光敏电阻伏安特性曲线实验数据
光敏电阻特性研究实验报告

课程名称:大学物理实验(一)实验名称:光敏电阻特性研究图3 光敏电阻光照特性光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光(可见光)的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
在黑暗条件下,它的阻值(暗阻)可图4 无光照时的光敏电阻原理示意图图5 有光照时的光敏电阻原理示意图光敏电阻是一种能够感知光的电子元件,其原理在于光照射到光敏电阻表面时,会激发其中的电子发生跃迁,导致电阻值发生变化。
具体来说,光敏电阻中含有一种半导体材料的物质作为感光元件如硒化铋、硫化镉等,当光线照射到这种材料上时,会让一些电子从价带跃迁到导带,使得电子数量增加,从而导致电阻值降低。
导体材料在没有光照射时,其中的电子处于价带中,不能自由移动。
因此,当光线强度增加时,电阻值就会相应地减小;反之,当光线强度减小或消失时,电阻值则会增大。
4.光敏电阻的伏安特性:光敏电阻在光强一定的情况下(偏振片角度θ不变)时,电阻是一个定值电阻。
根据R = U/I,可得到光强不变时电阻是一条直线,它的斜率就是电阻的阻值。
图1 光敏电阻特性研究实验装置图图2偏振片角度θ=30°时光敏电阻的伏安特性曲线由图可知:直线斜率即为此时的光敏电阻的阻值。
由于电压单位是(V)而电流单位是(mA),根据欧姆定律,其中U的单位是(V),I的单位是(A),故此时光敏电阻阻值为1505Ω。
变形式R=UI3.光敏电阻的光照特性和电阻特性研究表3 光敏电阻电流随相对光照强度变化数据表θ0º10º20º30º40º50º60º70º80º90º图3 光敏电阻光照特性曲线由图可知:电压一定时,当相对光强增大时,电流也逐渐增大。
当相对光照强度达到最大时,电流也取到最大值。
当相对光照强度为0时,电流不为0,但接近0,因为光敏电阻的暗阻较大。
除此之外,实验时电压恒定为2V,故可根据欧姆定律变形式R=UI计算不同相对光照强度时的电阻。
物理实验(下)光敏电阻的特性研究

光敏电阻的特性研究摘要:本实验利用LED灯、信号发生器和示波器等设备,对光敏电阻的暗电阻特性,不同光强下的伏安特性,不同电压下的光电特性以及光敏电阻的频率特性进行研究和验证。
关键词:光敏电阻,暗电阻,暗电流,光强,伏安特性,光电特性,频率特性。
Abstract:This experiment is about to research and confirm some characteristics of photoresistances, including the characteristic of dark resistance, volt-ampere characteristic under different light intensities, photoelectric characteristic under different voltages and frequency characteristic, using LED light, signal generator and oscillograph and so on. Keywords:photoresistance, dark resistance, dark current, light intensity, volt-ampere characteristic, photoelectric characteristic, frequency characteristic.引言光敏电阻是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。
光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化,在日常生产生活当中有广泛的应用。
一、实验目的:本实验用光强计、信号发生器、示波器等设备,对光敏电阻在不同光强下的伏安特性、一定电压下的光电特性和光敏电阻的频率特性等进行测量、验证和研究。
光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 )凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。
基于这种效应的光电器件有光电管、光电倍增管等。
另一种现象是电子并不逸出材料表面的,则称为是内光电效应。
光电导效应、光生伏特效应都是属于内光电效应。
好多半导体材料的很多电学特性都因受到光的照射而发生变化。
因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。
通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。
【实验原理】1(光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应:在无光照时,半导体结内部有自建电场。
电阻伏安特性曲线实验报告

电阻伏安特性曲线实验报告电子元件的伏安特性曲线实验报告实验一电子元件伏安特性的测定一、实验目的1( 掌握电压表、电流表、直流稳压电源等仪器的使用方法 2( 学习电阻元件伏安特性曲线的测量方法3( 加深理解欧姆定律,熟悉伏安特性曲线的绘制方法二、原理若二端元件的特性可用加在该元件两端的电压U和流过该元件的电流I之间的函数关系I=f(U)来表征,以电压U为横坐标,以电流I为纵坐标,绘制I-U曲线,则该曲线称为该二端元件的伏安特性曲线。
电阻元件是一种对电流呈阻力特性的元件。
当电流通过电阻元件时,电阻元件将电能转化为其它形式的能量,例如热能、光能等,同时,沿电流流动的方向产生电压降,流过电阻 R的电流等于电阻两端电压U与电阻阻值之比,即I?UR(1-1)这一关系称为欧姆定律。
若电阻阻值R不随电流I变化,则该电阻称为线性电阻元件,常用的普通电阻就近似地具有这一特性,其伏安特性曲线为一条通过原点的直线,如图1-1所示,该直线斜率的倒数为电阻阻值R。
线性电阻的伏安特性曲线对称于坐标原点,说明在电路中若将线性电阻反接,也不会不影响电路参数。
这种伏安特性曲线对称于坐标原点的元件称为双向性元件。
白炽灯工作时,灯丝处于高温状态,灯丝的电阻随温度升高而增大,而灯丝温度又与流过灯丝的电流有关,所以,灯丝阻值随流过灯丝的电流而变化,灯丝的伏安特性曲线不再是一条直线,而是如图1-2所示的曲线。
半导体二极管的伏安特性曲线取决于PN结的特性。
在半导体二极管的PN结上加正向电压时,由于PN结正向压降很小,流过PN结的电流会随电压的升高而急剧增大;在PN结上加反向电压时,PN结能承受和大的压降,流过PN结的电流几乎为零。
所以,在一定电压变化范围内,半导体二极管具有单向导电的特性,其伏安特性曲线如图1-3所示。
图1-2 小灯泡灯丝的伏安特性曲线图1-1 线性电阻元件的伏安特性曲线图1-3 半导体二极管的伏安特性曲线图1-4 稳压二极管的伏安特性曲线稳压二极管是一种特殊的二极管,其正向特性与普通半导体二极管的特性相似。
物理光敏实验报告

一、实验目的1. 了解光敏电阻的基本特性和工作原理。
2. 测量光敏电阻的光照特性曲线。
3. 掌握光敏电阻在电路中的应用方法。
4. 分析光敏电阻的响应时间及其影响因素。
二、实验原理光敏电阻是一种半导体器件,其电阻值随入射光的强度而变化。
当入射光强增强时,光敏电阻的电阻值减小;当入射光强减弱时,光敏电阻的电阻值增大。
这种特性使得光敏电阻在光控电路、自动报警系统等领域有着广泛的应用。
光敏电阻的原理基于内光电效应,即当光照射在半导体材料上时,会激发电子从价带跃迁到导带,形成自由电子和空穴对。
这些自由电子和空穴对在电场作用下产生电流,从而改变光敏电阻的电阻值。
三、实验仪器与设备1. 光敏电阻2. 电源3. 电阻箱4. 滑动变阻器5. 电压表6. 电流表7. 照明设备8. 电路连接线四、实验内容与步骤1. 搭建电路将光敏电阻、电源、电阻箱、滑动变阻器、电压表和电流表按照图示电路连接好。
2. 测量光敏电阻的暗电阻关闭照明设备,调节滑动变阻器,使电路中的电流达到稳定值。
记录此时电压表和电流表的读数,计算光敏电阻的暗电阻。
3. 测量光敏电阻的亮电阻打开照明设备,调节滑动变阻器,使电路中的电流达到稳定值。
记录此时电压表和电流表的读数,计算光敏电阻的亮电阻。
4. 测量光敏电阻的伏安特性曲线在不同光照条件下,分别测量光敏电阻的电压和电流值,记录数据。
绘制光敏电阻的伏安特性曲线。
5. 分析光敏电阻的响应时间在不同光照条件下,分别测量光敏电阻的电阻值随时间的变化情况,记录数据。
分析光敏电阻的响应时间及其影响因素。
6. 光敏电阻在电路中的应用设计一个简单的光控电路,利用光敏电阻控制电路的通断。
观察电路的工作情况,分析光敏电阻在电路中的作用。
五、实验结果与分析1. 光敏电阻的暗电阻和亮电阻通过实验测量,得到光敏电阻的暗电阻为\(R_d\),亮电阻为\(R_l\)。
2. 光敏电阻的伏安特性曲线通过实验绘制光敏电阻的伏安特性曲线,可以发现光敏电阻的电阻值随光照强度的增加而减小。
伏安特性曲线 实验报告

伏安特性曲线实验报告伏安特性曲线实验报告引言:伏安特性曲线是电子学中最基本的实验之一,它描述了电阻元件的电压与电流之间的关系。
通过实验测量和分析伏安特性曲线,可以深入理解电阻元件的特性和行为。
本实验旨在通过测量不同电阻元件的伏安特性曲线,探究电阻元件的性质和特点。
实验目的:1. 了解伏安特性曲线的基本概念和原理;2. 学习如何使用电压表和电流表进行测量;3. 掌握测量电阻元件的伏安特性曲线的方法;4. 分析不同电阻元件的特性和行为。
实验仪器和材料:1. 电源;2. 电压表和电流表;3. 不同电阻元件;4. 连接线。
实验步骤:1. 将电源、电压表和电流表依次连接起来,组成电路;2. 将不同电阻元件依次连接到电路中;3. 分别调节电源的电压,记录电压表和电流表的读数;4. 根据记录的数据,绘制伏安特性曲线。
实验结果与分析:通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从图中可以观察到以下几点特点和行为:1. Ohm定律的验证:当电阻元件为线性电阻时,伏安特性曲线呈直线,证明了Ohm定律的成立。
即电流与电压成正比,电阻恒定。
2. 非线性电阻元件的特性:当电阻元件为非线性电阻时,伏安特性曲线呈非线性关系。
这说明电阻元件的电流与电压之间的关系不再是简单的线性关系,而是受到其他因素的影响。
3. 电阻元件的阻值和功率:通过伏安特性曲线可以计算电阻元件的阻值和功率。
根据电流和电压的关系,可以得出电阻元件的阻值。
而根据电流和电压的乘积,可以得出电阻元件的功率。
这些参数对于电阻元件的选用和设计非常重要。
4. 温度对电阻的影响:伏安特性曲线的变化还可以反映电阻元件受温度影响的情况。
随着温度的升高,电阻元件的电阻值也会发生变化,从而导致伏安特性曲线的形状发生改变。
结论:通过本次实验,我们深入了解了伏安特性曲线的概念、原理和测量方法。
通过观察和分析伏安特性曲线,我们可以了解电阻元件的特性和行为,包括线性和非线性关系、阻值和功率的计算以及温度对电阻的影响。
光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究(FB815型光敏传感器光电斛实验仪) 凡是將光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强.光照皮等:也可间接用来检测能转换成光量变化的其它非电量,如寥件直径、表面紐糙度、位移.速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快.性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。
基于这种效应的光电器件有光电管、光电倍增管等。
另一种现象是电子并不逸出材料表面的,则称为是内光电效应。
光电导效应、光生伏特效应都是属于内光电效应。
好多半导体材料的很多电学特性都因受到光的照射而发生变化。
因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。
通过本设计性实验可以帮助学生了解光敏电阻.光敏二极管的光电传感特性及在菜些领域中的应用。
【实验原理】1.光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种現象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波隊比本征型光电导的要长的多。
(2)光生伏特效应:在无光照吋,半导体PN结内部有自建电场。
当光照射在PN结及其附近吋,在能董足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
光敏电阻实验

中国石油大学 智能仪器 实验报告 成 绩:班级: 姓名: 同组者: 教师:光敏电阻实验【实验目的】1、 了解光敏电阻的工作原理;2、 掌握光敏电阻的光电特性,光谱响应特性,频率特性等基本特性;3、 理解光敏电阻的一般应用。
【实验原理】光敏电阻是利用半导体光电导效应制成的一种特殊电阻,对光线十分敏感,它的电阻值能随着外界光照强弱(明暗)变化而变化.它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小.光敏电阻通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成的,如图1所示。
可见光波段和大气透过的几个窗口都有适用的光敏电阻,利用光敏电阻制成的光控开关在我们日常生活中随处可见,广泛应用于各种自动控制电路(如自动照明灯控制电路、自动报警电路等)、家用电器(如电视机中的亮度自动调节,照相机的自动曝光 图1 光敏电阻结构图 控制等)及各种测量仪器中。
在光照作用下能使物体的电导率改变的现象称为内光电效应.本实验所用的光敏电阻就是基于内光电效应的光电元件.当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。
这样由于材料中载流子个数增加,使材料的电导率增加,电导率的改变量为p n p e n e σμμ∆=∆⋅⋅+∆⋅⋅ (1)在(1)式中,e 为电荷电量,p ∆为空穴浓度的改变量,n ∆为电子浓度的改变量,μ表示迁移率。
当两端加上电压U 后,光电流为:ph AI U dσ=⋅∆⋅ (2) 式中A 为与电流垂直的表面,d 为电极间的间距。
在一定的光照度下,σ∆为恒定的值,因而光电流和电压成线性关系。
光敏电阻的伏安特性如图2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照度发生变化。
光照度不变的情况下,电压越高,光电流也越大,而且没有饱和现象。
当然,与一般电阻一样光敏电阻的工作电压和电流都不能超过规定的最高额定值。
图2 光敏电阻的伏安特性曲线图3 光敏电阻的光电特性曲线当光电器件电极上的电压一定时,光电流与入射到光电器件上的光照强度之间的关系称为光照特性。