高中数学必修三教案-程序框图的画法

合集下载

人教版高中数学必修3 程序框图(第3课时教案

人教版高中数学必修3 程序框图(第3课时教案

1.1.2 程序框图(第3课时)【课程标准】通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.【教学目标】1.进一步理解程序框图的概念;2.掌握运用程序框图表达循环结构的算法;3.培养学生逻辑思维能力与表达能力.【教学重点】运用程序框图表达循环结构的算法【教学难点】循环体的确定,计数变量与累加变量的理解.【教学过程】一、回顾练习引例:设计一个计算1+2+…+100的值的算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;……第九十九步:将第九十八步中的运算结果4950与100相加,得到5050.简化描述:进一步简化:第一步:sum=0;第一步:sum=0,i=1;第二步:sum=sum+1;第二步:依次i从1到100,反复做sum=sum+i;第三步:sum=sum+2;第三步:输出sum.第四步:sum=sum+3;……第一百步:sum=sum+99;第一百零一步:sum=sum+100第一百零二步:输出sum.根据算法画出程序框图,引入循环结构.二、循环结构循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构.循环体:反复执行的处理步骤称为循环体.计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中.当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行循环体,满足则停止.练习1:画出引例直到型循环的程序框图.当型循环与直到循环的区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.②当型循环先判断后执行,直到型循环先执行后判断. ③对同一算法来说,当型循环和直到循环的条件互为反条件.练习2:1.1.1节例1的算法步骤的程序框图(如图)说明:①为了减少难点,省去flag 标记;②解释赋值语句“2=d ”与“1+=d d ”,还有“1-<=n d ;③简单分析.练习3:画出100321⨯⨯⨯⨯ 的程序框图.小结:画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.三、条件结构与循环结构的区别与联系区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.例1:(课本第10页的《探究》)画出用二分法求方程022=-x 的近似根(精确度为0.005)的程序框图,并指出哪些部分构成顺序结构、条件结构和循环结构?练习4:设计算法,求使2005321>++++n 成立的最小自然数n 的值,画出程序框图. 练习5:输入50个学生的考试成绩,若60分及以上的为及格,设计一个统计及格人数的程序框图.练习6:指出下列程序框图的运行结果五、课堂小结1. 理解循环结构的逻辑,主要用在反复做某项工作的问题中;2. 理解当型循环与直到循环的逻辑以及区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.②当型循环先判断后执行,直到型循环先执行后判断.③对同一算法来说,当型循环和直到循环的条件互为反条件.3. 画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.4. 条件结构与循环结构的区别与联系:区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.七、作业1. 设计一个算法,计算两个非0实数的加、减、乘、除运算的结果(要求输入两个非0实数,输出运算结果),并画出程序框图.2. 设计一个算法,判断一个数是偶数还是奇数(要求输入一个整数,输出该数的奇偶性),并画出程序框图.3. 设计一个算法,计算函数53)(2+-=x x x f 当20,,3,2,1 =x 时的函数值,并画出程序框图.4. (课本第11页习题1.1A 组第2题)5. 如果我国工农业产值每年以9%的增长率增长,问几年后我国产值翻一翻,试用程序框图描述其算法.6.(课本第11页习题1.1B 组第1题)。

高中数学必修3(人教A版)教案—1.1.2程序框图

高中数学必修3(人教A版)教案—1.1.2程序框图

1. 1.2程序框图[教学目标]:1.掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。

2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。

3.通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。

[教学重难点]:教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构。

教学难点:能综合运用这些知识正确地画出程序框图。

[教学过程]:一、.创设情境:如果你向全班同学介绍一下你心中偶像的形象,你认为用语言描述好还是拿出偶像的照片给同学们看好?说明一下你的理由算法除了用自然语言表示外,还可用程序框图表示。

二、基本概念:(1起止框是任何流程图都不可缺少的,它表明程序的开始和结束,(2表示数据的输入或结果的输出,它可用在算法中的任何需要(3它是采用来赋值、执行计算语句、传送运算结果的图形符号。

(4)判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y”与“N”)两个分支。

三、算法的基本逻辑结构(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。

算法分析:这是一个简单的问题,只需先算出p的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。

J解:程序框图:点评:顺序结构是由若干个依次执行的步骤组成的,是任何一个算法都离不开的基本结构。

变式训练1:输入矩形的边长求它的面积,画出程序框图。

(2)条件结构:根据条件选择执行不同指令的控制结构。

高中数学人教A版必修三教学案第一章第节第课时程序结构、程序框图的画法含答案

高中数学人教A版必修三教学案第一章第节第课时程序结构、程序框图的画法含答案
A.计算小于 100 的奇数的连乘积 B.计算从 1 开始的连续奇数的连乘积 C.从 1 开始的连续奇数的连乘积,当乘积大于或等于 100 时,计算奇数的个数 D.计算 1×3×5×…×n≥100 时的最小的 n 值 解析:选 D 这是一个直到型循环结构,S=1×3×5×…,判断条件是 S≥100?,输 出的是 i,所以表示的是 S=1×3×5×…×n≥100 时的最小的 n 值,故选 D. 7.执行如图所示的程序框图,若输出的 a 值大于 2 015,那么判断框内的条件应为 ________.
先判断条件,若条件满足,则执行 循环体,否则终止循环.
(3)设计算法程序框图的步骤
①用自然语言表述算法步骤.
②确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程
序框图.
③将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序
框图.
1
[问题思考]
(1)循环结构中一定包含条件结构吗? 提示:循环结构是在一些算法中从某处开始,按照一定条件反复执行处理某一步骤,因 此循环结构一定包含条件结构. (2)循环结构中的判断框中的条件是唯一的吗? 提示:不是,在具体的程序框图设计时,这里的条件可以不同,但不同表示应该有共同 的确定的结果. (3)举例说明循环结构适用哪些常见的计算? 提示:循环结构主要用在一些有规律的重复计算中,如累加求和,累乘求积等问题.
6
(1)两种循环的转化易弄错,如讲 1; (2)控制循环的条件易弄错,如讲 2(3).
课下能力提升(四) [学业水平达标练] 题组 1 循环结构及两种循环结构 1.下列框图是循环结构的是( )
A.①② B.②③ C.③④ D.②④ 答案:C 2.一个完整的程序框图至少包含( ) A.起止框和输入、输出框 B.起止框和处理框 C.起止框和判断框 D.起止框、处理框和输入、输出框 解析:选 A 一个完整的程序框图至少包括起止框和输入、输出框,故选 A. 3.(2016·安徽巢湖检测)如图所示是一个循环结构的算法,下列说法不正确的是( )

人教版高中数学高一-必修三教学设计 程序框图⑶

人教版高中数学高一-必修三教学设计  程序框图⑶

§1.1.2 程序框图⑶
教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构
(1) 掌握画程序框图的基本规则,能正确画出程序框图。

(2) 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、
正确地画程序框图。

教学重点:经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构
教学难点: 难点是能综合运用这些知识正确地画出程序框图。

教学过程:
习题讲解 1. 写出如下程序框图所对应的函数解析式。

2.考察如下程序框图,当输入a 、b 、c 分别为3、7、5时,输出x =___.
3.(海南2007)如果执行下面的程序框图,那么输出的S=(
A.2450
B. 2500
C.2550
D.2652
巩固练习:
1. 练习: P.19
课后作业
教材P12 A 组2题.
教学反思: 是50?k。

高中数学 必修三 1.1.2 程序框图教案 新人教A版必修3

高中数学  必修三   1.1.2 程序框图教案 新人教A版必修3

1.1.2程序框图
教学过程:
一、复习回顾
1、算法的概念:算法是解决某个特定问题的一种方法或一个有限过程。

2、算法的描述
(1)自然语言
(2)形式语言
(3)框图
二、程序框图的概念
1、通过例子:对任意三个实数a、b、c求出最大值。

写出算法(两种方法)
2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定
的文字、符号、图形的组合加以直观描述的方法
3、程序框图的基本符号
起止框
输入输出框
处理框
判断框
连接点
循环框
用带有箭头的流程线连接图形符号
注释框
三、读图
例 1、读如下框图分析此算法的功能
四、画流程图的基本规则
1、使用标准的框图符号
2、从上倒下、从左到右
3、开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点
4、判断可以是两分支结构,也可以是多分支结构
5、语言简练
6、循环框可以被替代
五、例子
1、输入3个实数按从大到小的次序排序
2、用二分法求方程的近似解
课堂练习:第10页,练习A,练习B
小结:本节介绍程序框图的概念,学习了画程序框图的规则
课后作业:第19页,习题1-1A第1、2题。

最新人教版高中数学必修3第一章《程序框图》示范教案

最新人教版高中数学必修3第一章《程序框图》示范教案

示范教案整体设计教学分析教材利用一个实例给出了一些常用的表示算法步骤的图形符号.教学过程中,让学生以了解框图为主要目标.三维目标 了解程序框图的概念,知道程序框图中各图形符号表示特定的含义,提高学生识图能力,培养数形结合的意识.重点难点教学重点:了解程序框图中各图形符号表示特定的含义. 教学难点:画程序框图. 课时安排 1课时教学过程 导入新课思路1(情境导入).我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗?所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入).用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课 新知探究 提出问题阅读本节教材后再回答下列问题.(1)什么叫程序框图?(2)说出程序框图中各种图形的含义.(3)画程序框图有什么规则?讨论结果:(1)用一些通用图形符号构成一张表示算法的图称为程序框图,简称框图.例如:用公式法解二元一次方程组⎩⎪⎨⎪⎧a 11x 1+a 12x 2=b 1,a 21x +a 22x 2=b 2的算法可用框图形象地描述如下.由此我们可以看出用框图表示算法直观、形象,容易理解.通常说“一图胜万言”,就是说用框图能够清楚地展现算法的逻辑结构.(2)椭圆形框:表示程序的开始和结束,称为终端框(起、止框).表示开始时只有一个出口;表示结束时只有一个入口.平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.流程线:―→表示程序的流向.圆圈:○连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.注意:起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出可用在算法中任何需要输入、输出的位置.例如求解方程组的框图(上图)中,算法开始后第一步需要输入(给定)未知数的系数和常数项,就可把给定的数值写在输入框内,最后要给出运算的结果,把算出的两个未知数的值,写在输出框内.算法中间要处理数据或计算,可分别写在不同的处理框内,例如此例的计算D可写在处理框内.当算法要求你对两个不同的结果进行判断时,例如此题的判断条件为D=0,要写在判断框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码(如下图).(3)画程序框图的规则为了使大家彼此之间能够读懂各自画出的框图,必须遵守一些共同的规则,下面对一些常用的规则作一简单的介绍.①使用标准的框图的符号.②框图一般按从上到下、从左到右的方向画. ③除判断框外,其他框图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一符号.④一种判断框是二择一形式的判断,有且仅有两个可能结果;另一种是多分支判断,可能有几种不同的结果.⑤在图形符号内描述的语言要非常简练清楚. 应用示例思路1例 利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积,设计出该问题的算法及程序框图.分析:根据梯形的面积公式S =12(a +b)h ,其中a 是上底,b 是下底,h 是高,只要令a=2,b =4,h =5,代入公式即可.解:算法如下:S1 a =2,b =4,h =5;S2 S =12(a +b)h ;S3 输出S.该算法的程序框图如下图所示:点评:画程序框图的步骤:(1)写出算法步骤,即文字语言形式;思路2例设计求一个数x的绝对值的算法,并画出相应的程序框图.分析:根据绝对值的定义,当x≥0时,|x|=x;当x<0时,|x|=-x,该问题实质是一个分段函数,因为分段函数的自变量在不同的范围内所对应的函数关系式不同,因而当给出一个自变量x的值求它对应的函数值时,必须先判断x的范围,然后确定用该范围内的函数关系式计算相应的函数值.算法中要增加判断x的范围的步骤,程序框图中也应相应加入判断框.解:算法如下:S1输入x;S2如果x≥0,那么|x|=x,否则,|x|=-x;S3输出|x|.相应的程序框图如下图所示:点评:必须先根据条件作出判断,然后再决定进行哪一个步骤的问题,在画程序框图时,知能训练1.下列程序框图的功能是________________.答案:求两个实数a,b的和2.下列程序框图的功能是________________.答案:求a,b中的最大值3.下列程序框图的功能是________________.答案:计算1×2×3×4×5的值拓展提升写出一个求满足1×3×5×7×…×n>50 000的最小正整数n的算法,并画出相应的程序框图.解:算法如下:S1S=1;S2i=3;S3S=S×i,i=i+2;S4如果S≤50 000,那么执行第三步;S5i=i-2;S6输出i.程序框图如下图所示:课堂小结本节课学习了:1.程序框图的概念及其图形符号的含义.2.知道画程序框图的规则和步骤.作业本节练习A 1、2.设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例.备课资料备选习题1.下列程序框图的功能是__________________________.(其中a,b,c分别是直角三角形的三边,且c是斜边)答案:已知两直角边求直角三角形的斜边2.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出该问题算法的程序框图.解:程序框图如下:。

高中数学人教A版必修3《程序框图与算法基本逻辑结构》程序框图、顺序结构(第一课时)教学设计

高中数学人教A版必修3《程序框图与算法基本逻辑结构》程序框图、顺序结构(第一课时)教学设计

高中数学必修3《1.1.2程序框图与算法基本逻辑结构》程序框图、顺序结构(第一课时)《程序框图、顺序结构》教学设计一、课标分析:按课标要求,通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.二、教材分析:《程序框图、顺序结构》是人教版高中数学必修3第一章《算法初步》第一节《算法与程序框图》的内容,本节设计为4课时,今天所授内容为第一课时.本节内容是在学生学习了算法的概念的基础上进行的,算法通常可以编成计算机程序,让计算机执行并解决问题.这对高中学习算法提出了要求,也决定了高中算法学习的范围,即不仅掌握算法的概念,认识算法基本逻辑结构,还必须学习计算机能执行的算法程序,能用程序表达算法.三、学情分析:从知识结构上来说,学生在本章第一节已经了解了一些算法的基本思想,这是本节课的重要知识基础;从能力上来说,这个阶段的学生已经具有一定的分析问题、解决问题的能力,逻辑思维能力也初步形成,思维比较活跃但缺乏严谨性.因此,在设计教学中不仅要充分调动学生的学习积极性,更要注意培养学生严谨的数学思维.四、教学目标:1.知识与技能目标:(1)了解程序框图的概念,掌握各种图形符号的功能.(2)了解顺序结构的概念,能用程序框图表示顺序结构.2.过程与方法目标:(1)通过学习程序框图的各个符号的功能,培养学生对图形符号语言和数学文字语言的转化能力.(2)学生通过设计程序框图表达解决问题的过程,在解决具体问题的过程中理解程序框图的结构.3.情感、态度与价值观目标:学生通过动手,用程序框图表示算法,进一步体会算法的基本思想,体会程序框图表达算法的准确与简洁,培养学生的数学表达能力和逻辑思维能力.五、教学重点和难点:重点:各种图形符号的功能以及用程序框图表示顺序结构.难点:对顺序结构的概念的理解,用程序框图表示顺序结构.六、教学方法:合作探究、螺旋推进、激趣实验、多媒体课件教学.七、教学流程:否是质数”的程序框图,并将同一个框图再次用分页的形式进行展示.顺序结构是由若干个依次执行的步骤组成的;这是任何一个算法都离不开的一种基本算法结构.中没有连接点应用的案例,打消了学生的疑虑.用程序框图表示算法时,算法的逻辑结构展现得非常清楚,即顺序结构、条件结构和循环结构.并引出本节课的第三个内容:顺序结构.习例讲解例2.已知一个三角形的三边长分别为a, b, c,利用海伦-秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.解析:算法步骤:第一步,输入三角形三边长a,b,c;第二步,计算;第三步,计算;学生在学习了顺序结构的基础,教师通过此例题演示将用自然语言描述的算法改写成程序框图的过程,让学生感a b cp2++=s p(p-a)(p-b)(p-c)=第四步,输出S.程序框图:练习2.任意给定一个正实数,设计一个算法求以这个数为半径的圆面积,并画出程序框图表示.受简单程序框图画法,并通过练习进行模仿.激趣探究趣味实验:有一杯饮料A和一杯清水B,如何快速交换两杯中的液体呢?具体的操作步骤是怎样的?教师提前隐藏了空杯X,教师让学生先行回答,可能学生的回答不着边际或者学生不知所措,然后教师拿出空杯开始实验演示.实验的引入,为例3的讲解作铺垫;同时,也引导学生用发散的思维看待问题.合作讨论例3.已知两个变量A和B的值,试设计一个交换这两个变量的值的算法,并画出程序框图.学生活动:让学生结合实验结论,四人为一小组,讨论例3,先讨论出来的小组派代表上黑板展示小组成果,即具体的算法步骤和程序框图,教师进行点评.算法步骤:第一步,输入A、B;第二步,令X=A;第三步,令A=B;第四步,令B=X;第五步,输出A、B.通过兴趣实验,学生将抽象的数学思维变得直观形象,使本节课达到高潮;也使学生在探究问题的过程中,亲身经历解决问题的全过程,提高学生独立分析问题、解决问题的能力.程序框图:练习3.写出下列算法的功能:(1)图(1)中算法的功能(a>0,b>0)______; (2)图(2)中算法的功能是____________.练习3的选取是为了培养学生的识图能力.归结总结让学生谈收获做总结,最后由教师做补充完善.一、程序框图及基本图形符号;二、三种逻辑结构及顺序结构;三、程序框图的画法.通过总结加深学生对程序框图和顺序结构的理解,提高学生交流讨论,总结的能力.布置作业1.书面作业:(1)已知摄氏温度C与华氏温度F之间的关系为F=1.8C+32.设计一个由摄氏温度求华氏温度的算法,并画出相应的程序框图.(2)已知变量A、B、C的值,试设计一个算作业题目的选取与课堂例题联系紧密,且分层作业使得不同层次的学生得到不八、板书设计:九、教学预想:本节课采用的是情景导入式教学,从生活实际出发,开展对新知识的探索.这样的教学模式对学生的参与度要求较高,因此在教学设计中我要求学生在学习了程序框图概念、各种图形符号的名称和功能及三种逻辑结构后,结合上一节课用语言文字表示算法的基础上,自己动手画简单的顺序结构的程序框图,激发了学生学习的积极性.通过兴趣实验,学生将抽象的数学思维变得直观形象,使本节课达到高潮.本节课学生在探究问题的过程中,亲身经历解决问题的全过程,提高学生独立分析问题、解决问题的能力.设计整节课放手给学生,让他们交流讨论发言,很好地调动了学生学习的主动性,激发了学习的积极性,这也充分体现了新课标“以学生为主体”的思想.。

高中数学 程序框图、顺序结构教案 新人教版必修3

高中数学 程序框图、顺序结构教案 新人教版必修3

高中数学程序框图、顺序结构教案新人教版必修3(教师用书独具)●三维目标1.知识与技能(1)了解程序框图的概念,掌握各种框图符号的功能.(2)了解顺序结构的概念,能用程序框图表示顺序结构.2.过程与方法(1)通过学习程序框图的各个符号的功能,培养学生对图形符号语言和数学文字语言的转化能力.(2)学生通过设计程序框图表达解决问题的过程,在具体问题的解决过程中理解流程图的结构.3.情感、态度与价值观学生通过动手用程序框图表示算法,进一步体会算法的基本思想,体会数学表达的准确与简洁,培养学生的数学表达能力和逻辑思维能力.●重点难点重点:各种程序框图功能,以及用程序框图表示顺序结构.难点:对顺序结构的概念的理解和用程序框图表示顺序结构.(教师用书独具)●教学建议学生首次接触程序框图,根据教学内容、教学目标和学生的认知水平,本节课主要采取问题导入式教学,即“创设情境,提出问题——讨论问题,提出方案——交流方案,解决问题——模拟练习,运用问题——归纳总结,完善认识”,通过对问题的探究过程让学生掌握新知识,同时在解决问题的过程中掌握新知识的应用和解题过程,提高学生独立解题的能力.在老师的引导下,充分发挥学生的主观能动性,从问题入手,通过分析问题、交流方案、解决问题、运用问题的探索过程,让学生全程参与到问题的探索中,一方面注重培养学生严谨的逻辑思维能力和语言组织能力,另一方面,通过交流方案提高学生的合作意识,共同来完成教学目标.●教学流程创设情境,提出问题,以问题为切入点开展教学,引发学生思考,调动学生学习的积极性⇒引导学生分析用自然语言描述的算法的优缺点.引入流程图的概念及特征⇒学生阅读教材中的基本框图及功能,结合算法思想主动设计一个简单的框图⇒通过例1的教学让学生进一步认识和理解基本框图的特征及作用 ⇒错误!⇒错误!⇒错误!⇒错误!(见学生用书第4页)课标解读 1.程序框图的作用及其含义.(重点) 2.用程序框图表示算法.(难点)程序框图【问题导思】程序框图的别称是什么?【提示】 程序框图又称为流程图.程序框图是一种用程序框、流程线及文字说明来表示算法的图形.常见的程序框、流程线及各自表示的功能图形符号 名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框 ○连接点连接程序框图的两部分顺序结构【问题导思】 已知球的半径为R .1.设计一个算法,求球的表面积和体积. 【提示】 第一步,输入球半径R .第二步,计算S =4πR 2.第三步,计算V =43πR 3.第四步,输出S ,V . 2.上述算法有何特点?【提示】 按照顺序从上到下进行. 3.画出该算法的程序框图. 【提示】1.定义:顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.2.程序框图表示为:(见学生用书第4页)程序框图的认识和理解下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念【思路探究】根据程序框图概念,逐一验证每个选项是否正确.【自主解答】由于算法设计时要求返回执行的结果,故必须要有输出框,对于变量的赋值则可以通过处理框完成,故算法设计时不一定要用输入框,所以B项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤上表达简单了许多,所以C选项是错误的;程序框图就是流程图,所以D选项也是错误的.故而本题答案选A.【答案】 A1.程序框图主要由程序框和流程线组成,基本的程序框有终端框、输入、输出框、处理框、判断框,其中起止框是任何程序框图不可缺少的,而输入、输出框可以用在算法中任何需要输入、输出的位置.2.大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一程序框.下列关于程序框图中图形符号的理解正确的有( ) ①任何一个程序框图必须有起止框.②输入框只能在开始框后,输出框只能放在结束框前. ③长方形框是执行框,可用来对变量赋值,也可用来计算. ④对于一个程序框图来说,判断框内的条件是唯一的. A .1个 B .2个 C .3个 D .4个【解析】 任何一个算法必须有开始和结束,从而必须有起止框,故①正确,输入、输出框可以用在算法中任何需要输入、输出的位置,故②错误.③正确.④判断框内的条件不唯一,④错误.【答案】 B利用顺序结构表示算法 已知直线l :Ax +By +C =0(A 2+B 2≠0),点P (x 0,y 0),设计一个算法计算点P到直线l 的距离,并画出程序框图.【思路探究】 可以利用点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,给公式中的字母赋值,再代入计算.【自主解答】 用自然语言描述算法如下: 第一步,输入点P 的横、纵坐标x 0、y 0, 输入直线方程的系数,即常数A 、B 、C . 第二步,计算z 1=Ax 0+By 0+C .第三步,计算z 2=A 2+B 2.第四步,计算d =|z 1|z 2.第五步,输出d . 程序框图:画程序框图的规则:1.使用标准的程序框图的图形符号.2.程序框图一般按照从上到下,从左到右的顺序画. 3.描述语言写在程序框内,语言清晰、简练. 4.各程序框之间用流程线连接.把直线l 改为圆C :(x -a )2+(y -b )2=r 2,写出求点P 0(x 0,y 0)到圆上的点的距离最大值的算法及程序框图.【解】 第一步,输入点P 0的横、纵坐标x 0、y 0,输入圆心C 的横、纵坐标a 、b ,圆的半径r;第二步,计算z1=x0-a2+y0-b2;第三步,计算d=z1+r;第四步,输出d.程序框图:顺序结构在实际中的应用一城市在法定工作时间内,每小时的工资为8元,加班工资为每小时10元,一人一周内工作60小时,其中加班20小时,税率是10%,写出这人一周内净得的工资的算法,并画出算法的程序框图.【思路探究】根据题意,分别写出法定工作时间内的工资、加班工资,然后计算一周内的工资总数,最后计算净得工资.【自主解答】算法步骤如下:第一步,计算法定工作时间内工资a(a=8×(60-20)=320(元)).第二步,计算加班工资b(b=10×20=200(元)).第三步,计算一周内工资总数c(c=a+b=320+200=520(元)).第四步,计算这个人净得的工资数d(d=c×(1-10%)=520×90%=468(元)).第五步,输出d.程序框图如图所示.应用顺序结构表示算法的步骤:1.仔细审题,理清题意,找到解决问题的方法;2.梳理解题步骤;3.用数学语言描述算法,明确输入量、计算过程、输出量;4.用程序框图表示算法过程.银行的三年期定期存款年利率4.25(每100元存款到期平均每年获利4.25元).请你设计一个程序,输入存款数,输出利息与本利和.【解】设存款为a元,据题意三年到期利息b为:a100×4.25×3=0.127 5a元到期本利和p为:a+0.127 5a=1.127 5元.程序框图为:(见学生用书第6页)混淆构成流程图的图形符号及作用已知x=4,y=2,画出计算w=3x+4y的值的流程图.【错解】流程图如图(1)所示:(1) (2)【错因分析】输出框为平行四边形,此题中错用矩形框了.【防范措施】 1.明确各种程序框的作用与功能.2.认真审题独立思考,加强识图能力的培养.【正解】如上图(2).本节主要内容为程序框图及顺序结构1.正确理解程序框图的图形符号及其作用:(1)起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.(2)输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.(3)处理框图用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.(4)当算法要求对两个不同的结果进行判断时,需要将实现判断的条件写在判断框内,判断框用“”表示.(5)一个算法步骤到另一个算法步骤用流程线连接,如果一个程序框图需要分开来画,要在断开处画上连接点,并标出连接的号码(如图所示).2.为了能够读懂画出的程序框图,在画程序框图时,常用规则如下:(1)使用标准的程序框图的图形符号.(2)程序框图一般按照从上到下、从左到右的顺序画.(3)一个完整的程序框图必须有终端框,用于表示一个算法的开始和结束.(4)大多程序框图的图形符号只有一个进入点和一个退出点,判断框是唯一具有超过一个退出点的框图符号.(5)一种判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另外一种是多分支判断,可能有几种不同的结果.(6)在程序框图的图形符号内,用于描述的语言要简练、清楚.(见学生用书第7页)1.算法的三种基本结构是( )A.顺序结构、流程结构、循环结构B.顺序结构、条件结构、循环结构C.顺序结构、条件结构、嵌套结构D.顺序结构、嵌套结构、流程结构【解析】由算法的特征及结构知B正确.【答案】 B2.程序框图中,具有赋值、计算功能的是( )A.处理框B.输入、输出框C.终端框 D.判断框【解析】在算法框图中处理框具有赋值和计算功能.【答案】 A3.(原创题)阅读程序框图如图1-1-1所示,若输入x=3,则输出y的值为________.图1-1-1【解析】 输入x =3,则a =2×32-1=17,b =a -15=17-15=2,y =a ×b =17×2=34,则输出y 的值为34.【答案】 344.利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积,设计出该问题的算法及程序框图.【解】 算法如下:第一步,输入a =2,b =4,h =5.第二步,计算S =12(a +b )h .第三步,输出S .该算法的程序框图如图所示:(见学生用书第81页)一、选择题1.下列算法中,只用顺序结构画不出程序框图的是( ) A .求两个数的积 B .求点到直线的距离 C .解一元二次方程D .已知梯形两底和高求面积【解析】 解一元二次方程需要对判别式作出判断,故不能用顺序结构画出,故选C.【答案】 C2.(2013·临沂高一检测)阅读下面的流程图,若输入的a ,b ,c 分别是35,52,63,则输出的a ,b ,c 分别是( )图1-1-2A .63,35,52B .35,52,63C .63,52,35D .35,63,52【解析】 x =35,a =63,c =52,b =35,选A. 【答案】 A3.画程序框图时,如果一个框图需要分开来画,要在断开处画上( ) A .流程线 B .注释框 C .判断框 D .连接点【解析】 框图要分开画时,要在断开处画上连接点,并在圈中标出连接的号码. 【答案】 D图1-1-34.(2013·日照高一期中)如图1-1-3所示的是一个算法的程序框图,已知a 1=3,输出的b =7,则a 2等于( )A .9B .10C .11D .12【解析】 由题意知该算法是计算a 1+a 22的值,∴3+a 22=7,得a 2=11.故选C.【答案】 C图1-1-45.阅读如图1-1-4的程序框图,若输出的结果为6,则①处执行框应填的是( )A .x =1B .x =2C .b =1D .b =2【解析】 若b =6,则a =7,∴x 3-1=7,∴x =2.【答案】 B二、填空题6.(2013·潍坊高一检测)执行如图1-1-5程序框图后的结果为________.图1-1-5【解析】 S =42+24=2.5. 【答案】 2.57.给出如下算法:第一步,若a >b ,则a 与b 的值互换.第二步,若a >c ,则a 与c 的值互换.第三步,若b >c ,则b 与c 的值互换.第四步,输出a ,b ,c .运行此算法的功能为________.【解析】 由算法的意义知该算法的结果为将a ,b ,c 按从小到大输出.【答案】 将a ,b ,c 从小到大输出8.如图1-1-6是求长方体的体积和表面积的一个程序框图,图中的程序框中应填________.图1-1-6【解析】 根据题意需计算长方体的表面积S =2(ab +bc +ac ).【答案】 S =2(ab +bc +ac )三、解答题9.写出求y =-x 2-2x +3的最大值的算法,画出程序框图.【解】 算法如下:第一步,输入a ,b ,c 的值-1,-2,3.第二步,计算max =4ac -b 24a. 第三步,输出max.程序框图:10.画出求函数y =2x +3图象上任一点到原点的距离的程序框图,写出算法.【解】 算法步骤如下: 第一步,输入横坐标的值x .第二步,计算y =2x +3.第三步,计算d =x 2+y 2.第四步,输出d .程序框图:11.已知一个直角三角形的两条直角边长为a ,b ,求该直角三角形内切圆的面积,试设计求解该问题的算法,并画出程序框图.【解】 算法步骤如下:第一步,输入a ,b .第二步,计算c =a 2+b 2.第三步,计算r =12(a +b -c ). 第四步,计算S =πr 2.第五步,输出面积S .程序框图为:(教师用书独具)已知点P (x ,y ),画出求点P 到直线x +y +2=0的距离的程序框图.【思路探究】 题中直线方程已知,求某点P 到它的距离.设计算法时应先输入点的坐标,再利用点到直线的距离公式求距离,要先写出自然语言的算法,再画程序框图.【自主解答】 用自然语言描述算法:第一步,输入点P 的横坐标x 和纵坐标y .第二步,计算S =|x +y +2|的值.第三步,计算d =S 2的值.第四步,输出d .程序框图:如图所示,该电路由一内阻为r 的电源E 、电阻R 、开关K 及导线组成,其中E =15 V ,r =1欧,R =4欧.当K 闭合时,求流过R 的电流I ,设计算法及流程图. 【解】 算法步骤如下:第一步,E =15,r =1,R =4;第二步,计算R =R +r ;第三步,计算I =E R;第四步,输出I .流程图如图所示.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点
综合运用这些知识正确地画出程序框图。







问题与情境及教师活动
学生活动
一.导入新课
前面我们学习了顺序结构、条件结构、循环结构,今天我们系统学习程序框图的画法。
提出问题
(1)请大家回忆顺序结构,并用程序框图表示.
(2)请大家回忆条件结构,并用程序框图表示.
(3)请大家回忆循环结构,并用程序框图表示.
技能目标
通过模仿、操作和探索,抽象出算法的过程,培养抽象概括能力、语言表达能力和逻辑思维能力。
情感态度价值观
通过算法实例,体会构造的数学思想方法;提高学生欣赏数学美的能力,培养学生学习兴趣,增强学好数学的信心;通过学生的积极参与、大胆探索,培养学生的探索精神和合作意识。
重点
综合运用框图知识正确地画出程序框图
二.研探新知
探究(一):多重条件结构的程序框图
思考1:解关于 的方程 的算法步骤如何设计?下面流程图是否正确?
正确算法如下
第一步,输入实数
第二步,判断 是否为0.若是,执行第三步;
否则,输出
第三步,判断 是否为0.
若是,则输出“方程的根为全体实数”;
否则,输出“方程无实数根”.
程序框图如下:
2
教师课时教案
教师课时教案
备课人
授课时间
课题
1.1.2程序框图与算法的基本逻辑结构(三)
课标要求
1.掌握程序框图的概念;2.会用通用的图形符号表示算法;
3.掌握画程序框图的基本规则,能正确画出程序框图;




知识目标
通过设计流程图来表达解决问题的过程,了解流程图的三种基本逻辑结构:顺序、条件分支、循环。理解掌握三种基本逻辑结构,能设计简单的流程图。
点评:在用自然语言表述一个算法
后,可以画出程序框图,用
顺序结构、条件结构和循环
结构来表示这个算法,这样
表示的算法清楚、简练,便
于阅读和交流.
3
教师课时教案







问题与情境及教师活动
学生活动
探究(三):程序框图的阅读与理解
考察下列程序框图:
思考1:怎样理解该程序框图中包含的逻辑
结构?
思考2:该程序框图中的循环结构属于那种
循环结构有两种形式:当型循环结构和直到型循环结构.框图略.
(4)从前面的学习可以看出,设计一个算法的程序框图通常要经过以下步骤:
1
教师课时教案
问题与情境及教师活动
学生活动
第一步,用自然语言表达算法步骤.
第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框表示,得到该步骤的程序框图.
第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图.
(4)总结画程序框图的基本步骤.
讨论结果:
(1)顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.框图略.
(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.框图略.
(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理过程.重复执行的处理步骤称为循环体.







问题与情境及教师活动
学生活动
探究(二):混合逻辑结构的程序框图
思考1:用“二分法”求方程 的近似解的算法如何设计?
第一步,令 ,给定精确度 .
第二步,确定区间 ,满足 。
第三步,取区间中点 。
第四步,若 ,则含零点的区间为 ,否则,含零点的区间为 ,将新得到的含零点的区间仍记为 。
第五步,判断 的长度是否小于 ,或 是否等于0.
类型?
思考3:该程序框图反映的实际问题是
什么?
该问题就是要求1+2+4+……+263的和
三.随堂练习
P19练习:设计一个用有理指数幂逼近无理指数幂 的算法,画出算
(1)进一步熟悉三种逻辑结构的应用,理解算法与程序框图的关系.
(2)根据算法步骤画出程序框图.
课后
反思
5
则 是方程的近似解;否则,返回第三步.
思考2:该算法中哪几个步骤可以用顺序结构来表示?
这个顺序结构的程序框图如何?
思考3:该算法中第四步是什么逻辑结构?
这个步骤用程序框图如何表示?
思考4:该算法中哪几个步骤构成循环结构?
这个循环结构用程序框图如何表示?
思考5:根据上述分析,你能画出表示整个算法的程序框图吗?
相关文档
最新文档