必修3-程序框图教案
人教版高中数学必修3 程序框图(第3课时教案

1.1.2 程序框图(第3课时)【课程标准】通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.【教学目标】1.进一步理解程序框图的概念;2.掌握运用程序框图表达循环结构的算法;3.培养学生逻辑思维能力与表达能力.【教学重点】运用程序框图表达循环结构的算法【教学难点】循环体的确定,计数变量与累加变量的理解.【教学过程】一、回顾练习引例:设计一个计算1+2+…+100的值的算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;……第九十九步:将第九十八步中的运算结果4950与100相加,得到5050.简化描述:进一步简化:第一步:sum=0;第一步:sum=0,i=1;第二步:sum=sum+1;第二步:依次i从1到100,反复做sum=sum+i;第三步:sum=sum+2;第三步:输出sum.第四步:sum=sum+3;……第一百步:sum=sum+99;第一百零一步:sum=sum+100第一百零二步:输出sum.根据算法画出程序框图,引入循环结构.二、循环结构循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构.循环体:反复执行的处理步骤称为循环体.计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中.当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行循环体,满足则停止.练习1:画出引例直到型循环的程序框图.当型循环与直到循环的区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.②当型循环先判断后执行,直到型循环先执行后判断. ③对同一算法来说,当型循环和直到循环的条件互为反条件.练习2:1.1.1节例1的算法步骤的程序框图(如图)说明:①为了减少难点,省去flag 标记;②解释赋值语句“2=d ”与“1+=d d ”,还有“1-<=n d ;③简单分析.练习3:画出100321⨯⨯⨯⨯ 的程序框图.小结:画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.三、条件结构与循环结构的区别与联系区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.例1:(课本第10页的《探究》)画出用二分法求方程022=-x 的近似根(精确度为0.005)的程序框图,并指出哪些部分构成顺序结构、条件结构和循环结构?练习4:设计算法,求使2005321>++++n 成立的最小自然数n 的值,画出程序框图. 练习5:输入50个学生的考试成绩,若60分及以上的为及格,设计一个统计及格人数的程序框图.练习6:指出下列程序框图的运行结果五、课堂小结1. 理解循环结构的逻辑,主要用在反复做某项工作的问题中;2. 理解当型循环与直到循环的逻辑以及区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.②当型循环先判断后执行,直到型循环先执行后判断.③对同一算法来说,当型循环和直到循环的条件互为反条件.3. 画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.4. 条件结构与循环结构的区别与联系:区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.七、作业1. 设计一个算法,计算两个非0实数的加、减、乘、除运算的结果(要求输入两个非0实数,输出运算结果),并画出程序框图.2. 设计一个算法,判断一个数是偶数还是奇数(要求输入一个整数,输出该数的奇偶性),并画出程序框图.3. 设计一个算法,计算函数53)(2+-=x x x f 当20,,3,2,1 =x 时的函数值,并画出程序框图.4. (课本第11页习题1.1A 组第2题)5. 如果我国工农业产值每年以9%的增长率增长,问几年后我国产值翻一翻,试用程序框图描述其算法.6.(课本第11页习题1.1B 组第1题)。
最新人教版高中数学必修3第一章《程序框图及顺序结构》教案

《程序框图及顺序结构》教案教学目标:1.掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的顺序结构;掌握画程序框图的基本规则,能正确画出程序框图;2.通过模仿、操作、探索,经历设计程序框图表达解决问题的过程,学会灵活、正确地画程序框图;3.通过本节的学习,使我们对程序框图有一个基本的了解;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路,同时也体会程序框图的直观性、准确性.教学重点难点:1.重点:程序框图的基本概念、基本图形符号和顺序结构;2.难点:能综合运用这些知识正确地画出程序框图.教法与学法:1.教法选择:问题引导,合作探究2.学法指导:通过模仿、操作、探索,经历设计程序框图表达解决问题的过程,逐步掌握,切忌半途放弃.教学过程:一、设置情境,引出概念椭圆形框:)矩形框:表示计算、赋值等处理圆圈:二、例题详解,深化概念用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.三、思维拓展,共同探究四、变式训练,归纳总结这是一个累加求和问题,共99该算法是10099143131⨯++⨯+⨯ 的值.:下图所示的是一个算法的流程图,,输出的b =7,求a 2的值.教学设计说明1.教材地位分析:本节内容是在学生学习了算法的概念的基础上进行的,学生知道“在数学中,算法通常是按照一定规则解决某一类问题的明确的和有限的步骤”.在算法概念的表述中,有范围限定词“在数学中”,因此学习的内容均为数学中的问题.有一个有前缀限制的基本特征词“步骤”,前缀中,“按照一定规则” 指的是解决具体问题时的依据和表达方式,关注的是算法的基本逻辑结构(顺序、条件和循环),也表示算法具有有序性.程序框图是算法的直观、准确的表达,是自然语言表达的延伸,也是后面学习算法基本语句的基础.程序框图的学习起着承上启下的作用.2.学生现实分析:由于学生初次接触程序框图,可能会感到陌生,因此可以举生活中的例子,也可以举函数图像的例子,让学生感到程序框图并不神秘,并感觉到用程序框图表达算法更直观、更条理、更明确.3.在我们利用计算机解决问题的时候,首先要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题十分清晰和具体.有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端,也是使用计算机处理问题前的一个必要的步骤.。
人教版高中数学高一-必修三教学设计 程序框图⑶

§1.1.2 程序框图⑶
教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构
(1) 掌握画程序框图的基本规则,能正确画出程序框图。
(2) 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、
正确地画程序框图。
教学重点:经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构
教学难点: 难点是能综合运用这些知识正确地画出程序框图。
教学过程:
习题讲解 1. 写出如下程序框图所对应的函数解析式。
2.考察如下程序框图,当输入a 、b 、c 分别为3、7、5时,输出x =___.
3.(海南2007)如果执行下面的程序框图,那么输出的S=(
A.2450
B. 2500
C.2550
D.2652
巩固练习:
1. 练习: P.19
课后作业
教材P12 A 组2题.
教学反思: 是50?k。
人教A版高中数学必修三教案程序框图和算法的基本逻辑结构新课标

3.当型循环语句先对条件判断,根据结果决定是否执行循环体;
直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体.
例3.设计一个计算1+2+3+…+100的值的算法,并画出程序框图。
(学生分析算法→写出程序框图→给出两种循环结构的框图→对比两种循环结构)
思考:如何设计一个算法,表示输出1,1+2,1+2+3,…,1+2+3+…+(n-1)+n
(n∈N*)的过程?
三、巩固练习:
把第一节课的算法用程序框图表示。
四.课堂小结:
1.本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑结构,算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构。其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达。
(1)、一类是当型循环结构;如下图所示,它的特征是:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环。
是
否
(2)、另一类是直到型循环结构;如下图所示,它的特征是:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环。
否
是
注意:
1.循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。
1.程序框图的概念;各基本图形的名称及用法是什么?
高中数学 必修三 1.1.2 程序框图教案 新人教A版必修3

1.1.2程序框图
教学过程:
一、复习回顾
1、算法的概念:算法是解决某个特定问题的一种方法或一个有限过程。
2、算法的描述
(1)自然语言
(2)形式语言
(3)框图
二、程序框图的概念
1、通过例子:对任意三个实数a、b、c求出最大值。
写出算法(两种方法)
2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定
的文字、符号、图形的组合加以直观描述的方法
3、程序框图的基本符号
起止框
输入输出框
处理框
判断框
连接点
循环框
用带有箭头的流程线连接图形符号
注释框
三、读图
例 1、读如下框图分析此算法的功能
四、画流程图的基本规则
1、使用标准的框图符号
2、从上倒下、从左到右
3、开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点
4、判断可以是两分支结构,也可以是多分支结构
5、语言简练
6、循环框可以被替代
五、例子
1、输入3个实数按从大到小的次序排序
2、用二分法求方程的近似解
课堂练习:第10页,练习A,练习B
小结:本节介绍程序框图的概念,学习了画程序框图的规则
课后作业:第19页,习题1-1A第1、2题。
人教课标版高中数学必修三《程序框图与算法的基本逻辑结构(第2课时)》教案-新版

1.1.2 程序框图与算法的基本结构第2课时一、教学目标1.核心素养:在学习程序框图的概念与理解算法的三种基本逻辑结构的过程中,提升学生的数学建模、数学运算、逻辑推理与数据分析能力.2.学习目标(1)能熟练运用算法的顺序结构、条件结构基础上,掌握算法的循环结构;(2)熟练画程序框图的基本规则,通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程,能够灵活、正确地画出程序框图.3.学习重点循环结构的识别和运用.4.学习难点设计具体问题算法时当型和直到型循环结构的应用.二、教学设计(一)课前设计1.预习任务任务1 阅读教材P12-P19,思考:(1)算法的循环结构是怎样的结构?它有哪两种基本类型?(2)什么是循环体?判断框在循环结构中的作用是什么?任务2 举一个循环结构的例子,并分别用当型循环结构和直到型循环结构画出程序框图.2.预习自测1.下列关于基本逻辑结构的说法中正确的是( )A.一个算法一定含有顺序结构B.一个算法一定含有分支结构C.一个算法一定含有循环结构D.以上说法均不对解:A3.下列程序框图是循环结构的是( )解:C(二)课堂设计1.知识回顾(1)算法的顺序结构:由若干个依次执行的程序框组成的逻辑结构,是任何一个算法都含有的基本结构.如图所示(2)算法的条件结构:算法的流程根据条件是否成立有不同的流向,这种处理算法的结构称为条件结构.如图①②所示.在利用条件结构画程序框图时要注意两点:一是需要判断的条件是什么,二是条件判断后分别对应着什么样的结果.2.问题探究问题探究一什么是算法的循环结构?●活动一初步认识循环结构引例(1)某程序框图如图①所示,该程序运行后输出的k的值是( )A.4 B.5 C.6 D.7(2)如图②是一个算法的程序框图,该算法所输出的结果是( )A.12B.23C.34D.45详解:(1)当k=0时,S=0⇒S=1⇒k=1,当S=1时,S=1+21=3⇒k=2,当S=3时,S=3+23=11<100⇒k=3,当S=11时,S=11+211>100,k=4,故k=4.(2)运行第一次的结果为110=122n=+⨯;第二次112=2233n=+⨯;第三次213=3344 n=+⨯.此时i=4程序终止,即输出3 =4 n.问题:以上两个程序框图中除了含有我们前面学的顺序结构和条件结构外,有什么不一样的结构,这种结构有什么特点?●活动二什么是循环结构(1)概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.(2)可以用如图①②所示的程序框图表示.直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件不成立,就继续执行循环体,直到条件成立时终止循环.当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件成立时,执行循环体,否则终止循环.点拔:循环结构中必须包含条件结构,以保证在适当的时候终止循环,实质上是判断和处理的结合,可以先判断,再处理,此时是当型循环结构;也可以先处理再判断,此时是直到型循环结构.循环结构中常用的几个变量:计数变量:即计数器,用来记录执行循环体的次数,如i=i+1,n=n+1.累加变量:即累加器,用来计算数据之和,如S=S+i.累乘变量:即累乘器,用来计算数据之积,如P=P*i.在程序框图中,一般要根据实际情况先给这些变量赋初始值.一般情况下,计数变量的初始值为1,累加变量的初始值为0,累乘变量的初始值为1.问题探究二循环结构在设计具体算法中的应用●活动一初步应用循环结构设计算法程序框图例1设计求1+3+5+7+…+99的算法,并画出相应的程序框图.【知识点:算法的循环结构;数学思想:演绎推理】分析:可设置一个循环结构来实现连加,注意循环的次数和累加变量的取值.详解:直到型算法如下:第一步,S=0.第二步,i=1.第三步,S=S+i.第四步,i=i+2.第五步,若i不大于99,则返回重新执行第三步、第四步、第五步,否则执行第六步.第六步,输出S值.程序框图如图所示.当型循环算法如下:第一步,S=0.第二步,i=1.第三步,当i≤99时,转第四步,否则输出S.第四步,S=S+i.第五步,i=i+2,并转入第三步.相应程序框图如图所示.点拨:直到型与当型循环的本质区别:直到型循环先执行i=i+2,再判断“i>99?”,若不满足则进入循环,直到满足才输出S;而当型循环先判断“i≤99?”,若满足,则使i=i+2,直到条件i≤99不成立才结束循环,输出S,即直到型循环先循环,再判断,直到满足条件结束循环;而当型循环是先判断是否满足条件,若满足,则循环,直到不满足条件才终止循环.●活动二算法循环结构的应用例2 画出1×2×3×……×100的程序框图.【知识点:算法的循环结构;数学思想:演绎推理】详解:程序框图如图所示.点拨:关于计数变量与累加变量一般地,循环结构中都有一个计数变量和累加变量:计数变量用于记录循环次数,同时它的取值还用于判断循环是否终止;累加变量用于表示每一步的计算结果.计数变量和累加变量一般是同步执行的,累加一次,计数一次.问题探究三当型循环结构与直到型循环结构的区别与联系●活动一当型循环结构与直到型循环结构的区别与联系(1)联系①当型循环结构与直到型循环结构可以相互转化;②循环结构中必然包含条件结构,以保证在适当的时候终止循环;③循环结构只有一个入口和一个出口;④循环结构内不能存在死循环,即不存在无终止的循环.(2)区别直到型循环结构是先执行一次循环体,然后再判断是否继续执行循环体,当型循环结构是先判断是否执行循环体;直到型循环结构是在条件不满足时执行循环体,当型循环结构是在条件满足时执行循环体.要掌握这两种循环结构,必须抓住它们的区别.3.课堂总结【知识梳理】在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件不成立,就继续执行循环体,直到条件成立时终止循环.当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件成立时,执行循环体,否则终止循环.【重难点突破】画循环结构程序框图的三要素(1)循环变量:一般分为累计变量和计数变量,应明确它的初始值、步长(指循环变量每次增加的量)、终值.(2)循环体:也称循环表达式,它是算法中反复执行的部分.(3)循环的中止条件:程序框图中用一个判断框来表示,用它判断是否继续执行循环体.4.随堂检测1.下列说法不正确的是( )A.顺序结构是由若干个依次执行的处理步骤组成的,每一个算法都离不开顺序结构B.循环结构中一定包含条件结构C.循环结构中不一定包含条件结构D.循环结构中反复执行的步骤叫做循环体【知识点:算法的循环结构】解:C2.如图所示的程序框图中,循环体是( )A.①B.②C.③D.②③【知识点:算法的循环结构】解:B3.如图所示是一个循环结构的算法,下列说法不正确的是( )A.①是循环变量初始化,循环就要开始B.②为循环体C.③是判断是否继续循环的终止条件D.①可以省略不写【知识点:算法的循环结构;数学思想:演绎推理】解:D ①②③都是循环结构中必须具备的.4.阅读程序框图,运行相应程序,则输出S的值为( )A .-1B .0C .1D .3【知识点:算法的循环结构;数学思想:演绎推理】解:B(三)课后作业基础型 自主突破1.已知某程序框图如图所示,则执行该程序后输出的结果是()A .2B .1C .12D .14【知识点:算法的逻辑结构;数学思想:演绎推理】解:C 执行该程序由周期性知选C2.如图所示,程序框图所进行的求和运算是( )A .11112310++++…B .11113519++++…C .111124620++++…D .231011112222++++…【知识点:算法的逻辑结构;数学思想:演绎推理】解:C3.执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是()A .5B .6C .11D .22解:选D 执行该程序可知1321(1)2322xx ⎧-⎪⎪⎨⎪--⎪⎩>,≤,解得822x x ⎧⎨⎩>≤即8<x ≤22,所以输入x 的最大值是22.4.执行如图所示的程序框图,则输出的结果是()A .1B .43 C .54D .2 【知识点:算法的逻辑结构;数学思想:演绎推理】解:选A.S =0,n =2;23+14430333n M S log =,==,=+;2225455log log log 4343n M S +==4,=,=; 2226565log log lo 1352g 5n Q M S +==∈=,=,=,故输出的S =1.5.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A .2B .1C .0D .-1解:选C.由框图知,第1次循环,S =0+cos 2π=0,i =2;第2次循环,S =0+cos π=-1,i =3; 第3次循环,S =-1+3cos2π=-1,i =4; 第4次循环,S =-1+cos 2π=0,i =5; 第5次循环,S =0+5cos2π=0,i =6>5. 此时结束循环,输出S =0. 能力型 师生共研6.某同学设计的程序框图如图所示,用以计算和式12+22+32+…+202的值,则在判断框中应填写( )A .i ≤19B .i ≥19C .i >21D .i <21【知识点:算法的逻辑结构;数学思想:演绎推理】解:D 该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止.由于是当i =21时开始终止循环,则在判断框中应填写i <21.7.如图,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分,当x 1=6,x 2=9,p =8.5时,x 3等于( )A .11B .8.5C .8D .7 【知识点: 算法的逻辑结构;数学思想:演绎推理】解:选C.由程序框图可知,若x 3=11,则|x 3-x 1|<|x 3-x 2|不成立, 于是119102p +==, 所以选项A 不正确;若x 3=8.5,则|x 3-x 1|<|x 3-x 2|不成立, 于是8.598.752p +==, 所以选项B 不正确;若x 3=8,则|x 3-x 1|<|x 3-x 2|不成立, 于是898.52p +==, 所以选项C 正确;若x 3=7,则|x 3-x 1|<|x 3-x 2|成立, 于是676.52p +==, 所以选项D 不正确.8.关于函数(),14cos ,11x x f x x x -⎧⎨-⎩<≤,=≤≤的程序框图如图所示,现输入区间[a ,b ],则输出的区间是________.【知识点: 算法的逻辑结构;数学思想:演绎推理】解:[0,1] 由程序框图的第一个判断条件为f (x )>0,当f (x )=cos x ,x ∈[-1,1]时满足,然后进入第二个判断框,需要解不等式f ′(x )=-sin x ≤0,即0≤x ≤1.故输出区间为[0,1]. 9.某程序框图如图所示,则该程序运行后输出的S 的值为________.【知识点: 算法的逻辑结构;数学思想:演绎推理】解:依题意得,运行程序后输出的是数列{a n }的第2 017项,其中数列{a n }满足:a 1=1,12,11, 1.8n n n n n a a a a a +⎧⎪⎨⎪⎩<,=≥注意到234561111,,,1,8428a a a a a =====,…,该数列中的项以4为周期重复性地出现,且2 017=4×504+1,因此a 2 017=a 1=1,运行程序后输出的S 的值为1. 探究型 多维突破10.已知某算法的程序框图如图所示,若将输出的(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),…(1)若程序运行中输出的一个数组是(9,t ),求t 的值; (2)程序结束时,共输出(x ,y )的组数为多少?【知识点: 算法的逻辑结构;数学思想:演绎推理】解:(1)由程序框图知,当x =1时,y =0,当x =3时,y =-2;当x =9时,y =-4,所以t =-4.(2)当n =1时,输出一对,当n =3时,又输出一对,…,当n =2 015时,输出最后一对,共输出(x ,y )的组数为1 008.11.已知数列{a n }的各项均为正数,观察程序框图,若k =5,k =10时,分别有511S =和1011S =.(1)试求数列{a n }的通项;(2)令b n =2a n ,求b 1+b 2+…+b m 的值.【知识点:算法的逻辑结构;数学思想:演绎推理】 解:由框图可知12231111,k k S a a a a a a +=+++…∵数列{a n } 是等差数列,设公差为d ,则有111111()k k k k a a d a a ++=- ∴1223111111111111()()k k k k S d a a a a a a d a a ++=-+-++-=-…,(1)由题意可知, k =5时,S =511;k =10时,S =1021. ∴111161111021111511d a a d a a ⎧⎛⎫-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩, 解得112a d =⎧⎨=⎩或112a d =-⎧⎨=-⎩(舍去).故a n =a 1+(n -1)d =2n -1. (2)由(1)可得:b n =2a n =22n -1, ∴b 1+b 2+…+b m =21+23+…+22m -12(14)2(41).143m m-==--自助餐1.读图所示的程序框图,运行相应的程序,输出的结果是()A .2B .4C .8D .16 【知识点:算法的逻辑结构;数学思想:演绎推理】 解:C 输入S =2,n =1; 当n =1时,1112S ==--;当n =2时,111(1)2S ==--;当n =4时,12112S ==-,n =8.符合条件,故输出8.2.若执行如图所示的程序框图,则输出的k 值是()A .4B .5C .6D .7 【知识点:算法的逻辑结构;数学思想:演绎推理】解:选A.由题知n =3,k =0;n =10,k =1;n =5,k =2;n =16,k =3;n =8,k =4,满足判断条件,输出的k =4.3.在如图所示的程序框图中,输入A =192,B =22,则输出的结果是()A .0B .2C .4D .6 【知识点:算法的逻辑结构;数学思想:演绎推理】解:选B.输入后依次得到:C =16,A =22,B =16;C =6,A =16,B =6;C =4,A =6,B =4;C =2,A =4,B =2;C =0,A =2,B =0.故输出的结果为2.4.某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7 【知识点:算法的逻辑结构;数学思想:演绎推理】 解:选 A.该程序框图的功能为计算1111121223(1)1a a a ++++=-⨯⨯⨯++…的值,由已知输出的值为95,可知当a =4时,19215a -=+,故选A. 5.若执行如图所示的程序框图,则输出的k 值是( )A .4B .5C .6D .7 【知识点:算法的逻辑结构;数学思想:演绎推理】解:选A.由题知n =3,k =0;n =10,k =1;n =5,k =2;n =16,k =3;n =8,k =4,满足判断条件,输出的k =4.6. 若右面的程序框图输出的S 是126,则①应为( )A .n ≤5?B .n ≤6?C .n ≤7?D .n ≤8?【知识点:算法的逻辑结构;数学思想:演绎推理】解:B 即21+22+ (2)=126,∴2(12)12612n -=-. ∴2n =64,即n =6.n =7应是第一次不满足条件,故选B.7.执行如图所示的程序框图,如果输入的N 是5,那么输出的S 是________.【知识点:算法的逻辑结构;数学思想:演绎推理】1=(k∈N *)的前5项和,所以1) 1.S =++++= 8.如图所示,程序框图中输出S 的值为__________.【知识点:算法的逻辑结构;数学思想:演绎推理】解:94 该程序框图的运行过程是:i=1,S=1i=1+1=2S=2×(1+1)=4i=2>5不成立i=2+1=3S=2×(4+1)=10i=3>5不成立i=3+1=4S=2×(10+1)=22i=4>5不成立i=4+1=5S=2×(22+1)=46i=5>5不成立i=5+1=6S=2×(46+1)=94i=6>5成立输出S=94.9.设计程序框图,计算1×2×3×4×…×n的值.【知识点:算法的逻辑结构;数学思想:演绎推理】解:程序框图(1),含有当型循环结构,如图(1)所示:程序框图(2),含有直到型循环结构,如图(2)所示:10.画出计算1+12+13+…+1999的值的一个程序框图.【知识点:算法的逻辑结构;数学思想:演绎推理】解:点拔:观察特征→确定算法结构→引入变量→确定循环体→画程序框图解:程序框图如下:方法一:当型循环结构方法二:直到型循环结构。
最新人教版高中数学必修3第一章《程序框图》示范教案

示范教案整体设计教学分析教材利用一个实例给出了一些常用的表示算法步骤的图形符号.教学过程中,让学生以了解框图为主要目标.三维目标 了解程序框图的概念,知道程序框图中各图形符号表示特定的含义,提高学生识图能力,培养数形结合的意识.重点难点教学重点:了解程序框图中各图形符号表示特定的含义. 教学难点:画程序框图. 课时安排 1课时教学过程 导入新课思路1(情境导入).我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗?所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入).用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课 新知探究 提出问题阅读本节教材后再回答下列问题.(1)什么叫程序框图?(2)说出程序框图中各种图形的含义.(3)画程序框图有什么规则?讨论结果:(1)用一些通用图形符号构成一张表示算法的图称为程序框图,简称框图.例如:用公式法解二元一次方程组⎩⎪⎨⎪⎧a 11x 1+a 12x 2=b 1,a 21x +a 22x 2=b 2的算法可用框图形象地描述如下.由此我们可以看出用框图表示算法直观、形象,容易理解.通常说“一图胜万言”,就是说用框图能够清楚地展现算法的逻辑结构.(2)椭圆形框:表示程序的开始和结束,称为终端框(起、止框).表示开始时只有一个出口;表示结束时只有一个入口.平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.流程线:―→表示程序的流向.圆圈:○连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.注意:起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出可用在算法中任何需要输入、输出的位置.例如求解方程组的框图(上图)中,算法开始后第一步需要输入(给定)未知数的系数和常数项,就可把给定的数值写在输入框内,最后要给出运算的结果,把算出的两个未知数的值,写在输出框内.算法中间要处理数据或计算,可分别写在不同的处理框内,例如此例的计算D可写在处理框内.当算法要求你对两个不同的结果进行判断时,例如此题的判断条件为D=0,要写在判断框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码(如下图).(3)画程序框图的规则为了使大家彼此之间能够读懂各自画出的框图,必须遵守一些共同的规则,下面对一些常用的规则作一简单的介绍.①使用标准的框图的符号.②框图一般按从上到下、从左到右的方向画. ③除判断框外,其他框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一符号.④一种判断框是二择一形式的判断,有且仅有两个可能结果;另一种是多分支判断,可能有几种不同的结果.⑤在图形符号内描述的语言要非常简练清楚. 应用示例思路1例 利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积,设计出该问题的算法及程序框图.分析:根据梯形的面积公式S =12(a +b)h ,其中a 是上底,b 是下底,h 是高,只要令a=2,b =4,h =5,代入公式即可.解:算法如下:S1 a =2,b =4,h =5;S2 S =12(a +b)h ;S3 输出S.该算法的程序框图如下图所示:点评:画程序框图的步骤:(1)写出算法步骤,即文字语言形式;思路2例设计求一个数x的绝对值的算法,并画出相应的程序框图.分析:根据绝对值的定义,当x≥0时,|x|=x;当x<0时,|x|=-x,该问题实质是一个分段函数,因为分段函数的自变量在不同的范围内所对应的函数关系式不同,因而当给出一个自变量x的值求它对应的函数值时,必须先判断x的范围,然后确定用该范围内的函数关系式计算相应的函数值.算法中要增加判断x的范围的步骤,程序框图中也应相应加入判断框.解:算法如下:S1输入x;S2如果x≥0,那么|x|=x,否则,|x|=-x;S3输出|x|.相应的程序框图如下图所示:点评:必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,知能训练1.下列程序框图的功能是________________.答案:求两个实数a,b的和2.下列程序框图的功能是________________.答案:求a,b中的最大值3.下列程序框图的功能是________________.答案:计算1×2×3×4×5的值拓展提升写出一个求满足1×3×5×7×…×n>50 000的最小正整数n的算法,并画出相应的程序框图.解:算法如下:S1S=1;S2i=3;S3S=S×i,i=i+2;S4如果S≤50 000,那么执行第三步;S5i=i-2;S6输出i.程序框图如下图所示:课堂小结本节课学习了:1.程序框图的概念及其图形符号的含义.2.知道画程序框图的规则和步骤.作业本节练习A 1、2.设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例.备课资料备选习题1.下列程序框图的功能是__________________________.(其中a,b,c分别是直角三角形的三边,且c是斜边)答案:已知两直角边求直角三角形的斜边2.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出该问题算法的程序框图.解:程序框图如下:。
高中数学人教新课标B版必修3--《1.1.2 程序框图》教学设计(表格式)

1. 框图中具有赋值、执行计算语句的是()
A 处理框
B 输入、输出框
C 循环框
D 判断框
2.下面程序框图中具有超过一个退出点的符号是()
3.已知正四棱锥的底面边长为a,高为h,求给定一组边长和高的正四棱锥的体积,写出算法,画出相应的
程序框图。
题的能力分析,并从实
际生活中找到模型和
解决的办法
巩固练习
4.下边程序框图表
示的算法是( )
A.输出c,b,a
B.输出最大值
C.输出最小值
D.比较a,b,c的大小
5.读下面框图,
说明该程序
框图输出的结果。
学生自主解决巩固算法
课堂小结1、程序框图:
2、算法的描述方式:
3、算法的特点
学生归纳
老师补充
巩固新知
课时作业课后作业:教材A1,3 B组1,3 独立完成巩固本节
所学的知识
与方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程序框图
【教学目标】:
(1)掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构(2)掌握画程序框图的基本规则,能正确画出程序框图。
(3)通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
【教学重点】经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是
程序框图的基本概念、基本图形符号和3种基本逻辑结构
【教学难点】难点是能综合运用这些知识正确地画出程序框图。
【学法与教学用具】:
学法:
1、要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
图形符号都有各自的使用环境和作用
2、在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的
问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
教学用具:计算机,TI-voyage200图形计算器
【教学过程】
引入:
算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
程序框图基本概念:
(1)程序构图的概念
程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要的文字说明。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:
1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出
点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另
一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(3)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而
下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B
框是依次执行的,只有在执行完A 框指定的操作后,才能接着执
行B 框所指定的操作。
例3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
(算法—自然语言)
第一步: a =2,b =3,c =4;
第二步:p =2+3+42;
第三步:S =p(p -2)(p -3)(p -4)
利用TI-voyage200图形计算器演示:(学生先看,再跟着做)
应用:请写出求A (x 1,y 1),B (x 2,y 2)的两点距离的一个算法,并画出程序框图。
(学生动手先构思算法,然后画出程序框图,个别好学生利用做TI 做实验)
条件结构
条件结构是指在算法中通过对条件的判断,
根据条件是否成立而选择不同流向的算法结构。
它的一般形式如右图所示:
注意:
1、右图此结构中包含一个判断框,根据给定的
条件P 是否成立而选择执行A 框或B 框。
无论
P 条件是否成立,只能执行A 框或B 框之一,不
可能同时执行A 框和B 框,也不可能A 框、B 框都不执行。
2、一个判断结构可以有多个判断框。
例4、任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在。
画出这个算法的程序框图。
解:
算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件结构。
程序框图:(见课本)
利用TI-voyage200图形计算器演示:(学生先看,再跟着做)
(学生在利用图形计算器的过程中已经渗透着算法的奥妙) 运行
p A B 是 否 运行
应用:设计求一个数x 的绝对值的算法,并画出相应的程序框图。
(当然这个要求学生先画出程序框图,再利用图形计算器来解决,快的学生三分钟可以弄好)
循环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:
(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P 成立时,执行A 框,A 框执行完毕后,再判断条件P 是否成立,如果仍然成立,再执行A 框,如此反复执行A 框,直到某一次条件P 不成立为止,此时不再执行A 框,离开循环结构。
(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P 是否成立,如果P 仍然不成立,则继续执行A 框,直到某一次给定的条件P 成立为止,此时不再执行A 框,离开循环结构。
当型循环结构 直到型循环结构
注意:
1、循环结构要在某个条件下终止循环,这就需要条件结构来判断。
因此,循环结构中一定包
含条件结构,但不允许“死循环”。
2、在循环结构中都有一个计数变量和累加变量。
计数变量用于记录循环次数,累加变量用于
输出结果。
计数变量和累加变量一般是同步执行的,累加一次,计数一次。
例5、设计一个计算1+2+3+…+100的值的算法,并画出程序框图。
解:
算法如下:
第一步:sum =0;
第二步:i =1;
运行
p A 成立 不成立
P 不成立
P 成立 A
第三步:sum =sum +i ;
第四步:i =i +1;
第五步:如果i 不大于100,返回重新执行第三步,第四步,第五步,否则,算法结
束,最后得到的sum 值就是1+2+3+…+100的值。
程序框图(可参看课本)
利用TI-voyage200图形计算器演示:(先看当型循环结构)
(学生会思考:若取不同n, 计算1+2+3+…+n 又如何?)
(再看直到型循环结构)
(已知循环次数可以用For 语句)
应用:设计一个计算22212......100+++的值的算法,并画出程序框图。
(学生很快的把刚才那个程序改“he+i →he ”为“he+2
i →he ”即可)
课堂小结:
本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑结构,算法的基本逻辑结构有三种,即顺序结构、条件结构和循环结构。
其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达。
在具体画程序框图时,要注意的问题:流程线上要有标志执行顺序的前头;判断框后边 运行 运行 运行
的流程线应根据情况标注“是”或“否”;在循环结构中,要注意根据条件设计合理的计数变量、累加变量等,特别要条件的表述要恰当、精确。
利用TI-voyage200图形计算器时,很多学生已对它着迷了,学生会想出更多的问题,互相进行比较、讨论,自己出发掘比课本更重要的东西。