非惯性系和惯性力
非惯性系 惯性力

地球自转和公转产生的惯性力,使得地球上的物体受到向心力的作用, 从而解释了地球形状为椭球体的原因以及昼夜交替和四季变化的现象。
03
解释潮汐现象
月球和太阳对地球的引力作用,使得地球表面的水体产生潮汐现象。通
过引入惯性力的概念,可以解释潮汐的成因以及潮汐对地球自转速度的
影响。
分析微观粒子行为
分类
非惯性系可分为加速平动参考系和转动参考系两类。加速平动参考系中的物体 受到与加速度方向相反的惯性力作用;转动参考系中的物体则受到与转动角速 度相关的科里奥利力和向心力作用。
牛顿运动定律在非惯性系中适用性
牛顿运动定律在惯性系中成立,但在非惯性系中不再适用。 在非惯性系中,为了描述物体的真实运动状态,需要引入虚 拟的惯性力。
4. 分析实验数据,比较物体在惯性系 和非惯性系中的运动状态。
数据采集和处理方法
数据采集:使用高精度测量设备记录物 体在平台旋转过程中的位置、速度和加 速度等参数。
3. 通过统计分析方法,对实验结果的可 靠性和准确性进行评估。
2. 使用数值分析方法对物体在惯性系和 非惯性系中的运动状态进行模拟和比较 。
01
为解决工程实际问题提供理论支持。
02
研究内容
非惯性系的定义和分类。
03
研究目的和内容
1
惯性力的概念、性质及其在非惯性系中的作用。
2
非惯性系下物体的运动方程和动力学特性分析。
3
非惯性系在实际工程中的应用案例研究。
02
非惯性系基本概念
非惯性系定义及分类
定义
非惯性系是指不满足牛顿第一定律的参考系,即在其中观察到的物体运动状态 不遵循惯性定律。
洛伦兹变换是相对论中描述不同惯性参考系之间物理量转换的基本规则,适用于高速运动的物体。在 洛伦兹变换下,时间和空间是相对的,会随着参考系的改变而改变。洛伦兹变换考虑了光速不变原理 ,是更精确的描述方式。
大学物理非惯性系惯性力

惯性力只存在于非惯性系中,在惯性参考系中不存在惯性力 。通过引入惯性力的概念,我们可以将非惯性系中的物理问 题转化为惯性系中的问题,从而应用牛顿运动定律进行求解 。
03
非惯性系中的惯性力表现
科里奥利力
总结词
由于地球自转导ห้องสมุดไป่ตู้的旋转参考系中的力。
详细描述
科里奥利力是在旋转参考系中,当物体有相对于旋转轴的相对速度时,由于地球自转而受到的力。这个力垂直于 物体速度的方向,并改变物体运动的方向。在北半球,科里奥利力使物体偏向右方;在南半球,则偏向左方。
总结词
相对论效应是指由于时空相对性导致的物理 现象,表现为时间膨胀和长度收缩。
详细描述
根据爱因斯坦的相对论,当物体以接近光速 运动时,会观察到时间膨胀和长度收缩的现 象。时间膨胀是指相对于静止观察者,运动 物体的时间变慢;长度收缩是指相对于静止 观察者,运动物体的长度缩短。相对论效应
在高速运动和强引力场中具有重要应用。
在现实生活中,许多问题都是在 非惯性参考系中考虑的,例如车 辆动力学、航天器运动等。研究 非惯性系惯性力有助于解决这些 实际问题。
促进物理学科发展
非惯性系惯性力是经典力学中的 一个重要概念,研究它有助于推 动物理学科的发展,促进人们对 自然界运动规律的认识。
02
非惯性系与惯性力定义
非惯性系定义
非惯性系是指相对于惯性参考系加速 运动的参考系。在非惯性系中,牛顿 运动定律不再适用。
非惯性系通常指相对于惯性参考 系加速或减速运动的参考系。
惯性力是由于非惯性系相对于惯 性参考系的加速或减速运动,而
使物体受到的一种虚拟力。
为什么研究非惯性系惯性力
深入理解牛顿运动
定律
非惯性系和惯性力

质能等价:物体所具有的能量与其 质量成正比,能量增加会导致质量 增加
添加标题
添加标题
添加标题
添加标题
时间膨胀:在高速运动状态下,时 间会变慢
光速不变:无论观察者以何种速度 观察,光速始终保持不变
汇报人:XX
举例:在地球上,我们感受到的重力实际上是地球自转惯性力的表现。
意义:惯性力的引入是为了修正牛顿第二定律在非惯性系中的不适用性。
定义:惯性力是物体在非惯性系中受到的虚拟力,等于物体质量与加速度的乘积
计算公式:F=ma
适用范围:适用于任何具有加速度的非惯性系
注意事项:惯性力只是一种虚拟力,并非实际存在的力,但在非惯性系中计算物 体运动时需要加上惯性力的作用
定义:非惯性系是指相对于惯 性参考系加速运动的参考系
应用:通过引入惯性力来处 理非惯性系中的问题
举例:汽车加速时,乘客会 受到向后的惯性力作用
定义:惯性力是指物体在加速参考系中受到的力,用以保持物体静止或匀速直线 运动的状态。 特性:与物体质量成正比,方向与加速度相反,大小等于质量与加速度的乘积。
XX,a click to unlimited possibilities
汇报人:XX
01
03
02
04
非惯性系是指相对于惯性参考 系加速运动的参考系
在非惯性系中,观察到物体受 到惯性力作用
常见的非惯性系有加速直线运 动和匀速圆周运动的参考系
非惯性系在相对论和经典力学 中都有重要应用
相对性原理是物理学的 基本原理之一,表明物 理定律在不同的惯性参 考系中具有相同的形式。
定义:非惯性系中的惯性力是由于 参考系相对于惯性空间的加速或转 动而产生的虚拟力。
方向:与加速度方向相反,作用在 物体上。添加标题添加标题添加标题
惯性力与非惯性系

惯性力是非惯性系中的非真实力,本文证明了 在非惯性系中将惯性力视为真实力计入后,惯性系 下的所有力学规律在非惯性系下都能成立。在惯性 力做功与路径无关时,我们可以引入惯性力势能, 并计入系统总机械能后,惯性系下体系机械能守恒 的条件与结论在非惯性系中也仍然成立。
惯性系下,即o1系下,有: a1=F/m dv1=a1dt dr1=v1dt dv1=a1dt=Fdt/m => mdv1=Fdt => d(mv1)=Fdt——冲量定理 元功 δw1=Fdr1=ma1v1dt =mv1dv1=d(mv12/2) ——动能定理 由 d(mv12/2)=Fdr1=(F保+F非保)dr1 =F保dr1+ F非保dr1 引入势能 即 F保dr1=-dU1 d(mv12/2)= -dU1+ F非保dr1 d(mv12/2 +U1)= F非保dr1 ——功能原理 若 F非保dr1=0 =>mv12/2 +U1=常量 ——机械能守恒
惯性势能与机械能守恒
1、惯性力做功与路径无关的例子 dW=fdr =>W=mrω2dr =mω2(rB2-rA2)/2 惯性力的功W于路径无关 2、引入惯性力势能 设o点(r=0)处惯性力势 能为零,则系中任一点 r 处 的惯性力势能可表示为 U(r)= -W= -mω2(r2-0)/2 = -mω2r2/2 一般定义为: dU惯 = - f惯dr 3 、机械能守恒 d(mv2/2 +U)=( F非保 +f)dr 又 f惯dr= -dU惯 d(mv2/2 +U +U惯 )= F非保dr F非保dr=0=>mv2/2 +U+dU惯 =常量——机械能守恒
非惯性系下,即o2系下,有: 惯性力f= -ma a2=a1-a0=F/m+f/m=(F&
惯性力与非惯性参考系描述非惯性参考系下物体运动的力学原理

惯性力与非惯性参考系描述非惯性参考系下物体运动的力学原理惯性力是描述非惯性参考系下物体运动的力学原理。
在非惯性参考系中观察物体的运动时,会出现额外的力,即惯性力。
惯性力的出现是由于非惯性参考系的运动导致的,它并非真实存在的力。
惯性力的概念是为了使物体在非惯性参考系中的运动符合牛顿第二定律而引入的。
非惯性参考系是指相对于一个惯性参考系有加速度的参考系。
在非惯性参考系中观察物体的运动时,物体看似受到了额外的力,这些力就是惯性力。
惯性力的大小与物体的质量和非惯性参考系的加速度有关。
惯性力的方向则与非惯性参考系的加速度相反。
根据牛顿第二定律,物体在非惯性参考系中的运动需要考虑惯性力的作用。
以一个例子来说明惯性力的概念。
假设有一个物体在一辆加速的车厢中静止,如果我们在车厢外观察物体,它看起来就好像受到了一个向后的力。
这个力就是惯性力,它是为了使物体在非惯性参考系中的运动与惯性参考系中的运动一致而引入的。
在这个例子中,我们可以看到惯性力的方向与非惯性参考系的加速度相反。
在描述非惯性参考系下物体运动的力学原理时,需要考虑惯性力的作用。
在非惯性参考系中,物体的运动是由受力情况决定的。
根据牛顿第二定律,物体受到的合力等于质量乘以加速度。
而在非惯性参考系中,要使得物体的运动符合牛顿第二定律的描述,需要考虑惯性力的作用。
惯性力的引入使得我们可以在非惯性参考系中应用力学定律,从而简化对物体运动的描述。
通过考虑惯性力,我们可以用与在惯性参考系中相同的方式来分析非惯性参考系下的物体运动。
这使得力学定律的应用更加普适和统一。
总结起来,惯性力是为了描述非惯性参考系下物体运动的力学原理而引入的。
惯性力并非真实存在的力,而是由于非惯性参考系的运动导致的。
惯性力的引入使得我们可以应用力学定律来描述非惯性参考系下物体的运动,使得力学定律的应用更加普适和统一。
2.5非惯性系与惯性力

注意: 惯性力不是真实力,无反作用力。故又称虚拟力。 注意: 惯性力不是真实力,无反作用力。故又称虚拟力。 2、非惯性系中的力学规律: 非惯性系中的力学规律:
r r r F + f惯 = m a '
r 为物体相对非惯性系的加速度。 a ' 为物体相对非惯性系的加速度。
在平动加速参考系中
v v Fi = −ma0
在转动参考中 惯性离心力
v 2v Fi = −mω r
v αT m r v a mg
v 以加速度 a 运动的车厢内吊一重物m
T cos α = ma
,
r a
T sin α = mg
v v 车厢内的观测者以车厢为参考系。 合力不为零。 车厢内的观测者以车厢为参考系。T与 mg 合力不为零。
i
静止,牛顿定律不成立。 但 m 静止,牛顿定律不成立。若在 m 上给它假定一个向左 v v 三个力就平衡了,牛顿定律就成立了。 的力 F = − m, 三个力就平衡了,牛顿定律就成立了。 a
三、非惯性系中的力学定律、惯性力: 非惯性系中的力学定律、惯性力: 1、惯性力:在非惯性系中引入的和参考系本身的加速运动 惯性力: 相联系的力。 相联系的力。 定义:惯性力: 定义:惯性力: 其中: 其中:
r r f 惯 = −ma
m 为研究对象的质量; r 为研究对象的质量; 为非惯性系相对惯性系的加速度。 a 为非惯性系相对惯性系的加速度。 v f 惯 = ma f 惯的方向与非惯性系的加 速度反向。 速度反向。
§2-5 非惯性参考系 惯性力
一、惯性参考系与非惯性系: 惯性参考系与非惯性系: 牛顿运动定律适用的参考系称为惯性参考系。 牛顿运动定律适用的参考系称为惯性参考系。 由实验得知,日心参考系是足够精确的惯性系。 由实验得知,日心参考系是足够精确的惯性系。 地球参考系是相当精确的惯性系。 地球参考系是相当精确的惯性系。 相对于惯性系作匀速直线运动的参考系是惯性系。 相对于惯性系作匀速直线运动的参考系是惯性系。 非惯性系:相对二、几种非惯性系: 几种非惯性系: 1、作加速直线运动的参考系 地面观测者: 地面观测者:
2-5 非惯性系 惯性力

非惯性系包括:平动加速系、 非惯性系包括:平动加速系、转动系
非惯性系包括:平动加速系、 非惯性系包括:平动加速系、转动系 一、平动加速系中的惯性力 平动加速系中的惯性力
m
小球静止 小球加速
a0 a0
小球不受力
小车是非惯性系 牛顿定律不成立! 牛顿定律不成立! 若用牛顿定律思 考,则必认为小 球受力为 m a 0
θ
N
θ
ma0
mg
a′
θ
x
N′
Ma0
Mg
对物体: 对物体: 方向: x 方向:N sinθ + ma0 = ma′cosθ
y 方向:N cosθ mg = ma′sinθ 方向:
对楔块: 对楔块: 方向: x 方向: N sinθ + Ma0 = 0
连立求解得
( M + m ) sinθ a′ = g 2 M + m sin θ m sinθ cosθ g a0 = M + m sin 2 θ 由 a = a′ + a 得
M >> m
二、转动系中的惯性力 设圆盘匀速转动,物体 相对圆盘 相对圆盘静止 设圆盘匀速转动,物体m相对圆盘静止
ω
还受惯性力 真实弹力 m 惯性离心力
弹力
转动系S 转动系
惯性系S 惯性系
这时,惯性力只是惯性离心力。 这时,惯性力只是惯性离心力。
惯性离心力 地面参照系 弹簧提供给小球向心力 圆盘参照系 弹簧平衡惯性力 惯性离心力
惯性系,牛顿定律成立。 惯性系,牛顿定律成立。
T
???
a0
mg
F
T
Oh! !
a0
F = ma0 i
大学物理非惯性系惯性力

注意
1) 惯性力是引入的虚拟的力.
平动非惯性系中惯性力
m
例 动力摆可用来测定车辆的加速度. 一根质量不计的细棒一端固定在车厢的顶部, 另一端系一小球, 当列车以加速度 a 行驶时, 细杆偏离竖直线成 角. 试求加速度 a 与摆角 间的关系 .
解 以车厢为参考系(非惯性系)小球处于平衡状态.
横向:必需有一力与槽的侧向推力N平衡,这个力即为科里奥利力
分量式
解得
2.在匀角速转动的非惯性系中的惯性力——惯性离心力
如图所示,在光滑水平圆盘上,用一轻弹簧栓一小球,圆盘以角速匀速转动,这时弹簧被拉伸后而静止。
地面观察者:小球受到弹性力,且指向圆心,作圆周运动;
圆盘上观察者:小球受到弹簧拉力,且指向圆心,但小球仍处于静止状态
此时
所以除精密计算外,通常把 视为物体的重力。
重力W实际上应是F引和ƒ*c的合力
5
地球自转角速度很小
3.科里奥利力
一圆盘绕铅直轴以角速转动,盘心有一光滑小孔,沿半径方向有一光滑槽,槽中有一小球被穿过小孔的细线所控制,使其只能沿槽做匀速运动,现小球沿槽以 u 相 向外运动。
从圆盘上观察,则小球仅有径向匀速运动,即小球处于平衡态,
ቤተ መጻሕፍቲ ባይዱ
1.在变速直线运动参考系中的惯性力
定义:对某一特定物体惯性定律成立的参考系叫做惯性参考系.相对惯性系作加速运动的参考系为非惯性参考系 .
非惯性系
1
惯性力— 惯性在非惯性系中的表现.
非惯性系中牛顿第二定律
2)惯性力不是物体间的相互作用,不存在惯性力的反作用力, 找不出它的施力物体. 3)在研究地面上物体的运动时,地球可近似地看成是惯性参考系 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动,其结论却不相同.
引入非惯性系的意义
▲有些问题需要在非惯性系中研究, 地面参考系, 地球自转加速度
a 3.4 102 m/s 2 (赤道)
地心参考系, 地球绕太阳公转加速度
a 6 10 m/ s
3
2
太阳参考系, 太阳绕银河系转加速度 a 1.8 1010 m/ s 2
物体惯性的证明,潮汐,科里奥利力,地球
表面重力等问题。
▲有些问题在非惯性系中研究较为方便。
4
平动参考系的惯性力
在平动参照系中 设: S 系为惯性系, S ′系为非惯性系, S ′相对于 S 加速度 a0 物体相对 S, 加速度a , aa 物体相对 S 加速度a 质点 m 在 S 系
分析物体受力,重力和支持力以及惯性力
FN cos mg 0,
FN sin ma 0 0
2 2 0
FN m g a
例题
例:动力摆可用来测定车辆的加速度。在如图所示的车 厢内,一根质量可略去不计的细棒,其一端固定在车厢 顶部,另一端系以小球,当列车以加速度a行驶时,细 杆偏离竖直线成角θ,试求加速度a与摆角θ间的关系。 解:以车厢为参考系 S
a0
在 S 系 F ma
F 不随参பைடு நூலகம்系变化
F ma
F ma ma0
N
a0
S’
mg
S
牛顿第二定律在非惯性系不成立
平动参考系的惯性力
由质点 m 在S系 N
a0 F ma ma0 S’ S mg F ma0 ma 令:Fi ma0 在非惯性系引入虚拟力---惯性力
从水平转台(非惯性参照系)上观察:
a' 0
F 0
牛顿第二定律在非惯性系不成立
2 Fi m r 指向离心的方向
同前面引入惯性离心力:
r F
N
Fi
mg
F Fi 0
a' 0
引入惯性离心力后,在非惯性系 中,牛顿第二定律形式上成立
匀角速转动参照系中的惯性离心力
v
N
A
mg
v
惯性系---在该参照系中观察,一个不受力作用的
物体将保持静止或匀速直线运动状态不变.
惯性系与非惯性系中观测物体运动的区别
在非惯性系中
丙在相对地以加速 a 向右运动的车上, 看 A 物沿反向 a加速运动.
_a 对非惯
N
丙
A
mg
a 非对惯
大地
F 0 a 0 在非惯性系中牛顿定律不再成立.
F Fi ma
在非惯性系S 中,牛顿 第二定律形式上成立
此结论可推广到非平动的非惯性系,如转动参考系。
6
平动参考系的惯性力 质点所受惯性力的大小,等于质点的质 量和此非惯性系整体相对惯性系的加速度的乘 积,方向与此加速度的方向相反
Fi ma0
惯性力是参考系加速运动引起的附加力,
本质上是物体惯性的体现。它不是物体间的相
互作用,没有反作用力,但有真实的效果。
例题
例 . 三棱柱以加速度 a0 沿水平面向左运动。它的斜 面是光滑的。若质量为m的物体恰能静止于斜面上, 求物体对三棱柱的压力。 解:以地面为参考系(惯性系) 分析物体受力,重力和支持力 物体相对于地面的加速度为a0, 运动方程为
mg FT ma 0
在直角坐标系中分 量式为
θ ma 0 S' mg
a0
FT cos mg 0,
联立方程组得
FT sin ma 0
g tan
匀角速转动参照系中的惯性离心力
从地面参照系(惯性参照系)观察一转动系统:
2 F m r 方向指向圆心
重力加速度
g
2
2 a引
2 a离
2a引a离 sin
a引 g
a离
a引 a离 g a引 a离 sin
g赤道 = 9.778 m/s2 g北极 = 9.832 m/s2
*在地表面用 g ,已考虑惯性离心力在内
a0
θ
FN P ma0
在直角坐标系中分量式为
FN cos mg 0,
2
FN sin ma 0
2 0
FN m g a
例题
以三棱柱为参考系(非惯性系)
运动方程为 F P F ma 0 N i 上式中 Fi ma0
在直角坐标系中分量式为
惯性系与非惯性系中观测物体运动的区别
相对惯性系作加速运动的参照系为非惯性系. 在惯性系中
甲观测A , A物静止.
A物受合外力
㆙
N
A
mg
F 0
满足牛顿第二定律
惯性系与非惯性系中观测物体运动的区别
乙在相对地匀速运动的车 中 观测A物为匀速运动。 A 物受合外力
F 0 a0
满足牛顿第二定律