∀,有⎪⎩⎪⎨⎧<-<-εεb x a x n n 同时成立,即2b a a x a x n n +=+<⇒<-εε,2b a b x b x n n +=->⇒<-εε同时成立,出现矛盾,定理得证.证法(二): 直接证明.证明:假设a x n n =∞→lim 与b x n n =∞→lim 同时成立,往证b a =.由极限定义,对0>∀ε,⎪⎩⎪⎨⎧<->∀∈∃<->∀∈∃++εεb x N n N N a x N n N N n n ,,,,2211,取},m a x {21N N N =,N n >∀, 有⎪⎩⎪⎨⎧<-<-εεb x a x n n 同时成立,于是, b a a x b x a x b x b a n n n n =⇒<-+-≤---=-ε2)()(,即收敛数列的极限是唯一的.例4.证明数列),2,1()1(1 =-=+n x n n 是发散的.证法一:直接证明,只需证明R a ∈∀都不是数列})1{(1+-n 的极限. 证明:10=∃ε,分两种情形:1. 当0≥a 时,+∈∀N N ,N k n n >=∃)2(00,有011|1||)1(|ε≥+=--=--+a a a n .2. 当0<a 时,+∈∀N N ,N k n n >+=∃)12(00,有01)(1|1||)1(|ε≥-+=-=--+a a a n . 综上说明数列})1{(1+-n 发散. 证法二:用反证法.证明:假设数列})1{(1+-n 收敛,由定理1知,数列})1{(1+-n 有唯一极限,不妨设a n n =-+∞→1)1(lim ,由数列极限定义,对21=ε,+∈∃N N ,当N n >时,21|)1(|1<--+a n 成立,即当N n >时,21)1(211+<-<-+a a n ,又∞→n 时,})1{(1+-n 交替取值 1 与-1,而这两个数不能同时位于长度为1的区间()21,21+-a a 内,出现矛盾,故数列})1{(1+-n 发散.2. 收敛数列的有界性:定理2. 若数列}{n x 收敛,则}{n x 一定有界.证明:设a x n n =∞→lim ,取1=ε,则+∈∃N N ,当N n >时,有1<-a x n ,从而有||1|||||)(|||a a a x a a x x n n n +<+-≤+-=,取{}||1,||,,||,||max 21a x x x M N += ,则有),2,1( =≤n M x n ,由此证明收敛数列必有界. 注:1°.数列无界必发散.(逆否命题)2°.数列有界未必收敛,例如),2,1()1(1 =-=+n x n n 有界,即1≥∀n ,1||≤n x ,但该数列却发散.3. 收敛数列的保号性:定理3. 若a x n n =∞→lim ,且0>a (或0<a ),则+∈∃N N ,当N n >时,都有0>n x (或0<n x ).证明:对 a > 0,取2/a =ε,则+∈∃N N ,当N n >时,02/2/>->⇒<-a a x a a x n n . 推论:若数列}{n x 从某项起0≥n x (或0≤n x ),且a x n n =∞→lim ,则0≥a (或0≤a ).4. 收敛数列的任一子数列收敛于同一极限:子数列:在数列}{n x 中任意抽取无限多项并保持这些项在原数列中的先后次序得到的数列}{k n x 为原数列}{n x 的一个子数列(简称子列). 注:1°. 对N k ∈∀,k n k ≥,当∞→k 时,∞→k n .2°. 当12-=k n k 时,称}{k n x 为奇子列;当k n k 2=时,称}{k n x 为偶子列. 定理4. a x n n =∞→lim ⇔对数列}{n x 的任何子列}{k n x ,都有a x k n k =∞→lim .证明:必要性:由a x n n =∞→lim ,有0>∀ε,+∈∃N N ,当N n >时,ε<-a x n .取N K =,当N K k =>时,有N n n n N K k >=>,有ε<-a x k n ,即a x k n k =∞→lim .充分性显然.注: 若数列有两个子数列收敛于不同的极限,则原数列一定发散. 例如:数列),2,1()1(1 =-=+n x n n 发散,而1lim 12=-∞→k k x ,1lim 2-=∞→k k x .此例也说明发散的数列也可能有收敛的子列.第三节 函数的极限一、自变量趋于有限值时函数的极限 1. 0x x →时函数)(x f 的极限(1).定义:设函数)(x f 在点0x 的某去心邻域内有定义, 对常数A ,若0>∀ε,0>∃δ,:x ∀δ<-<00x x ,有ε<-A x f )(,则称 A 为函数)(x f 当0x x →时的极限,记作A x f x x =→)(lim 0或A x f →)(当)(0x x →.“δε-”定义:A x f x x =→)(lim 0⇔0>∀ε,0>∃δ,当),()(0δx U f D x⋂∈时,有ε<-A x f )(.注:A x f x x =→)(lim 0研究函数)(x f 当0x x →时的变化趋势,不考虑函数)(x f 在点0x 是否有定义.例如:函数24)(2--=x x x f 当2≠x 时,2)(+=x x f ,所以2→x 时4)(→x f .再如:函数⎩⎨⎧=≠==000,1|sgn |)(x x x x f ,当0→x 时对应的函数值趋于1.(2).几何意义:对于一个以直线ε+=A y 和ε-=A y 为两边的带型区域, 总存在一个0>δ,使得函数)(x f 在区间),(00x x δ-与),(00δ+x x 内的 图形都位于这个带型区域内. 例1. 证明C C x x =→0lim ,C 为常数.证明:对0>∀ε,ε<=-=-0)(C C A x f 总成立,于是,0>∀ε,0>∀δ,:x ∀δ<-<00x x ,总有ε<=-0C C ,即C C x x =→0lim .例2. 证明1)12(lim 1=-→x x .证明:对0>∀ε,要使ε<-=--=-121)12()(x x A x f 成立,只需21ε<-x ,取2εδ=.于是0>∀ε,0>∃δ,δ<-<∀10:x x ,总有ε<-=-12)(x A x f ,即1)12(lim 1=-→x x .例3. 证明211lim21=--→x x x . 证明:对0>∀ε,要使ε<-=-+=---=-121211)(2x x x x A x f 成立,取εδ=.于是0>∀ε,0>∃δ,δ<-<∀10:x x ,总有ε<-=-1)(x A x f ,即211lim21=--→x x x . 例4.证明:当00>x 时,00limx x x x =→.证明:对0>∀ε,要使ε<-≤+-=-=-000001)(x x x x x x x x x A x f 成立,只要ε00x x x <-.由于x 的定义域是),0[∞+,因此选取的0>δ要使),0[),(00∞+⊂+-δδx x ,取{}00,minx x εδ=.于是0>∀ε,0>∃δ,δ<-<∀00:x x x ,总有ε<-0x x ,即00limx x x x =→.(详细说明:由于000001x x x x x x x x x -≤+-=-,当εδ0x =时,即ε00x x x <-,代入上式有ε<-0x x ;当0x =δ时,有ε00x x <,即ε<0x ,将00x x x <-代入上式得ε<<-00x x x .)(在0x x →的过程中,0x x →的方式是任意的,x 既可以是0x 左侧的点,也可以是0x 右侧的点,但要限定x 只在0x 某一侧趋于0x ,则有下面的单侧极限,即左极限和有极限.) 2. 单侧极限左极限:⇔==-→-A x f x f x x )(lim )(000>∀ε,0>∃δ,),(00x x x δ-∈∀,有ε<-A x f )(. 右极限: ⇔==+→+A x f x f x x )(lim )(000>∀ε,0>∃δ,),(00δ+∈∀x x x ,有ε<-A x f )( 定理:⇔=→A x f x x )(lim 0A x f x f x x x x ==-+→→)(lim )(lim 00. 例5. 讨论函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f 当0→x 时的极限是否存在. 解:因为1)1(lim )(lim 0-=-=--→→x x f x x ,1)1(lim )(lim 0=+=++→→x x f x x ,显然)0()0(+-≠f f ,所以)(lim 0x f x →不存在.3. 函数极限的性质 (1). 函数极限的唯一性定理1.若A x f x x =→)(lim 0存在,则该极限值唯一.(2). 函数极限的局部有界性定理2.若A x f x x =→)(lim 0,则0>∃M ,0>∃δ,δ<-<∀00:x x x ,有M x f ≤)(.证明:由A x f x x =→)(lim 0,可取1=ε,0>∃δ,δ<-<∀00:x x x ,有1)()(1)(+≤+-≤⇒≤-A A A x f x f A x f ,取1||+=A M ,则有M x f ≤)(. (3).函数极限的局部保号性定理3.若A x f x x =→)(lim 0,且0>A (或0<A ),则0>∃δ,δ<-<∀00:x x x ,有0)(>x f (或0)(<x f ).证明:由0)(lim 0>=→A x f x x ,可取2A=ε,0>∃δ,δ<-<∀00:x x x ,有 022)(2)(>=->⇒≤-AA A x f A A x f .同理可证明0<A 的情形.定理3’. 若A x f x x =→)(lim 0,且0≠A ,则0>∃δ, δ<-<∀00:x x x ,有2)(Ax f >. (4).函数极限的局部保序性定理4.若A x f x x =→)(lim 0,B x g x x =→)(lim 0,B A <,则0>∃δ,δ<-<∀00:x x x ,有)()(x g x f <.证明:对02>-=AB ε, 由⇒=→A x f x x )(lim 001>∃δ,当100δ<-<x x 时,有22)(2)(BA AB A x f A B A x f +=-+<⇒-≤-.由⇒=→B x g x x )(lim 002>∃δ,当200δ<-<x x 时,有22)(2)(BA AB B x g A B B x g +=-->⇒-≤-. 取},min{21δδδ=,:x ∀δ<-<00x x ,由2)(B A x f +<和2)(BA x g +>得到)()(x g x f <. 推论:若A x f x x =→)(lim 0,B x g x x =→)(lim 0,且0>∃δ,:x ∀δ<-<00x x ,有)()(x g x f ≤,则B A <.(5).函数极限的归并性(函数极限与数列极限之间的关系)定理5.(海涅定理) ⇔=→A x f x x )(lim 0对任何数列}{n x (0x x n ≠),只要0lim x x n n =∞→,就有A x f n n =∞→)(l i m .证明:必要性:设A x f x x =→)(lim 0,由极限定义知,对0>∀ε,0>∃δ,:x ∀δ<-<00x x ,有ε<-A x f )(.由于0lim x x n n =∞→,0x x n ≠,故对上述0>δ,+∈∃N N ,当N n >时,有δ<-<00x x n .综上可得:0>∀ε,+∈∃N N ,当N n >时,有ε<-A x f n )(,故A x f n n =∞→)(lim .充分性:用反证法.假设A x f x x ≠→)(lim 0,则00>∃ε,+∈∀N n ,:n x ∃nx x n 100<-<,但0)(ε≥-A x f n .由此得到一个数列}{n x ,由于nx x n 100<-<,故0x x n ≠,且0lim x x n n =∞→,但是A x f n n ≠→∞)(lim ,与已知条件矛盾,从而必有A x f x x =→)(lim 0.二、自变量趋于无穷大时函数的极限1. ∞→x 时函数)(x f 的极限(1). 定义1.设函数)(x f 当0||>>αx 时有定义, 对常数A ,若0>∀ε,0>∃X ,:x ∀X x >||, 有ε<-A x f )(,则称 A 为)(x f 当∞→x 时的极限,记作A x f x =∞→)(lim 或A x f →)(当)(∞→x .“X -ε”定义:A x f x =∞→)(lim ⇔0>∀ε,0>∃X ,:x ∀X x >||,有ε<-A x f )(.(2). 几何意义:对于一个以直线ε+=A y ,ε-=A y 为两边的带型区 域,总存在一个0>X ,使得函数)(x f 在区间),(X --∞与),(∞+X 内 的图形都位于该带型区域内,直线A y =是曲线)(x f y =的水平渐近线. 例6. 证明01lim=∞→xx . 证明:对0>∀ε,要使不等式ε<=-xx 101成立,只需ε1>x ,取ε1=X ,于是,对0>∀ε,0>∃X ,:x ∀X x >||,有ε<-01x,即01lim =∞→x x .2. 单侧极限⇔=+∞→A x f x )(lim 0>∀ε,0>∃X ,X x >∀,有ε<-A x f )(.⇔=-∞→A x f x )(lim 0>∀ε,0>∃X ,X x -<∀,有ε<-A x f )(.思考与练习:1. 若极限)(lim 0x f x x →存在,是否一定有)()(lim 00x f x f x x =→?2. 设函数⎩⎨⎧>+≤=1,121,)(2x x x x a x f ,且)(lim 1x f x →存在, 则3=a .第四节 无穷小量与无穷大量一、无穷小量1. 定义:若0x x → (或∞→x )时,函数0)(→x f ,即0)(lim 0=→x f x x (或0)(lim =∞→x f x ),则称函数)(x f 为0x x → (或∞→x )时的无穷小量. 例如 :0)1(lim 1=-→x x ,函数1)(-=x x f 当1→x 时为无穷小量;01lim=∞→x x ,函数xx f 1)(=当∞→x 时为无穷小量; 011lim=-∞-→x x ,函数xx f -=11)(当-∞→x 时为无穷小量. 注:无穷小量不是很小的数,而是绝对值小于任意给定正常数ε的量,除 0 以外任何很小的常数都不是无穷小量,因为⇔=→0lim 0C x x 0>∀ε,0>∃δ,:x ∀δ<-<00x x ,ε<-0C ,显然C 只能是0 !2. 无穷小量与函数极限的关系定理1. ⇔=→A x f x x )(lim 0α+=A x f )(,其中α 为0x x →时的无穷小量,即0lim 0=→αx x .证明:必要性:⇒=→A x f x x )(lim 0,0,0>∃>∀δε:x ∀δ<-<00x x ,,有ε<-A x f )(,即α+=A x f )(,其中0lim 0=→αx x .充分性:⇒=→0lim 0αx x ,0,0>∃>∀δε:x ∀δ<-<00x x ,有εα<,又α+=A x f )(,则有ε<-A x f )(,即A x f x x =→)(lim 0.对自变量的其它变化过程类似可证.二、无穷大量定义: 若0>∀M ,0>∃δ(或0>∃X ),对:x ∀δ<-<00x x (或:x ∀X x >), 总有M x f >)(,则称函数)(x f 当0x x →)(∞→x 时为无穷大量,为了便于叙述函数的这一性态,也说函数的极限是无穷大量,记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ).若将M x f >)(换成M x f >)((或M x f -<)(),则将无穷大量记作+∞=∞→→)(lim )(0x f x x x (或-∞=→∞→)(lim )(0x f x x x ).注:1°.无穷大量不是很大的数, 它是描述函数的一种状态. 2°.函数为无穷大量, 必定无界 . 但反之不真! 例如: 函数),(,cos )(∞+-∞∈=x x x x f ,∞→=π2)π2(n n f ,当∞→n ,但0π2=⎪⎭⎫⎝⎛+n f π,所以∞→x 时,)(x f 不是无穷大量!3°.若∞=→)(lim 0x f x x ,则称直线0x x =为曲线)(x f y =的铅直渐近线.若C x fx =→∞)(lim ,则称直线C y =为曲线)(x f y =的水平渐近线.例2. 证明∞=-→11lim1x x . 证明:对0>∀M ,要使M x >-11,只需M x 11<-,取M 1=δ. 于是,0>∀M ,0>∃δ,:x ∀δ<-<00x x ,有M x >-11,即∞=-→11lim1x x . 注:直线1=x 是曲线11-=x y 的铅直渐近线. 例3. 求曲线1)(22-==x x x f y 的水平、铅直两种渐近线.解:由111lim 1111lim 1lim 22222=-+=-+-=-∞→∞→∞→x x x x x x x x 知直线1=y 是已知曲线的一条水平渐近线.由∞=-→1lim 221x x x 知直线1=x 是已知曲线的一条铅直渐近线. 由∞=--→1lim 221x x x 知直线1-=x 也是已知曲线的一条铅直渐近线. 三、无穷小与无穷大的关系 定理2. 在自变量的同一变化过程中, 若)(x f 为无穷大量,则)(1x f 为无穷小量; 若)(x f 为无穷小量且0)(≠x f ,则)(1x f 为无穷大量. 证明:设∞=→)(lim 0x f x x ,则0>∀ε,对于ε1=M ,0>∃δ,:x ∀δ<-<00x x ,有ε1)(=>M x f ,即ε<)(1x f ,即)(1x f 为0x x →时的无穷小量. 反之,设0)(lim 0=→x f x x 且0)(≠x f ,则0>∀M ,对于M1=ε,0>∃δ,:x ∀δ<-<00x x ,有M x f 1)(=<ε,又:x ∀δ<-<00x x ,0)(≠x f ,从而M x f >)(1,)(1x f 为0x x →时的无穷大量.类似可证∞→x 的情形.第五节 极限运算法则一、无穷小量的运算法则定理1. 有限多个无穷小量的和还是无穷小量.证明:考虑两个无穷小量的和. 设0lim 0=→αx x ,0lim 0=→βx x ,而βαγ+=.0>∀ε,⎪⎩⎪⎨⎧<<-<∀>∃<<-<∀>∃2/,0:,02/,0:,0202101εβδδεαδδx x x x x x ,取{}21,min δδδ=,于是,0>∀ε,0>∃δ,δ<-<∀00:x x x ,有εβαβαγ<+≤+=,即0lim 0=→γx x .类似可证: 有限个无穷小量之和仍为无穷小量. 但无穷多个无穷小量之和未必是无穷小量,例如: 1π1π21π1lim 222=⎪⎭⎫⎝⎛++++++→∞n n n n n n .(后面再证明)定理2 .有界函数与无穷小量的乘积是无穷小量.证明:设函数u 在0x 的某一去心邻域内有界,即0>∃M ,01>∃δ,),(10δx U x∈∀,有M u ≤||. 又设0lim 0=→αx x ,即0>∀ε,M x x x /,0:,0202εαδδ<<-<∀>∃.取{}21,min δδδ=.于是,0>∀ε,0>∃δ,δ<-<∀00:x x x ,有εεαα=⋅<=M M u u /,即0lim 0=→αu x x .推论1. 常数与无穷小量的乘积是无穷小量. 推论2. 有限个无穷小量的乘积是无穷小量. 例1. 求xxx sin lim∞→.解:由于1sin ≤x ,而01lim=∞→x x ,故0sin lim =∞→x xx . 注:直线0=y 是曲线xxy sin =的水平渐近线.二、极限的四则运算法则定理 3 . 若A x f =)(lim ,B x g =)(lim ,则有B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[. 证明:由A x f =)(lim ,B x g =)(lim ,有βα+=+=B x g A x f )(,)((其中βα,为无穷小量) 于是, )()()()()()(βαβα±+±=+±+=±B A B A x g x f ,即B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[.推论: 若A x f =)(lim ,B x g =)(lim ,且)()(x g x f ≥,则B A ≥. 证明:令)()()(x g x f x -=ϕ,则0)(≥x ϕ,从而0)(lim ≥x ϕ,由于B A x g x f x -=-=)]()(lim[)(lim ϕ,于是B A ≥.说明:定理3可推广到有限个函数相加、减的情形.定理4.若A x f =)(lim ,B x g =)(lim ,则有AB x g x f x g x f =⋅=⋅)(lim )(lim )]()(lim[.证明:由A x f =)(lim ,B x g =)(lim ,有βα+=+=B x g A x f )(,)((其中βα,为无穷小量) 于是, αβαββα+++=++=B A AB B A x g x f ))(()()(,由于0lim lim lim ===αβαβB A ,从而)(lim )(lim )()(lim x g x f AB x g x f ⋅==. 说明: 定理4可推广到有限个函数相乘的情形. 推论1. )(lim )](lim[x f C x f C = ( C 为常数). 推论2. n n x f x f ])(lim [)](lim[= ( n 为正整数).例2. 设 n 次多项式n n n x a x a a x P +++= 10)(,试证)()(lim 00x P x P n n x x =→.证明: )(lim lim )(lim 010100x P x a x a a x a x a a x P n n n n x x n x x n x x =+++=+++=→→→ .定理5. 若A x f =)(lim ,B x g =)(lim ,且0≠B ,则有BAx g x f x g x f ==)(lim )(lim )()(lim. 证明:由A x f =)(lim ,B x g =)(lim ,有βα+=+=B x g A x f )(,)((其中βα,为无穷小量) 设 )()(1)()(βαββαγA B B B B A B A B A x g x f -+=-++=-=,因此 γ 为无穷小量, 即γ+=BA x g x f )()(, 由极限与无穷小关系定理, 得)(lim )(lim )()(limx g x f B A x g x f ==. 因为数列是一种特殊的函数,下面定理给出数列的极限的运算法则: 定理6 . 若A x n n =∞→lim ,B y n n =∞→lim ,则有(1). B A y x n n n ±=±→∞)(lim ;(2). B A y x n n n ⋅=→∞lim ;(3). 当0≠n y 且0≠B 时,BA y x n n n =∞→lim. 例3. 对分式函数)()()(x Q x P x R =,其中)(x P 、)(x Q 是多项式,若0)(0≠x Q ,试证: )()(lim 00x R x R x x =→.证明:)()()()(lim )(lim )(lim 000000x R x Q x P x Q x P x R x x x x x x ===→→→. 例4. 3162)3(lim )1(lim 31lim )3)(3()1)(3(lim 934lim3333223==+-=+-=+---=-+-→→→→→x x x x x x x x x x x x x x x x .例5. 求4532lim21+--→x x x x .解:由于031241513245lim221=-⋅+⋅-=-+-→x x x x ,于是∞=+--→4532lim 21x x x x . 例6. 737243lim 357243lim 332323=-+++=-+++→∞→∞x x x x x x x x x x .(分子分母同除以3x ) 例7. 020522123lim 52123lim 332232==+---=+---∞→∞→xx x x x x x x x x x .(分子分母同除以3x ) 例8. 12352lim 223--+-→∞x x x x x .解:由例7知052123lim 232=+---→∞x x x x x ,故例7知 ∞=+---→∞52123lim 232x x x x x . 一般有如下结果:n n n m m mx b x b x b a x a x a ++++++--→∞ 110110lim ⎪⎩⎪⎨⎧<∞>==mn m n mn a ,,0,00. ( n m b a ,,000≠为非负常数)三、复合函数的极限运算法则定理7. 设函数)]([x g f y =是由函数)(x g u =与)(u f y =复合而成,)]([x g f 在点0x 的某去心邻域),(00δx内有定义,若0)(lim 0u x g x x =→,A u f u u =→)(lim 0,且0)(u x g ≠,则A u f x g f u u x x ==→→)(lim )]([lim 0.证明:由⇒=→A u f u u )(lim 00>∀ε,0>∃η,当η<-<00u u 时,有ε<-A u f )(.由⇒=→0)(lim 0u x g x x 对上述的0>η,01>∃δ,当100δ<-<x x 时,有η<-0)(u x g .取{}10,min δδδ=,则当δ<-<00x x 时,有η<-<0)(0u x g ,从而有ε<-=-A u f A x g f )()]([,即A u f x g f u u x x ==→→)(lim )]([lim 0.注:若定理中若∞=→)(lim 0x g x x ,A u f u =∞→)(lim ,则有A u f x g f u x x ==→∞→)(lim )]([lim 0;若∞=→∞)(lim x g x ,A u f u =∞→)(lim ,则有A u f x g f u x ==→∞→∞)(lim )]([lim .例8.求93lim23--→x x x .解:令932--=x x u ,则6131lim lim 33=+=→→x u x x ,所以6661lim 93lim 6123===--→→u x x u x . 例9.2)1(lim 1)1)(1(lim 11lim111=+=-+-=--→→→x x x x x x x x x .(分母有理化)另解:令x u =,有111112+=--=--u u u x x ,于是2)1(lim 11lim11=+=--→→u x x u x . 本节的最后,我们应用极限的运算法则来得到曲线的渐近线的具体表达式. 四、曲线的斜渐近线定理8. 曲线)(x f y =在右(或左,或左右)方以直线b kx y +=为渐近线的充分必要条件是x x f k x )(lim+∞→=(或x x f k x )(lim -∞→=,或xx f k x )(lim ∞→=);))((lim kx x f b x -=+∞→(或))((lim kx x f b x -=→∞,或))((lim kx x f b x -=→∞).证明:必要性:设曲线)(x f =在右方以b kx y +=为渐近线,点))(,(x f x 到直线b kx y +=的距离为)(x d ,则由渐近线的定义知,0)(lim =+∞→x d x ,即01)(lim2=+--+∞→kb kx x f x ,等价于0))((l i m =--+∞→b kx x f x ,从而有))((lim kx x f b x -=+∞→.由此得0)(lim )(lim =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+∞→+∞→x kx x f k x x f x x ,即x x f k x )(lim +∞→=. 充分性:由))((lim kx x f b x -=+∞→得0))((lim =--+∞→b kx x f x ,从而0)(lim =+∞→x d x .练习:试确定常数 a 使0)1(lim 33=--∞→x a x x .解:令x t 1=,则t a t t a t t t --=⎪⎪⎭⎫ ⎝⎛--=→→3303301lim 11lim 0,所以必有[]01lim 330=--→a t t ,故01=--a ,即1-=a .第六节 极限存在准则 两个重要极限一、极限存在准则定理1.(夹逼准则)若函数h g f ,,满足(1). 在0x 的某一去心邻域),(0δx U内,有)()()(x h x f x g ≤≤,(2). A x h x g x x x x ==→→)(lim )(lim 0, 则A x f x x =→)(lim 0.证明:由A x h x g x x x x ==→→)(lim )(lim 0知0>∀ε,⎪⎩⎪⎨⎧+≤≤-⇒<-<-<∀>∃+≤≤-⇒<-<-<∀>∃εεεδδεεεδδA x h A A x h x x x A x g A A x g x x x )()(,0:,0)()(,0:,0202101,取{}21,min δδδ=, 于是,0>∀ε,0>∃δ,δ<-<∀00:x x x ,有εε+≤≤≤≤-A x h x f x g A )()()(,即ε<-A x f )(,因此A x f x x =→)(lim 0.推论:若数列}{n x 、}{n y 、}{n z 满足 (1). N n ∈∃0,当0n n >时,有n n n z x y ≤≤, (2). a z y n n n n ==→∞→∞lim lim ,则a x n n =→∞lim .例1.求极限⎪⎪⎭⎫⎝⎛++++++→∞n n n n n 22212111lim . 解:由于11211122222+≤++++++≤+n n nn n n nn n ,而1111limlim2=+=+→∞→∞nnn nn n ,1111lim1lim22=+=+→∞→∞n n nn n ,于是由夹逼准则知112111lim 222=⎪⎪⎭⎫⎝⎛++++++→∞n n n n n . 例2.证明:1π1π21π1lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n . 证明:由于ππ1π21π1π2222222+≤⎪⎭⎫⎝⎛++++++≤+n n n n n n n n n n ,而1πlim 22=+∞→n n n n ,1πlim 22=+∞→n n n ,由夹逼准则知1π1π21π1lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n . 定理2.(单调有界准则)单调有界数列必收敛,即若数列}{n x 单调增加(或单调减少)且有上界(或有下界),则n n x →∞lim 必存在.证明:仅就}{n x 单调增加且有上界的情形证明,}{n x 单调减少且有下界的情形类似可证.因为}{n x 单调增加且有上界,由确界存在定理知,}{n x 必有上确界}sup{n x =β.由上确界定义知+∈∀N n ,β≤n x ;0>∀ε,}{n N x x ∈∃,使εβ->N x ,于是,0>∀ε,+∈∃N N ,N n >∀,有εββ->>≥N n x x ,即εβ<-≤n x 0,因而εβ<-||n x ,所以n n x →∞lim 存在,且β=∞→n n x lim .注:单调增加有上界的数列的极限就是其上确界;单调减少有下界的数列的极限就是其下确界.例3.设0>x ,x x =1,,,2 x x x +=,, x x x x n +++=证明数列}{n x 极限存在,并求出其极限.证明:由数列}{n x 的定义知,1≥∀n ,0>n x 且n n x x x +=+1.现用数学归纳法证明}{n x 单调增加有上界.首先,21x x <,设n n x x <-1,则n n n n x x x x x x >+>+=-+11,所以}{n x 单调增加. 其次,11+<=x x x ,设1+<x x n ,则11211+=++<++<+=+x x x x x x x x n n ,综上可知}{n x 单调增加有上界.根据单调有界准则,数列}{n x 收敛,设A x n n =∞→lim ,在等式n n x x x +=+21两边令∞→n ,取极限得A x A +=2,解得2411xA +±=,但由极限的保号性知0≥A ,故 2411lim xx n n ++=→∞. 例4.证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11收敛.证明: 利用二项式公式, 有nn n x ⎪⎭⎫⎝⎛+=11n n n n n n n n n n n n n n n n 1!)1()1(1!3)2)(1(1!2)1(1!1132⋅+--++⋅--+⋅-+⋅+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++=n n n n n n n n 112111!12111!3111!2111 , ⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-++=+11121111)!1(1121111!31111!21111n n n n n n n n x n ,比较可知),2,1(1 =<+n x x n n ,即数列}{n x 单调增加. 由于n k ≤≤2时,)1(1!1112111!1-<<⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-k k k n k n n k ,有 !1!31!2111n x n +++++< nn ⋅-++⋅+⋅++<)1(132121111 nn n n 1111121312121111--+---++-+-++= n13-= 3<,即}{n x 有上界.根据单调有界准则知数列}{n x 收敛,将其极限记为e ,即e n nn =⎪⎭⎫⎝⎛+→∞11lim ,e 为自然对数的底,为无理数,其值为 590457182818284.2e =. 定理3.(柯西收敛准则)数列}{n x 收敛的充分必要条件是0>∀ε,+∈∃N N ,使得N n m >∀,,有ε<-m n x x . 证明略.注:1°.柯西收敛准则的等价形式:数列}{n x 收敛的充分必要条件是0>∀ε,+∈∃N N ,使得N n >∀,+∈∀N p 有ε<-+n p n x x . 2°.数列发散的充要条件:数列}{n x 收敛的充分必要条件是00>∃ε,+∈∀N N ,N n m >∃,,使0ε>-m n x x . 例5.设222131211n x n ++++= ,证明数列}{n x 收敛. 证明:+∈∀N p n ,,要使222)(1)2(1)1(1p n n n x x n p n ++++++=-+ ))(1(1)2)(1(1)1(1p n p n n n n n +-+++++++<p n p n n n n n +--++++-+++-<1112111111 ε<<+-=np n n 111 成立,只需ε1>n ,取⎥⎦⎤⎢⎣⎡=ε1N . 于是,0>∀ε,+∈∃N N ,使得N n >∀,+∈∀N p 有ε<-+n p n x x ,由柯西收敛准则知,数列}{n x 收敛. 例6. 设nx n 131211++++= ,证明数列}{n x 发散. 证明:对210=ε,+∈∀N N ,取N n >,N n m >=2,有 212212111=≥+++++=-n n n n n x x n m ,由柯西收敛准则知数列}{n x 发散. 二、两个重要极限1.重要极限一:1sin lim 0=→xxx .证明:先设20π<<x ,作一单位圆,圆心角x AOB =∠,点A 处的切线与OB 的延长线相交与D ,又OA BC ⊥,则CB x =sin ,B A x=,AD x =tan ,由图易知,AOB ∆的面积<扇形AOB 的面积<AOD ∆的面积,即有x x x tan 2121sin 21<<,或x x x tan sin <<,两边各项同除以x sin ,得xx x cos 1sin 1<<,或1sin cos <<x xx ⎪⎭⎫ ⎝⎛<<20πx ,因为x cos 与x x sin 都是偶函数,所以当02<<-x π时,不等式1sin cos <<xxx 也成立,即有1sin cos <<x x x ⎪⎭⎫ ⎝⎛<<2||0πx , 从而2222sin 2cos 1sin 10222x x x x x x =⎪⎭⎫ ⎝⎛⋅<=-<-< ⎪⎭⎫ ⎝⎛<<2||0πx . 令0→x ,由夹逼准则得0sin 1lim 0=⎪⎭⎫⎝⎛-→x x x ,从而 1sin 11lim sin lim00=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=→→x x x xx x . 注:上述证明过程中,得到|||sin |x x <,2cos 102x x <-<,于是有0sin lim 0=→x x ,1cos lim 0=→x x .例7.1cos 1lim sin lim cos 1sin lim tan lim0000=⋅=⎪⎭⎫⎝⎛=→→→→x x x x x x x x x x x x . 例8.2112122sin lim 212sin 2limcos 1lim222022020=⋅=⎪⎭⎫ ⎝⎛==-→→→x xx x x xx x x . 例9.xx x arcsin lim0→t x sin =1sin 1lim sin lim 00===→→tt t t x x .2.重要极限二:e 11lim =⎪⎭⎫⎝⎛+∞→xx x .证明:1≥∀x ,有1][][+<≤x x x 或][111][1x x x <≤+,记][x n =,则当+∞→x 时,∞→n ,且 11111111+⎪⎭⎫ ⎝⎛+<⎪⎭⎫ ⎝⎛+≤⎪⎭⎫ ⎝⎛++n xnn x n ,而 e 111lim 111lim 111lim 111lim 111=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++→∞+→∞-+→∞→∞n n n n n n n n n n n , e 11lim 11lim 11lim 1=⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+→∞→∞+→∞n n n n nn n n , 故由夹逼准则知e 11lim =⎪⎭⎫⎝⎛++∞→xx x .。
一元微积分,多元微积分,高等数学复习提纲(同济大学版)

(1)1,补集的记号2,什么是笛卡尔乘积3,什么是邻域,记号,中心,半径4,去心邻域,记号,左邻域,右邻域5,两个闭区间的直积6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数8,逆映射,复合映射9,多值函数,单值分支10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义12,奇偶性、周期性13,初等函数,基本初等函数(2)1,数列极限的定义,用符号语言2,收敛数列的四个性质3(3)1,函数在某点的极限定义,符号语言2,函数在无穷大处的极限,符号语言3,函数极限的性质(4)1,无穷小的定义2,函数极限的充分必要条件,用无穷小表示3,无穷大4,无穷大和无穷小的定义(5)1,有限个无穷小的和2,有界函数与无穷小的乘积3,极限的四则运算4,函数y1始终大于y2,那么极限的关系是(6)1,极限存在的夹逼准则2,单调有界的数列是否存在极限3,(1+1/x)^x的极限4,柯西审敛准则1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小2,等价无穷小的充要条件3,两组等价无穷小之间的比例关系(8)1,函数连续性的定义,左连续,右连续2,什么是连续函数3,间断点的三种情况4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断点(9)1,连续函数的四则运算后的连续性2,反函数和复合函数的连续性3,初等函数的连续性(10)1,有界性与最大最小值定理2,零点定理3,介值定理和推论第二章(1)1,导数的定义2,函数在一点可导的充要条件,用等式表示3,可导和连续的关系(2)1,函数的和差积商如何求导2,tanx、secx的导数,cscx和cotx3,反函数的求导法则是什么4,arcsinx的导数,arccos的导数,arctanx, areccotx的导数5,复合函数求导法则(3)1,二阶导数的微分表示法2,莱布尼兹公式3,a^x\sinkx\coskx\x^a\lnx\1/x\的n阶导4,隐函数的求导5,对数求导法的应用6,参数所表示的函数怎样求导7,什么是相关变化率1,可微的充分必要条件2,⊿y与dy的关系3,什么是线性主部4,什么是函数的微分,什么是自变量的微分5,函数的和差积商的微分6,复合函数的微分法则是什么、7,如何利用微分进行近似计算8,利用0点处的微分可以导出什么近似计算公式9,误差估计(星号)第三章(1)1,什么是费马引理2,什么是罗尔定理3,什么是拉格朗日中值定理4,什是有限增量公式5,什么是柯西中值定理(2)1,什么是罗比达法则(3)1,什么泰勒中值定理2,什么是泰勒多项式,什么是拉格朗日余型3,什么是皮亚诺余型4,什么是迈克劳林公式5,e^x\sinx\cosx\ln(1+x)\(1+x)^a的带有拉格朗日余项的麦克莱林公式(4)1,凹凸性的定义,导数如何判定凹凸性2,什么是拐点以及如何寻找拐点(5)1,极大值的定义2,什么是驻点,怎样利用导数判断极大值极小值3,如何利用二阶导数判断极大值极小值4,怎样判断最大值,最小值(6)函数图形描绘的步骤(7)1,弧微分公式2,什么是弧段的平均曲率,什么是曲率3,曲率的公式4,参数方程的曲率公式5,什么是曲率圆,曲率中心,曲率半径(8)1,什么是二分法2,什么是切线法第四章(1)1,什么是原函数2,原函数存在定理3,什么事不定积分4,1/x\1/(1+x^2)\1/sqr(1-x^2)\cosx\sinx\1/cosx^2\1/sinx^2\secxtanx\cscxcotx\e^x\a^x的原函数5,什么是第一类换元法6,cscx、secx的不定积分7,cos3x*cos2x的不定积分8,什么是第二类换元法9,tanx\cotx\secx\cscx\1/(a^2+x^2)\ 1/(x^2-a^2)\1/sqr(a^2-x^2)\1/sqr(x^2+a^2)\1/sqr(x^2-a^2)积分10,什么是分部积分法11,分部积分法,分部积分法的优先法则12,有理函数的积分怎样积,带根号的函数怎样积分(根号中x的次数是1)(5)积分表第五章(1)1,定积分的定义2,可积的2个充分条件是什么3,怎样利用积分的定义求定积分4,怎样利用定积分进行近似计算5,积分外面的绝对值和积分里面的绝对值之间的大小关系6,定积分与被积函数最大值最小值之间的关系7,什么是积分中值公式8,积分上限函数可导的充分条件,导数是9,什么是牛顿莱布尼兹公式10,定积分的换元法有什么条件,怎样换12,sinx^n从0积分到pi/2的结果13,什么是反常积分14,正负无穷的反常积分是怎样定义的15,如何利用牛顿莱布尼兹公式判定反常积分是存在还是发散16,瑕积分的定义,存在和发散的一般规则17,反常积分的比较审敛法13,绝对收敛的反常积分14,Γ函数的定义和重要性质第六章(1)1,什么是元素法2,怎样用定积分求面积,体积,弧长第七章(1)1,什么事微分方程呢,什么是微分方程的阶,什么事微分方程的通解,微分方程的特解,什么是初始条件2,什么是可分离变量的微分方程,怎样求解3,什么是其次方程,怎样求解4,什么事可以化为齐次的方程,怎样求解5,什么是齐次一阶线性微分方程和非齐次一阶线性微分方程,怎样求解6,什么是常数变易法,怎样求非齐次一阶线性微分方程7,什么是伯努利方程,怎样求解8,y^(n)=f(x)、y’’=f(x,y’)、y’’=f(y,y’)的形式怎样求解9,二阶齐次线性方程的性质,通解的结构10,n阶齐次线性方程通解11,二阶非齐次线性方程解的结构12,什么事线性微分方程的解的叠加原理13,怎样利用常数变异法求二阶非齐次线性方程的通解14,二阶线性常系数齐次方程的通解15,n阶常系数齐次线性微分方程的一般形式16,y’’+py’+qy=f(x),如果f(x)=e^(λx)p(x)怎样求解,如果f(x)= e^(λx)(p1(x)coswx+p2(x)sinwx)第八章(1)1,向量b平行于a的充要条件是2,有向线段AB的λ分点坐标3,怎样求向量的模4,怎样求方向角和方向余弦5,3个方向余弦之间有什么关系6,向量投影的记号(2)1,什么是向量的数量积2,两向量夹角余弦的坐标表示3,什么是向量积,怎样确定方向4,向量积的运算规律,向量积的坐标表示5,什么是向量的混合积怎样计算,几何意义是什么6,三向量共面的充分必要条件是7,球面方程8,围绕z轴的旋转曲面方程9,圆锥面方程,旋转单叶双曲面,旋转双叶双曲面,抛物柱面,柱面的方程10,椭圆锥面、椭球面、单叶双曲面、双叶双曲面、椭圆抛物面、双曲抛物面11,什么是空间曲线的一般方程12,什么是空间曲线的参数方程13,什么是螺旋线14,球面的参数方程15,如何求投影16,什么是平面的点法式方程17,什么是平面的一般方程18,什么是平面的截距式方程19,什么是两平面的夹角20,两平面互相平行和重合的条件21,点到平面的距离公式22,什么是对称式方程,怎样求平面的参数方程23,两直线的夹角是什么,怎样求24,直线与平面的夹角有什么25,直线与平面的夹角怎样求,直线与平面垂直或平行的条件是什么26,什么是平面束第九章(1)1,平面的邻域和去心邻域怎样表示2,什么是内点、外点、边界点、聚点3,什么是开集,闭集、连通集、闭区域、有界集、无界集4,什么是二元函数5,多元函数的极限6,利用多元函数的定义怎样判定极限不存在7,什么是多元函数的连续性、8,多元函数的有界性和最大最小值定理9,介值定理(2)1,偏导数的定义2,什么是混合偏导数3,二阶混合偏导数相等的充要条件4,什么是偏微分5,什么是全微分,什么是可微6,可微和连续的关系式7,可微分的充分条件是8,什么是多元函数微分的叠加原理(4)1,什么是全导数2,多元函数和多元函数复合时怎样求偏导数3,什么是隐函数的求导公式,4,什么是隐函数的偏导公式5,两个方程组所确定的函数如何求偏导(6)1,什么是一元向量值函数2,什么是向量函数的极限3,向量值函数的导数运算法则4,向量值函数的法平面方程5,曲线在点m处的切线方程6,空间曲线以F(x,y,z)=1,G(x,y,z)=0给出时,怎样求切线方程和法平面方程7,怎样求曲面的切面和法向量8,什么是方向导数,与偏导数的关系是什么9,什么是梯度,与方向导数的关系式什么10,梯度的意义(疑问)(8)1,什么是多元函数的极大值和极小值2,多元函数有极值的必要条件3,多元函数有极值的充分条件4,怎样运用拉格朗日乘数法第十章(1)1,什么是二重积分2,什么是二重积分的可加性3,什么是二重积分的中值定理(2)1,怎样利用极坐标求二重积分2,什么是二重积分的换元法(3)1,什么是三重积分2,三重积分在直角坐标下有哪些方法3,怎样利用柱面坐标三重积分4,怎样利用球坐标进行三重积分5,怎样积分曲面面积6,怎样利用曲面的参数方程积分7,怎样求质心和转动惯量(5)第十一章(1)1,什么是第一类曲线积分,怎样计算2,什么是第二类曲线积分,怎样计算3,两类曲线积分之间是什么关系(3)1,什么是格林公式2,曲线积分与路径无关的充分必要条件是什么(3个第十二章(1)1,什么是级数的部分和2,什么是级数的和3,收敛级数的5个性质4,什么是柯西审敛原理(2)1,正项级数收敛的充分必要条件2,什么是比较审敛法,有什么推论3,什么是比较审敛法的极限形式4,什么是大朗贝尔判别法5,什么是根值判别法6,什么是极限审敛法7,什么是莱布尼兹定理8,什么是绝对收敛和条件收敛(3)1,什么是函数项无穷级数2,什么是幂级数3,什么是阿贝尔定理,推论是什么4,怎样求收敛半径5,幂级数的和函数在收敛域上的积分和微分,怎样利用(4)1,什么是泰勒级数2,函数能展开成泰勒级数的充分必要条件3,函数展开成幂级数的步骤(5)1,微分方程的幂级数解法是什么2,什么是幂级数3,傅里叶级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)1,补集的记号2,什么是笛卡尔乘积3,什么是邻域,记号,中心,半径4,去心邻域,记号,左邻域,右邻域5,两个闭区间的直积6,映射的概念,原像,满射,单射,一一映射7,泛函,变换,函数8,逆映射,复合映射9,多值函数,单值分支10,绝对值,符号函数,取整函数,最值函数11,上界、下界,有界,无界的定义12,奇偶性、周期性13,初等函数,基本初等函数(2)1,数列极限的定义,用符号语言2,收敛数列的四个性质3(3)1,函数在某点的极限定义,符号语言2,函数在无穷大处的极限,符号语言3,函数极限的性质(4)1,无穷小的定义2,函数极限的充分必要条件,用无穷小表示3,无穷大4,无穷大和无穷小的定义(5)1,有限个无穷小的和2,有界函数与无穷小的乘积3,极限的四则运算4,函数y1始终大于y2,那么极限的关系是(6)1,极限存在的夹逼准则2,单调有界的数列是否存在极限3,(1+1/x)^x的极限4,柯西审敛准则1,什么是高阶无穷小,低阶无穷小,同阶无穷小,k阶无穷小,等价无穷小2,等价无穷小的充要条件3,两组等价无穷小之间的比例关系(8)1,函数连续性的定义,左连续,右连续2,什么是连续函数3,间断点的三种情况4,第一类间断点,第二类间断点,可去间断点,条约间断点,无穷间断点,振荡间断点(9)1,连续函数的四则运算后的连续性2,反函数和复合函数的连续性3,初等函数的连续性(10)1,有界性与最大最小值定理2,零点定理3,介值定理和推论第二章(1)1,导数的定义2,函数在一点可导的充要条件,用等式表示3,可导和连续的关系(2)1,函数的和差积商如何求导2,tanx、secx的导数,cscx和cotx3,反函数的求导法则是什么4,arcsinx的导数,arccos的导数,arctanx, areccotx的导数5,复合函数求导法则(3)1,二阶导数的微分表示法2,莱布尼兹公式3,a^x\sinkx\coskx\x^a\lnx\1/x\的n阶导4,隐函数的求导5,对数求导法的应用6,参数所表示的函数怎样求导7,什么是相关变化率1,可微的充分必要条件2,⊿y与dy的关系3,什么是线性主部4,什么是函数的微分,什么是自变量的微分5,函数的和差积商的微分6,复合函数的微分法则是什么、7,如何利用微分进行近似计算8,利用0点处的微分可以导出什么近似计算公式9,误差估计(星号)第三章(1)1,什么是费马引理2,什么是罗尔定理3,什么是拉格朗日中值定理4,什是有限增量公式5,什么是柯西中值定理(2)1,什么是罗比达法则(3)1,什么泰勒中值定理2,什么是泰勒多项式,什么是拉格朗日余型3,什么是皮亚诺余型4,什么是迈克劳林公式5,e^x\sinx\cosx\ln(1+x)\(1+x)^a的带有拉格朗日余项的麦克莱林公式(4)1,凹凸性的定义,导数如何判定凹凸性2,什么是拐点以及如何寻找拐点(5)1,极大值的定义2,什么是驻点,怎样利用导数判断极大值极小值3,如何利用二阶导数判断极大值极小值4,怎样判断最大值,最小值(6)函数图形描绘的步骤(7)1,弧微分公式2,什么是弧段的平均曲率,什么是曲率3,曲率的公式4,参数方程的曲率公式5,什么是曲率圆,曲率中心,曲率半径(8)1,什么是二分法2,什么是切线法第四章(1)1,什么是原函数2,原函数存在定理3,什么事不定积分4,1/x\1/(1+x^2)\1/sqr(1-x^2)\cosx\sinx\1/cosx^2\1/sinx^2\secxtanx\cscxcotx\e^x\a^x的原函数5,什么是第一类换元法6,cscx、secx的不定积分7,cos3x*cos2x的不定积分8,什么是第二类换元法9,tanx\cotx\secx\cscx\1/(a^2+x^2)\ 1/(x^2-a^2)\1/sqr(a^2-x^2)\1/sqr(x^2+a^2)\1/sqr(x^2-a^2)积分10,什么是分部积分法11,分部积分法,分部积分法的优先法则12,有理函数的积分怎样积,带根号的函数怎样积分(根号中x的次数是1)(5)积分表第五章(1)1,定积分的定义2,可积的2个充分条件是什么3,怎样利用积分的定义求定积分4,怎样利用定积分进行近似计算5,积分外面的绝对值和积分里面的绝对值之间的大小关系6,定积分与被积函数最大值最小值之间的关系7,什么是积分中值公式8,积分上限函数可导的充分条件,导数是9,什么是牛顿莱布尼兹公式10,定积分的换元法有什么条件,怎样换12,sinx^n从0积分到pi/2的结果13,什么是反常积分14,正负无穷的反常积分是怎样定义的15,如何利用牛顿莱布尼兹公式判定反常积分是存在还是发散16,瑕积分的定义,存在和发散的一般规则17,反常积分的比较审敛法13,绝对收敛的反常积分14,Γ函数的定义和重要性质第六章(1)1,什么是元素法2,怎样用定积分求面积,体积,弧长第七章(1)1,什么事微分方程呢,什么是微分方程的阶,什么事微分方程的通解,微分方程的特解,什么是初始条件2,什么是可分离变量的微分方程,怎样求解3,什么是其次方程,怎样求解4,什么事可以化为齐次的方程,怎样求解5,什么是齐次一阶线性微分方程和非齐次一阶线性微分方程,怎样求解6,什么是常数变易法,怎样求非齐次一阶线性微分方程7,什么是伯努利方程,怎样求解8,y^(n)=f(x)、y’’=f(x,y’)、y’’=f(y,y’)的形式怎样求解9,二阶齐次线性方程的性质,通解的结构10,n阶齐次线性方程通解11,二阶非齐次线性方程解的结构12,什么事线性微分方程的解的叠加原理13,怎样利用常数变异法求二阶非齐次线性方程的通解14,二阶线性常系数齐次方程的通解15,n阶常系数齐次线性微分方程的一般形式16,y’’+py’+qy=f(x),如果f(x)=e^(λx)p(x)怎样求解,如果f(x)= e^(λx)(p1(x)coswx+p2(x)sinwx)第八章(1)1,向量b平行于a的充要条件是2,有向线段AB的λ分点坐标3,怎样求向量的模4,怎样求方向角和方向余弦5,3个方向余弦之间有什么关系6,向量投影的记号(2)1,什么是向量的数量积2,两向量夹角余弦的坐标表示3,什么是向量积,怎样确定方向4,向量积的运算规律,向量积的坐标表示5,什么是向量的混合积怎样计算,几何意义是什么6,三向量共面的充分必要条件是7,球面方程8,围绕z轴的旋转曲面方程9,圆锥面方程,旋转单叶双曲面,旋转双叶双曲面,抛物柱面,柱面的方程10,椭圆锥面、椭球面、单叶双曲面、双叶双曲面、椭圆抛物面、双曲抛物面11,什么是空间曲线的一般方程12,什么是空间曲线的参数方程13,什么是螺旋线14,球面的参数方程15,如何求投影16,什么是平面的点法式方程17,什么是平面的一般方程18,什么是平面的截距式方程19,什么是两平面的夹角20,两平面互相平行和重合的条件21,点到平面的距离公式22,什么是对称式方程,怎样求平面的参数方程23,两直线的夹角是什么,怎样求24,直线与平面的夹角有什么25,直线与平面的夹角怎样求,直线与平面垂直或平行的条件是什么26,什么是平面束第九章(1)1,平面的邻域和去心邻域怎样表示2,什么是内点、外点、边界点、聚点3,什么是开集,闭集、连通集、闭区域、有界集、无界集4,什么是二元函数5,多元函数的极限6,利用多元函数的定义怎样判定极限不存在7,什么是多元函数的连续性、8,多元函数的有界性和最大最小值定理9,介值定理(2)1,偏导数的定义2,什么是混合偏导数3,二阶混合偏导数相等的充要条件4,什么是偏微分5,什么是全微分,什么是可微6,可微和连续的关系式7,可微分的充分条件是8,什么是多元函数微分的叠加原理(4)1,什么是全导数2,多元函数和多元函数复合时怎样求偏导数3,什么是隐函数的求导公式,4,什么是隐函数的偏导公式5,两个方程组所确定的函数如何求偏导(6)1,什么是一元向量值函数2,什么是向量函数的极限3,向量值函数的导数运算法则4,向量值函数的法平面方程5,曲线在点m处的切线方程6,空间曲线以F(x,y,z)=1,G(x,y,z)=0给出时,怎样求切线方程和法平面方程7,怎样求曲面的切面和法向量8,什么是方向导数,与偏导数的关系是什么9,什么是梯度,与方向导数的关系式什么10,梯度的意义(疑问)(8)1,什么是多元函数的极大值和极小值2,多元函数有极值的必要条件3,多元函数有极值的充分条件4,怎样运用拉格朗日乘数法第十章(1)1,什么是二重积分2,什么是二重积分的可加性3,什么是二重积分的中值定理(2)1,怎样利用极坐标求二重积分2,什么是二重积分的换元法(3)1,什么是三重积分2,三重积分在直角坐标下有哪些方法3,怎样利用柱面坐标三重积分4,怎样利用球坐标进行三重积分5,怎样积分曲面面积6,怎样利用曲面的参数方程积分7,怎样求质心和转动惯量(5)第十一章(1)1,什么是第一类曲线积分,怎样计算2,什么是第二类曲线积分,怎样计算3,两类曲线积分之间是什么关系(3)1,什么是格林公式2,曲线积分与路径无关的充分必要条件是什么(3个第十二章(1)1,什么是级数的部分和2,什么是级数的和3,收敛级数的5个性质4,什么是柯西审敛原理(2)1,正项级数收敛的充分必要条件2,什么是比较审敛法,有什么推论3,什么是比较审敛法的极限形式4,什么是大朗贝尔判别法5,什么是根值判别法6,什么是极限审敛法7,什么是莱布尼兹定理8,什么是绝对收敛和条件收敛(3)1,什么是函数项无穷级数2,什么是幂级数3,什么是阿贝尔定理,推论是什么4,怎样求收敛半径5,幂级数的和函数在收敛域上的积分和微分,怎样利用(4)1,什么是泰勒级数2,函数能展开成泰勒级数的充分必要条件3,函数展开成幂级数的步骤(5)1,微分方程的幂级数解法是什么2,什么是幂级数3,傅里叶级数。