汽车与传感器
简述汽车上的温度传感器及应用

一、概述随着汽车行业的不断发展和技术的不断进步,汽车上的各种传感器在车辆运行中扮演着越来越重要的角色。
其中,温度传感器作为汽车电子控制系统中的重要组成部分,对于汽车的安全性能和能效性能有着重要的影响。
本文将对汽车上的温度传感器进行简述并介绍其应用。
二、温度传感器的类型1. 热电阻温度传感器热电阻温度传感器是一种使用热电阻作为敏感元件的温度传感器,它的原理是通过测量金属电阻率随温度的变化来间接测量温度。
常见的热电阻材料有铂铑合金、镍铬合金等。
热电阻温度传感器具有精度高、线性好等优点,在汽车发动机的冷却系统、空调系统以及变速器油温监测等方面广泛应用。
2. 热敏电阻温度传感器热敏电阻温度传感器是一种利用热敏电阻的温度特性来测量温度的传感器。
常见的热敏电阻材料有氧化锌、氧化铜等。
热敏电阻温度传感器具有结构简单、成本低等优点,在汽车内部空调系统、发动机温度监测等方面应用较为广泛。
3. 热电偶温度传感器热电偶温度传感器是利用两种不同金属导体与温度有关的热电势来测量温度的传感器。
热电偶温度传感器具有响应速度快、测量范围广等优点,在汽车排气系统、发动机排气温度监测等方面得到广泛应用。
三、温度传感器的应用1. 发动机温度监测温度传感器在发动机温度监测中起到了至关重要的作用。
通过监测发动机的温度,可以及时发现发动机过热或者过冷的情况,从而采取相应的措施,保证发动机的正常运行。
温度传感器还可以为发动机的燃油喷射和点火等系统提供温度数据,从而保证发动机在不同工况下的工作状态。
2. 空调系统温度控制在汽车的空调系统中,温度传感器可以实时监测车内外部的温度情况,并根据设定的温度值来控制空调系统的工作状态,包括制冷量、风速等参数。
通过温度传感器的监测和反馈,可以使车内空调系统始终维持在用户设定的舒适温度范围内。
3. 变速器油温监测变速器油温的过高或者过低都会影响到变速器的正常工作,甚至造成损坏。
而温度传感器可以实时监测变速器油的温度,一旦发现异常情况可以及时警告驾驶员或者通过车辆电控系统自动调整工作状态,以保证变速器的正常工作和延长使用寿命。
智能汽车传感器技术智能汽车及传感器概述

智能汽车传感器技术智能汽车及传感器概述智能汽车与传感器技术的融合:实现安全、高效的未来交通随着科技的飞速发展,智能汽车和传感器技术已经成为人们日常生活和工作中不可或缺的一部分。
本文将简要介绍智能汽车和传感器的概念,并探讨它们相互结合后在实际应用中所发挥的作用。
一、智能汽车概述智能汽车是指通过集成大量传感器、执行器、控制器和通信设备,实现车辆自主驾驶的汽车。
这种汽车利用各种传感器收集环境信息,结合内部传感器数据,通过高级算法处理后,实现自主决策和驾驶控制,从而提高行车安全性和驾驶体验。
二、传感器技术介绍传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息按一定规律变换成为电信号或其他所需形式的信息输出。
在智能汽车中,传感器主要用于感知车辆周围环境和车辆自身状态,包括但不限于路面情况、车辆行驶状态、障碍物检测等。
三、智能汽车与传感器技术的应用1、自动驾驶:在自动驾驶模式下,智能汽车通过多种传感器(如摄像头、激光雷达、毫米波雷达等)获取环境信息,进行自主决策和驾驶控制,以保证安全、高效的行驶。
2、智能交通:传感器技术有助于实现交通信息的实时感知和传输,为智能交通管理系统提供有力支持。
例如,通过检测车辆流量、车速等数据,调整交通信号灯时间和优化交通流。
3、智慧城市:结合物联网、大数据等技术,传感器在智慧城市建设中发挥重要作用。
例如,通过检测交通拥堵、停车位等信息,为出行提供便利。
四、智能汽车与传感器的未来发展随着技术的进步,智能汽车和传感器将实现更高级别的自动化和智能化。
未来的智能汽车将具备更强大的环境感知和决策能力,能够在各种复杂路况和环境下实现完全自主驾驶。
传感器的性能将得到进一步提升,更小、更高效、更可靠,并且能够适应更广泛的应用场景。
总之,智能汽车和传感器技术的发展对于实现安全、高效的未来交通具有重要意义。
通过不断研究和探索,我们有望在未来看到更加智能化、自动化的出行方式,为人们的生活和工作带来更多便利。
智能汽车传感器技术详解

智能汽车传感器技术详解随着科技的快速发展,智能汽车已经成为了汽车工业的未来趋势。
而在这其中,智能汽车的传感器技术则是实现这一目标的关键所在。
本文将详细解析智能汽车传感器技术的各个方面。
一、智能汽车与传感器的重要性智能汽车是一种具备高度智能化、自主化和网络化的汽车,它能够有效地提高驾驶的安全性、舒适性和效率。
而传感器则是实现这一目标的重要工具。
传感器能够感知和传递汽车外部和内部的信息,为驾驶者提供实时、准确的信息,从而使驾驶者能够更加安全、舒适地驾驶汽车。
二、智能汽车传感器的种类1、摄像头传感器摄像头传感器是一种基于图像处理技术的传感器,它能够通过拍摄图片和视频来感知汽车外部的环境信息。
摄像头传感器可以用于实现自动驾驶、车道偏离预警、行人识别等功能。
2、雷达传感器雷达传感器是一种利用电磁波探测目标的传感器,它能够通过发射电磁波并接收反射回来的电磁波来感知汽车周围的环境信息。
雷达传感器可以用于实现自动驾驶、碰撞预警、自适应巡航等功能。
3、激光雷达传感器激光雷达传感器是一种利用激光雷达技术探测目标的传感器,它能够通过发射激光束并接收反射回来的激光束来感知汽车周围的环境信息。
激光雷达传感器可以用于实现高精度的三维环境感知和建模,是实现自动驾驶的关键传感器之一。
4、超声波传感器超声波传感器是一种利用超声波探测目标的传感器,它能够通过发射超声波并接收反射回来的超声波来感知汽车周围的环境信息。
超声波传感器常用于实现泊车辅助、障碍物预警等功能。
5、温度传感器温度传感器是一种能够感知温度的传感器,它能够感知汽车内部和外部的温度信息,为汽车提供温度控制和报警等功能。
三、智能汽车传感器技术的主要挑战1、数据处理和解析智能汽车的传感器会产生大量的数据,如何有效地处理和解析这些数据是传感器技术面临的主要挑战之一。
同时,还需要通过算法和模型来实现对数据的分类、过滤和分析,以提取有用的信息。
2、传感器融合和互补不同的传感器具有不同的优点和缺点,因此需要将不同的传感器进行融合和互补,以提高感知的准确性和全面性。
汽车传感器的工作原理

汽车传感器的工作原理
汽车传感器是用来感知车辆周围环境的装置。
它们能够检测并测量各种参数,从而帮助汽车控制系统做出相应的决策。
其中,最常见的汽车传感器包括以下几种:
1. 距离传感器:这类传感器用来测量车辆与前方障碍物之间的距离。
它们通常采用超声波或雷达技术。
当距离接近危险水平时,传感器会向驾驶员发出警报。
2. 光传感器:这类传感器用来检测周围光线的强度和方向。
它们可以帮助车辆控制系统自动调节车灯的亮度和方向,以适应不同的行驶条件。
3. 温度传感器:这类传感器用来测量车辆不同部件的温度。
它们可以帮助发动机管理系统监测和控制发动机的工作温度,以确保最佳性能和燃油效率。
4. 气体传感器:这类传感器用来检测车辆尾气中的有害气体排放。
它们可以帮助汽车排放控制系统监测和调节排放水平,以遵守环境保护法规。
5. 压力传感器:这类传感器用来测量车辆不同系统的压力。
它们可以帮助制动系统监测和调节制动液的压力,以确保安全和可靠的制动效果。
6. 速度传感器:这类传感器用来测量车辆的速度。
它们通过检
测车轮旋转的速度来计算车辆的行驶速度,从而帮助车辆稳定控制系统做出适当的调整。
这些传感器通常通过电子电路将感知到的信号转化为数字信号,并将其传输到车辆的计算机系统中进行处理。
计算机系统根据传感器提供的数据进行分析和决策,以实现汽车的自动化控制和安全性能的提升。
汽车传感器检测方法

汽车传感器检测方法
汽车传感器检测方法主要包括以下几种:
1.静态测试:在车辆停止的状态下,使用多用途表(multimeter)等工具对传感器进行测试。
通过检查传感器的电阻值、电压值等来判断传感器是否正常工作。
2.动态测试:在车辆运行的状态下,通过连接到车辆的诊断仪器或使用OBD系统来进行测试。
这些仪器可以通过读取传感器的实时数据来判断传感器是否正常工作。
3.比较测试:将待检传感器与已知工作正常的传感器进行比较。
通过比较它们的输出信号来判断待检传感器是否正常。
4.替换法:将待检传感器更换成一个已知工作正常的传感器,然后观察是否出现故障。
如果替换后问题解决,就可以确认原传感器故障。
5.专用测试设备:一些传感器,如氧气传感器和空气流量传感器,需要使用专用测试设备进行测试。
这些设备可以模拟不同的工作条件,并检测传感器的响应。
总结起来,汽车传感器的检测方法主要包括静态测试、动态测试、比较测试、替换法和专用测试设备。
根据具体的传感器类型和故障情况,选择合适的测试方法
来进行检测。
汽车传感器与检测技术课件 6速度传感器

如图6-28a所示,如果没有加速度作用在这个系统上,那么测 出来的两个电容器的电荷量C1和C2是相等的。如图6-28b所 示,若作用有横向加速度,那么可移动质量就会因惯性而作 用到中间板上,即它顶着固定板并逆着加速度方向移动。于 是两板之间距离就改变了,相应的分电容器的电荷量也增加 了。
霍尔式轮速传感器,可用检测其输出电压信号的方法来判断 其工作好坏。关闭点火开关,将车支起,使每个轮胎离地 10cm左右,然后拔下轮速传感器的导线连接器插头,并用导 线将线吏插头与轮速传感器插头的电源端子相连,用万用表 (打开交流电压挡)的两表笔分别搭在轮速传感器的信号输 出端子间,测量传感器的输出电压。接通点火开关,用手转 动车轮,万用表应显示7~12V范围内波动的交流电压,若电 压不在此范围内,应检查传感器与齿圈之间的间隙,标准值 应在0.2~0.5mm范围内,否则应进行调整。
ABS ECU通过识别传感器发来交流信号的频率来确定车轮的转速, 如果ECU发现车轮的减速度急剧增加,滑移率达到20%时,它立刻 给执行器发出指令,减小或停止车轮的制动力,以免车轮抱死。
3.轮速传感器的缺点 电磁感应式轮速传感器的缺点主要有以下几个方面: 1)电磁感应式轮速传感器向ABS ECU输送的电压信号的强弱
(1)线路导通性检测 关闭点火开关,断开轮速传感器连接 器和制动防滑控制ECU连接器,用万用表测量左前速度传感 器S4的2号端子与防滑ECU的18号端子、左前速度传感器S4的 1号端子与防滑ECU的4号端子之间的电阻值,其阻值应小于 1Ω。
汽车传感器的种类与应用

汽车传感器的种类与应用传感器是一种可以感知、转换并输出相关物理量的装置,被广泛应用于汽车行业。
汽车传感器可以帮助车辆感测周围环境和车辆状态信息,实现自动驾驶、安全控制和故障诊断等功能。
本文将介绍汽车传感器的种类和应用。
1. 发动机传感器发动机传感器被广泛应用于汽车发动机控制系统中,用于感测发动机的参数和状态,如进气压力、进气温度、曲轴位置、氧气含量、油温等,并将这些信息转换成电信号输出给发动机控制单元(ECU)。
根据功能,主要有以下类型的传感器:(1) 进气量传感器:感测空气流量,用于计算发动机所需燃料量。
(2) 氧气传感器:用于感测汽车废气中氧气含量,帮助ECU实现燃油喷射量的控制。
(3) 温度传感器:感测发动机的温度,并将温度值转换成电信号输出,用于发动机故障诊断和节能控制。
(4) 压力传感器:感测进气压力和油路压力等参数,用于确定燃油喷射量和测量机油压力。
2. 车身传感器车身传感器是一类用于感测车辆位置、运动状态和驾驶环境的传感器。
根据功能和位置,车身传感器主要有以下类型:(1) 转向角速度传感器:感测车辆的横向加速度和转向角速度,用于控制车辆的稳定性和安全性。
(2) 驻车传感器:感测车辆的位置并传递给车辆控制单元,用于控制自动驻车和自动开关引擎等功能。
(3) 距离传感器:感测车辆与前方物体的距离,用于自动泊车和智能避让碰撞等功能。
(4) 视觉传感器:利用摄像头、激光雷达等设备感测车辆周围环境,用于识别道路标志、行人、车辆等物体,实现全息视频、导航和交通安全等功能。
3. 制动控制系统传感器制动控制系统是汽车的重要安全控制系统之一,主要通过感测车辆的速度、状态和驾驶者的操作,对制动装置进行控制。
根据用途不同,制动控制系统传感器主要有以下几类:(1) 制动液压传感器:感测制动液压系统的压力变化,并将结果转换成电信号输出。
(2) 刹车离合器开关:感测制动踏板和离合器踏板的操作状态,用于控制SCM电子控制模块对制动装置的控制和刹车信号的输出。
《汽车传感器技术》课件

随着人工智能技术的不断发展,汽车传感器将越来越智能化。传感器将具备自学习、自适 应和决策能力,能够根据不同的工况和环境因素进行自动调整和优化。
无线化趋势
无线传感器技术将逐渐应用于汽车领域,实现传感器与车辆之间的无线通信和数据传输。 这将简化传感器布线,降低系统成本和维护成本。
集成化趋势
未来汽车传感器将朝着集成化方向发展,实现多种传感器功能的集成和一体化。这将有助 于减小传感器体积和重量,提高其可靠性和稳定性。
传感器在牵引力控制系统中监测车轮转速和发动机转速,并将信号传递给控制系 统,控制系统根据传感器信号调节发动机输出和车轮打滑。
04
汽车传感器的技术挑 战与未来趋势
技术挑战:提高精度、稳定性与可靠性
01 02
精度挑战
随着汽车技术的不断发展,对传感器精度的要求也越来越高。为了提高 传感器的测量精度,需要不断优化传感器的设计、制造工艺和材料选择 。
监测节气门开度,将信号 传递给发动机控制系统, 控制发动机进气量。
曲轴位置传感器
检测曲轴位置,将信号传 递给点火控制系统,控制 点火时间。
转向角度传感器
监测方向盘转向角度,将 信号传递给转向控制系统 ,实现转向助力控制和车 辆稳定性控制。
速度传感器
车速传感器
检测车速,将信号传递给车速表和发动机控制系统,控制发动机 转速和换挡时机。
流量传感器
空气流量传感器
检测空气流量,将信号传递给发动机控制系统,控制燃油喷射和 点火时间。
油流量传感器
监测燃油流量,将信号传递给燃油泵控制系统,控制燃油泵的转 速和供油量。
水流量传感器
检测冷却水流量,将信号传递给发动机冷却水控制系统,控制冷 却水循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车与传感器
————————————————————————————————作者:————————————————————————————————日期:
汽车传感器的应用现状及其发展趋
势
2011-5-11 7:52:00 来源:作者:
汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。
目前,一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只。
据报道,2000年汽车传感器的市场为61.7亿美元(9.04
亿件产品),到2005年将达到84.5亿美元(12.68亿件),增长率为6.5%(按美元计)和7.0%(按产品件数计)。
1.汽车传感器的应用分类
汽车传感器在汽车上主要用于发动机控制系统、底盘控制系统、车身控制系统和导航系统中。
它的应用,大大提高了汽车电子化的程度,增加了汽车驾驶的安全系数。
1.1发动机控制系统用传感器ﻫ发动机控制系统用传感器是整个汽车传感器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。
这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工
作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。
由于发动机工作在高温(发动机表面温度可达150℃、排气歧管可达650℃)、振动(加速度30g)、冲击(加速度50g)、潮湿(100%RH,-40℃-120℃)以及蒸汽、盐雾、腐蚀和油泥污染的恶劣环境中,因此发动机控制系统用传感器耐恶劣环境的技术指标要比一般工业用传感器高
1-2个数量级,其中最关键的是测量精度和可靠性。
否则,由传感器带来的测量误差将最终导致发动机控制系统难
以正常工作或产生故障。
ﻫ1.温度传感器
温度传感器主要用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。
温度用传感器有线绕电阻式、热敏电阻式和热偶电阻式三种主要类型。
三种类型传感器各有特点,其应用场合也略有区别。
线绕电阻式温度传感器的精度高,但响应特性差;热敏电阻式温度传感器灵敏度高,响应特性较好,但线性差,适应温度较低;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。
已实用化的产品有热敏电阻式温度传感器(通用型-50℃~130℃,精度1.5%,响应时间10ms;高温型6
00℃~1000℃,精度5%,响应时间10ms)、铁氧体式温度传感器(ON/OFF型,-40℃~120℃,精度2.0%)、金属或半导体膜空气温度传感器(-40℃~150℃,精度2.0%、5%,响应时间20ms)等。
2.压力传感器ﻫ压力传感器主要用于检测气缸负压、大气压、涡轮发动机的升压比、气缸内压、油压等。
吸气负压式传感器主要用于吸气压、负压、油压检测。
汽车用压力传感器应用较多的有电容式、压阻式、差动变压器式(LVDT)、表面弹性波式(SAW)。
ﻫ电容式压力传感器主要用于检测负压、液压、气压,测量范围20~100kPa,具有输入能量高,动态响应特性好、环境适应性好等特点;压阻式压力传感器受温度影响较大,需要另设温度补偿电路,但适应于大量生产;LVDT式压力传感器有较大的输出,易于数字输出,但抗干扰性差;SAW式压力传感器具有体积小、质量轻、功耗低、可靠性高、灵敏度高、分辨率高、数字输出等特点,用于汽车吸气阀压力检测,能在高温下稳定地工作,是一种较为理想的传感器。
ﻫ3.流量传感器ﻫ流量传感器主要用于发动机空气流量
和燃料流量的测量。
空气流量的测量用于发动机控制系统确定燃烧条件、控制空燃比、起动、点火等。
空气流量传
感器有旋转翼片式(叶片式)、卡门涡旋式、热线式、热膜式等四种类型。
旋转翼片式(叶片式)空气流量计结构简单,测量精度较低,测得的空气流量需要进行温度补偿;卡门涡旋式空气流量计无可动部件,反映灵敏,精度较高,也需要进行温度补偿;热线式空气流量计测量精度高,无需温度补偿,但易受气体脉动的影响,易断丝;热膜式空气流量计和热线式空气流量计测量原理一样,但体积少,适合大批量生产,成本低。
空气流量传感器的主要技术指标为:工作范围0.11~103 立方米/min,工作温度-40℃~120℃,精度≤1%。
燃料流量传感器用于检测燃料流量,主要有水轮式和循环球式,其动态范围0~60kg/h,工作温度-40℃~120℃,精度±1%,响应时间小于10ms。
ﻫ4.位置和转速传感器
位置和转速传感器主要用于检测曲轴转角、发动机转速、节气门的开度、车速等。
目前汽车使用的位置和转速传感器主要有交流发电机式、磁阻式、霍尔效应式、簧片开关式、光学式、半导体磁性晶体管式等,其测量范围0°~360°,精度±0.5°以下,测弯曲角达±0.1 。
ﻫ车速传感器种类繁多,有敏感车轮旋转的、也有敏感动力传动轴转动的,还有
敏感差速从动轴转动的。
当车速高于100km/h时,一般测量方法误差较大,需采用非接触式光电速度传感器,测速范围0.5~250km/h,重复精度0.1%,距离测量误差优于0.3%。
5.气体浓度传感器ﻫ气体浓度传感器主要用于检测车体内气体和废气排放。
其中,最主要的是氧传感器,实用化的有氧化锆传感器(使用温度-40℃~900℃,精度1%)、氧化锆浓差电池型气体传感器(使用温度300℃~800℃)、固体电解质式氧化锆气体传感器(使用温度0℃~400℃,精度0.5%),另外还有二氧化钛氧传感器。
和氧化锆传感器相比,二氧化钛氧传感器具有结构简单、轻巧、便宜,且抗铅污染能力强的特点。
ﻫ6.爆震传感器
爆震传感器用于检测发动机的振动,通过调整点火提前角控制和避免发动机发生爆震。
可以通过检测气缸压力、发动机机体振动和燃烧噪声等三种方法来检测爆震。
爆震传感器有磁致伸缩式和压电式。
磁致伸缩式爆震传感器的使用温度为-40℃~125℃,频率范围为5~10kHz;压电式爆震传感器在中心频率5.417kHz处,其灵敏度可达200mV/g,在振幅为0.1g~10g范围内具有良好线性度。
1.2底盘控制用传感器ﻫ底盘控制用传感器是指用于变
速器控制系统、悬架控制系统、动力转向系统、制动防抱死系统等底盘控制系统中的传感器。
这些传感器尽管分布在不同的系统中,但工作原理与发动机中相应的传感器是相同的。
而且,随着汽车电子控制系统集成化程度的提高和CAN-BUS技术的广泛应用,同一传感器不仅可以给发动机控制系统提供信号,也可为底盘控制系统提供信号。
自动变速器系统用传感器主要有:车速传感器、加速踏板位置传感器、加速度传感器、节气门位置传感器、发动机转速传感器、水温传感器、油温传感器等。
制动防抱死系统用传感器主要有:轮速传感器、车速传感器;悬架系统用传感器主要有:车速传感器、节气门位置传感器、加速度传感器、车身高度传感器、方向盘转角传感器等;动力转向系统用传感器主要有:车速传感器、发动机转速传感器、转矩传感器、油压传感器等。
1.3车身控制用传感器ﻫ车身控制用传感器主要用于提
高汽车的安全性、可*性和舒适性等。
由于其工作条件不象发动机和底盘那么恶劣,一般工业用传感器稍加改进就可以应用。
主要有用于自动空调系统的温度传感器、湿度传感器、风量传感器、日照传感器等;用于安全气囊系统中的加速度传感器;用于门锁控制中的车速传感器;用于亮
度自动控制中的光传感器;用于倒车控制中的超声波传感器或激光传感器;用于保持车距的距离传感器;用于消除驾驶员盲区的图象传感器等。
1.4导航系统用传感器ﻫ随着基于GPS/GIS(全球定位系统和地理信息系统)的导航系统在汽车上的应用,导航用传感器这几年得到迅速发展。
导航系统用传感器主要有:确定汽车行驶方向的罗盘传感器、陀螺仪和车速传感器、方向盘转角传感器等。
ﻫ
2.汽车传感器的发展趋势ﻫ由于汽车传感器在汽车电子控制系统中的重要作用和快速增
长的市场需求,世界各国对其理论研究、新材料应用和新产品开发都都非常重视。
未来的汽车用传感器技术,总的发展趋势是微型化、多功能化、集成化和智能化。
微型传感器基于从半导体集成电路技术发展而来的MEMS(微电子机械系统),微型传感器利用微机械加工技术将微米级的敏感元件、信号处理器、数据处理装置封装在一快芯片上,由于具有体积小、价格便宜、便于集成等特点,可以明显提高系统测试精度。
目前该技术日渐成熟,可以制作各种能敏感和检测力学量、磁学量、热学量、化学量和生物量的微型传感器。
由于基于MEMS技术的微型传感器在降低汽车电子系统成本及提高其性能方面的优势,它
们已开始逐步取代基于传统机电技术的传感器。
多功能化是指一个传感器能检测2个或者两个以上的特性参数或者化学参数,从而减少汽车传感器数量,提高系统可靠性。
集成化是指利用IC制造技术和精细加工技术制作IC式传感器。
智能化是指传感器与大规模集成电路相结合,带有CPU,具有智能作用,以减少ECU的复杂程度,减少其体积,并降低成本。
ﻫ总之,随着电子技术的发展和汽车电子控制系统应用的日益广泛,汽车传感器市场需求将保持高速增长,微型化、多功能化、集成化和智能化的传感器将逐步取代传统的传感器,成为汽车传感器的主流。