机械设计摩擦磨损及润滑.

合集下载

摩擦、磨损和润滑

摩擦、磨损和润滑

摩擦、磨损和润滑§1 摩擦在一定的压力下,表面间摩擦阻力的大小与两表面间的摩擦状态有密切关系,不同摩擦状态下,产生摩擦的物理机理是不同的。

一、摩擦状态按摩擦状态,即表面接触情况和油膜厚度,可以将滑动摩擦分为四大类,干摩擦、边界摩擦(润滑)、液体摩擦(润滑)和混合摩擦(润滑),如图所示。

1.干摩擦两摩擦表面间无任何润滑剂或保护膜的纯净金属接触时的摩擦,称为干摩擦。

在工程实际中没有真正的干摩擦,因为暴露在大气中的任何零件的表面,不仅会因氧气而形成氧化膜,且或多或少也会被润滑油所湿润或受到"污染",这时,其摩擦系数将显著降低。

在机械设计中,通常把不出现显著润滑的摩擦,当作干摩擦处理。

2.边界摩擦两摩擦表面各附有一层极薄的边界膜,两表面仍是凸峰接触的摩擦状态称为边界摩擦。

与干摩擦相比,摩擦状态有很大改善,其摩擦和磨损程度取决于边界膜的性质、材料表面机械性能和表面形貌。

3.液体摩擦两摩擦表面完全被液体层隔开、表面凸峰不直接接触的摩擦。

此种润滑状态亦称液体润滑,摩擦是在液体内部的分子之间进行,故摩擦系数极小。

这时的摩擦规律已有了根本的变化,与干摩擦完全不同。

关于液体摩擦(液体润滑)的问题,将在滑动轴承中进一步讨论。

4.混合摩擦两表面间同时存在干摩擦、边界摩擦和液体摩擦的状态称为混合摩擦。

二、干摩擦理论干摩擦理论主要有:(1)机械理论认为摩擦力是两表面凸峰的机械啮合力的总和,因而可解释为什么表面愈粗糙,摩擦力愈大;(2)和表面分子相互吸引分子-机械理论认为摩擦力是由表面凸峰间的机械啮合力F1两部分组成,因而这一理论可解释为什么当接触表面光滑时,摩擦力也会力F2很大。

但上述两种理论不能解释能量是如何被消耗的;(3)粘着理论;(4)能量理论等。

a) 结点b) 界面剪切c) 软金属剪切a) 结点b) 界面剪切c) 软金属剪切大量的试验表明,工程表面的实际接触面积约为名义接触面积的10-2~10-3,这样接触区压力很高,使材料发生塑性变形,表面污染膜遭到破坏,从而使基体金属发生粘着现象,形成冷焊结点(如图a 所示)。

机械设计第四章:摩擦、磨损与润滑概述

机械设计第四章:摩擦、磨损与润滑概述

化学吸附膜(化学键)
度影响较大
反应膜:比较稳定
§4-1 摩擦
三、流体摩擦
流体摩擦:指运动副的摩擦表面被流体膜隔开(λ>3~4) 摩擦性质取决于流体内部分子间粘性阻力的摩擦。 摩擦系数最小(f=0.001-0.008),无磨损产生,是理想的 摩擦状态。
四、混合摩擦
混合摩擦:摩擦表面间处于边界摩擦和流体摩擦的混合状 态(=1~3) 。 混合摩擦能有效降低摩擦阻力,其摩擦系数比边界摩擦时 要小得多。 边界摩擦和混合摩擦在工程实际中很难区分,常统称为 不完全液体摩擦。
汽车的磨合期如同运动员在参赛前的热身运动
目的:汽车磨合也叫走合。汽车磨合期是指新车
或大修后的初驶阶段。机体各部件机能适应环境的 能力得以调整提升。新车、大修车及装用大修发动 机的汽车在初期使用阶段都要经过磨合,以便相互 配合机件的磨擦表面进行吻合加工,从而顺利过渡
到正常使用状态。汽车磨合的优劣,会对汽车寿命、
滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等 用于低速 用于高速
§4-3 润滑剂、添加剂和润滑办法
三、润滑方法
滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等
用于低速
用于高速
浸油与飞溅润滑
喷油润滑
油脂润滑常用于运转速度较低的场合,将润滑脂涂抹于需润 滑的零件上。润滑脂还可以用于简单的密封。

思考题:
4—1 4—5 4—10 4—11
§4-1 摩擦
滑动摩擦分为:
干摩擦、边界摩擦、流体摩擦、混合摩擦
一、干摩擦 表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。通 常将未经人为润滑的摩擦状态当作“干摩擦”处理。
§4-1 摩擦
二、边界摩擦

《机械设计》第三节-摩擦-磨损-润滑

《机械设计》第三节-摩擦-磨损-润滑

t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体

混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2

机械设计中的摩擦与磨损分析

机械设计中的摩擦与磨损分析

机械设计中的摩擦与磨损分析在机械设计领域,摩擦与磨损是两个至关重要的概念。

它们不仅影响着机械部件的性能和寿命,还关系到整个机械设备的运行效率和可靠性。

首先,我们来了解一下什么是摩擦。

简单来说,摩擦就是当两个物体相互接触并相对运动时产生的阻力。

这种阻力的大小取决于多种因素,比如接触面的材质、粗糙度、压力以及运动速度等。

想象一下,我们在推一个重物,如果地面很粗糙,或者重物压得很紧,那么我们就需要用更大的力才能推动它,这就是因为摩擦阻力增大了。

在机械系统中,摩擦可以分为不同的类型。

比如,干摩擦就是指两个接触面没有任何润滑剂存在时的摩擦;而湿摩擦则是在有润滑剂的情况下产生的。

还有边界摩擦、混合摩擦等等。

不同类型的摩擦具有不同的特点和规律。

接下来,我们谈谈磨损。

磨损是由于摩擦导致的材料逐渐损失的现象。

就好像我们用砂纸打磨一块木头,木头表面的材料会一点点被磨掉,这就是磨损。

磨损的形式也是多种多样的,常见的有粘着磨损、磨粒磨损、疲劳磨损和腐蚀磨损等。

粘着磨损通常发生在两个接触面压力很大、温度较高的情况下。

这时,材料表面会发生局部的粘着和撕裂,导致磨损加剧。

比如,在一些重载的齿轮传动中,如果润滑不良,就容易出现粘着磨损。

磨粒磨损则是由于外界的硬质颗粒进入接触面,像“小砂粒”一样在摩擦过程中刮擦材料表面,从而造成磨损。

比如,在矿山机械中,由于工作环境中有大量的粉尘和矿石颗粒,很容易出现磨粒磨损。

疲劳磨损是由于材料在反复的接触应力作用下,产生微小裂纹并逐渐扩展,最终导致材料脱落。

这种磨损常见于滚动轴承等部件。

腐蚀磨损则是在摩擦过程中,材料与周围环境发生化学反应,导致表面损伤。

例如,在一些潮湿、有腐蚀性介质的环境中工作的机械部件,就容易受到腐蚀磨损的影响。

那么,摩擦与磨损对机械设计有着怎样的重要意义呢?从性能方面来看,过大的摩擦会增加能量的消耗,降低机械的效率。

比如,一辆汽车的发动机,如果内部摩擦过大,就会消耗更多的燃料来克服摩擦阻力,从而降低燃油经济性。

机械设计基础机械设计中的摩擦与磨损分析

机械设计基础机械设计中的摩擦与磨损分析

机械设计基础机械设计中的摩擦与磨损分析机械设计基础:机械设计中的摩擦与磨损分析摩擦与磨损是机械设计中一个非常重要的问题,它直接影响到机械零件的使用寿命和性能。

在机械运动中,摩擦与磨损是不可避免的。

本文将从摩擦和磨损的定义、原因以及影响等方面进行探讨,以帮助读者更好地理解机械设计中的摩擦与磨损问题。

一、摩擦与磨损的定义1. 摩擦:摩擦是指两个物体表面由于接触而产生的相互阻碍相对运动的力。

在机械系统中,摩擦是一种能量损失现象,会产生热量和噪音。

2. 磨损:磨损是指在两个物体表面发生相对运动的过程中,由于摩擦作用而导致表面物质的逐渐破坏。

磨损会引起零部件的减小、变形甚至失效,降低机械系统的性能。

二、摩擦与磨损的原因1. 机械结构设计问题:不合理的机械结构设计会导致零件表面间的接触压力过大,从而增加摩擦力和磨损。

例如,设计不当的轴承安装间隙会导致轴承磨损加剧。

2. 环境因素:环境因素也是摩擦和磨损的原因之一。

例如,灰尘和颗粒物进入机械系统中会增加零部件的磨损。

同时,高温、高湿度等环境条件也会加剧摩擦与磨损。

3. 润滑不良:润滑问题是摩擦和磨损产生的主要原因之一。

不良的润滑状态会导致零件间的摩擦系数增大,从而导致磨损加剧。

合适的润滑剂的选择和使用是减少磨损的有效方法。

三、摩擦与磨损的影响1. 寿命:摩擦和磨损对机械零件寿命的影响非常显著。

高摩擦和剧烈磨损会缩短零件的使用寿命,降低机械系统的可靠性和稳定性。

2. 性能:摩擦和磨损会导致机械系统的性能下降。

例如,由于磨损导致的间隙增大会使得机械部件的精度下降,进而影响到整个系统的性能。

3. 能耗:摩擦和磨损会消耗机械系统的能量,增加能耗。

通过减少摩擦和磨损,可以降低机械系统的能量消耗,提高能源利用效率。

四、减少摩擦与磨损的方法1. 优化机械结构:合理的机械结构设计可以减小接触应力,减缓零件的磨损。

合适的轴承配合间隙、减少干涉等方法都是减少摩擦与磨损的关键。

2. 使用合适的润滑剂:正确选择润滑剂可以减少摩擦系数,提高机械部件的润滑性能。

机械设计中的摩擦和磨损问题

机械设计中的摩擦和磨损问题

机械设计中的摩擦和磨损问题机械设计中摩擦和磨损问题一直是工程师们关注的焦点。

摩擦和磨损的存在直接影响着机械设备的性能、寿命和可靠性。

本文将就摩擦和磨损问题在机械设计中的影响及其解决方法进行探讨。

1. 摩擦的定义与分类摩擦可以被定义为两个物体表面相互接触并发生相对运动时的力的阻碍。

按照摩擦力的起因和性质,摩擦可以分为干摩擦、液体摩擦和边界摩擦。

干摩擦是指物体表面在无润滑剂存在的情况下直接接触产生摩擦力;液体摩擦发生在润滑剂的存在下,液体形成摩擦层减小物体直接接触带来的摩擦力;边界摩擦是相对于干摩擦和液体摩擦的一种摩擦形式,润滑剂无法形成稳定的摩擦层,导致物体表面间的直接接触。

2. 摩擦的影响及解决方法摩擦力的产生会导致机械设备的性能下降和能源浪费。

为了解决摩擦的问题,工程师们采取了一系列的解决措施:2.1 使用润滑剂润滑剂的使用是减小摩擦力的常见解决方法之一。

润滑剂可以在物体表面形成一个摩擦降低的薄膜,减小表面接触,其分子结构可吸附在金属表面,在外加力下形成晶格变形而起到润滑作用。

有机润滑剂可分为固体、液体和气体,根据不同的应用场景选择适当的润滑剂。

2.2 采用合适的材料和涂层在机械设计中,选择适当的材料和涂层对减小摩擦起着重要的作用。

例如,使用高硬度表面涂层,可以减少物体表面间的接触,降低摩擦和磨损。

在特殊的应用场景中,还可以使用减摩降噪材料,如聚四氟乙烯(PTFE)等,以提高机械设备的性能。

3. 磨损的定义与分类磨损是指物体表面与外力作用下相互滑动或接触产生的材料损耗。

根据磨损机制和特征,磨损分为磨粒磨损、疲劳磨损、热磨损和化学磨损等几种类型。

4. 磨损的影响及解决方法磨损的存在会加速机械设备的老化,降低使用寿命。

为了解决磨损问题,以下方法常常被工程师们采用:4.1 加强材料硬度增加材料硬度是减少磨损的一种方法。

高硬度的材料可以有效降低磨粒对工作表面的损伤。

在一些高负荷和高速运动的设备上,使用高硬度材料来制造关键零部件可以显著提高耐磨性。

机械设计----摩擦

机械设计----摩擦

第三章 磨擦、磨损及润滑(一)教学要求掌握摩擦副分类及基本性质、磨损过程和机理及润滑的类型及润滑剂类型。

(二)教学的重点与难点摩擦副基本性质和典型磨损过程(三)教学内容§3—1 摩擦摩擦——两接触的物体在接触表面间相对滑动或有一趋势时产生阻碍其发生相对滑动的切向阻力,——这种现角叫磨擦磨损——由于摩擦引起的摩擦能耗和导致表面材料的不断损耗或转移,即形成磨损。

使零件的表面形状与尺寸遭到缓慢而连续破坏→精度、可靠性↓效率↓直至破坏润滑——减少摩擦、降低磨损的一种有效手段。

摩擦学(Tribology )——包含力学、流变学、表面物理、表面化学及材料学、工程热物理学等学科,是一门边缘和交叉学科。

摩擦 内摩擦——发生在物质内部外摩擦——两个相互接触表面之间的摩擦接运动状态——摩擦 静摩擦——仅有相对滑动趋势时的摩擦动摩擦本节只讨论金属摩擦副的滑动摩擦根据摩擦面间存在润滑剂的状况,干摩擦 ——最不利滑动摩擦 边界摩擦(边界润滑) ——最低要求流体摩擦(流体润滑) ——如图3-1所示混合摩擦(混合润滑) ——最理想各种状态下的摩擦系数见表3-1,图3-2为摩擦特性曲线p v f /ηλ=-的关系。

一、干摩擦——两摩擦表面直接接触,不加入任何润滑剂的摩擦而实际上,即使很洁净的表面上也存在脏污膜和的氧化膜,∴实际f 比在真空中测定值小很多。

摩擦理论:①库仑公式 n f fF F =(n F —法向力)——至今沿用机理:②机械摩擦理论→认为两个粗糙表面接触时,接触点相互啮合,摩擦力为啮合点问切向阻力的总和,表面越粗糙,摩擦力就越大。

但不能解释光滑表面间的摩擦现象——表面愈光滑、接触面越大,f F 越大,且与滑动速度V 有关。

③新理论:分子—机械理论、能量理论、粘着理论—常用简单粘着理论:如图3-3所示,摩擦副真实接触面积Ar 只有表现接触面积A 的百分之一和万分之一,)10000~100/(A Ar =,∴接触面上压力很大,很容易达到材料的压缩屈服极限sy σ→产生塑性流动→接触面↑,∴n F ↑应力并不升高 ∴sy nF Ar σ= (3-1)接触点塑性变形后→脏污膜遭破坏,容易使基本金属产生粘着现象→产生冷焊结点→滑动时,先将结点切开,设结点的剪切强度极限为B τ,则摩擦力为B sy nB r f F A F τστ== (3-2) ∴金属摩擦系数syB n fF F f στ== (3-3) B τ 两接触金属中较软者的剪切强度——剪切发生在软金属站界面的剪切强度极限B f f B ττττ<<=,(脏污表面)——剪切发生在结点金属上 sy σ——较硬的基本材料的压缩屈服极限∵大多数金属sy B στ/很相近,∴f 很相近∴降低摩擦系数的措施:在硬金属基体表面涂覆一层极薄的软金属(使)sy σ取决于基体材料,B τ取决于软金属。

机械设计摩擦磨损润滑

机械设计摩擦磨损润滑



分开结点的力就是摩擦力:Ff=Arτ
B
b)修正粘附理论:轮廓峰接触同时存在
法向力和切向力,金属的塑性变形取决于 压应力和切应力组成的复合应力。 法向力作用 切向力 摩擦系数: 产生结点 结点发生塑性流动
Ff
接触面积Ari 极限 f Fn sy 较软基体的压缩屈服强度极限
润滑油的主要性质


2 润滑油的主要性质
1)油性:是润滑油吸附于摩擦表面形成边界膜的能力。油性越好, 吸附能力就越强。 2)粘度:是表示油液内部相对运动时产生内摩擦阻力大小的性能 指标。 (粘度是选择润滑油的主要依据)。
O
下面分析粘度的物理意义:
υ
y
dy
两个平行的平板之间充满 润滑油,B板静止,A板以速度

2)边界摩擦:是指两摩擦面被吸附在

表面的边界膜(牢固的吸附在金属表面
的分子膜)隔开,摩擦性质取决于边 界膜和表面吸附性能的摩擦。 边界膜极薄,不能完全避免金属的直接
接触,所以仍存在较大的磨损。
摩 擦3

吸附膜 边界膜分为: 反应膜 物理吸附膜 化学吸附膜

边界摩擦靠边界膜起润滑作用,边界膜的类型如下:
增粘剂等

四、润滑方法
1、油润滑 方法: 滴油润滑 间歇式

连续式
油环润滑
飞溅和浸油润滑 压力循环润滑 2、脂润滑 旋盖式油脂杯





本章小结:

1、摩擦学的基本内容
2、干摩擦、边界摩擦、流体摩擦和混合摩擦的特征;
3、磨损过程和各种磨损的机理
4、润滑的作用和润滑油的性能指标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磨损的机理: 磨粒磨损 粘附磨损 疲劳磨损
磨损类型:
冲蚀磨损
腐蚀磨损 微动磨损
潘存云教授研制
粘附磨损—也称胶合,当摩擦表面的轮廓峰在相互作 用的各点处由于瞬时的温升和压力发生“冷 焊”后,在相对运动时,材料从一个表面迁 移到另一个表面,便形成粘附磨损。严重 的粘附磨损会造成运动副咬死。
磨损的机理: 磨粒磨损 粘附磨损 疲劳磨损
磨损类型:
冲蚀磨损
腐蚀磨损 微动磨损
潘存云教授研制
疲劳磨损—也称点蚀,是由于摩擦表面材料微体积在 交变的摩擦力作用下,反复变形所产生的 材料疲劳所引起的机械磨损。点蚀过程: 产生初始疲劳裂纹→扩展→ 微粒脱落,形 成点蚀坑。
磨损的机理: 磨粒磨损 粘附磨损 疲劳磨损
磨损类型:
潘存云教授研制
冲蚀磨损
机械设计摩擦磨损及润滑.
摩擦 、磨损、润滑
摩擦学----研究相对运动的作用表面间的摩擦、磨损 和润滑,以及三者间相互关系的理论与应用的一门边 缘学科。 ▲ 摩擦--相对运动的物体表面间的相互阻碍作用现象; ▲ 磨损--由于摩擦而造成的物体表面材料的损失或转移; 关于摩擦、磨损与润滑的学 ▲ 润滑--减轻摩擦和磨损所应采取的措施。 科构成了摩擦学(Tribology)。 世界上使用的能源大约有 1/3~1/2 消耗于摩擦。 机械产品的易损零件大部分是由于磨损超过限度而 报废和更换的。 减少摩擦 节省能源;
磨损量
时间 磨合阶段
它是磨损的不稳定阶段,在整个寿命周期内时间很短。
▲稳定磨损阶段----零件在 平稳而缓慢的速度下磨损。
它标志着磨擦条件相对稳定。
机器的寿命
稳定磨损阶段
剧烈磨 损阶段
▲剧烈磨损阶段----在经过稳定磨损阶段后,零件表面遭 到破坏,运动副间隙增大引起而外的动载荷和振动。零 件即将进入报废阶段。 设计机器时,要求缩短磨合期、延长稳定期、推迟剧烈 磨损期的到来。
磨损的分类:
磨粒磨损
磨损
类型
按磨损机理分
粘附磨损 疲劳磨损 冲蚀磨损 腐蚀磨损 微动磨损
磨损的机理: 磨粒磨损 粘附磨损 疲劳磨损
磨损类型:
潘存云教授研制
冲蚀磨损
腐蚀磨损
微动磨损 磨粒磨损—也简称磨损,外部进入摩擦面间的游离硬颗 粒(如空气中的尘土或磨损造成的金属微粒)或硬的轮 廓峰尖在软材料表面上犁刨出很多沟纹时被移去的材料, 一部分流动到沟纹两旁,一部分则形成一连串的碎片脱 落下来成为新的游离颗粒,这样的微粒切削过程就叫磨 粒磨损。
vv
潘存云教授研制
ቤተ መጻሕፍቲ ባይዱ
v
潘存云教授研制
v
潘存云教授研制
4. 混合摩擦 v 混合摩擦是指摩擦表面间处于边界 摩擦和流体摩擦的混合状态。混合摩擦 能有效降低摩擦阻力,其摩擦系数比边 界摩擦时要小得多。 边界摩擦 边界摩擦和混合摩擦在 f 工程实际中很难区分,常统 混合摩擦 称为不完全液体摩擦。
在一般机器中,处于后三种情况的混合状态。
----润滑油与各种稠化剂(钙、钠、 铝、锂等金属皂)混合稠化而成。
三、 滑动摩擦状态 1. 干摩擦 两零件表面直接接触后,因为微观局部压 力高而形成许多冷焊点,运动时被剪切。 →功耗↑ 磨损↑ 温度↑ →烧毁轴瓦 不允许出现干摩擦! 2. 边界摩擦 运动副表面有一层厚度<1 μm的薄油膜, 不足以将两金属表面完全分开,其表面 部分微观高峰部分仍将相互搓削。 比干摩擦的磨损轻,f ≈ 0.1 ~ 0.3 3. 液体摩擦 有一层压力油膜将两金属表面隔开,彼此 不直接接触。是理想的摩擦状态。 摩擦和磨损极轻,f ≈ 0.001 ~ 0.01
潘存云教授研制
称无量纲参数ηn/p为轴承特 性数。 η-动力粘度,p-压强 ,n-每秒转数 摩擦学研究的最新进展: 微-纳米摩擦学理论
o
液体摩擦
潘存云教授研制
摩擦特性曲线 ηn/p
可实现: f ≤0.001 ----超润滑摩擦状态。


磨损—由于摩擦而导致零件表面材料的逐渐丧失或迁移。 后果—降低机器的效率和可靠性,甚至促使机器提前报废。 磨损过程大致如图所示: 磨损曲线 ▲磨合阶段----包括摩擦表 面轮廓峰的形状变化和表面 材料被加工硬化两个过程。
润滑
一、 润滑剂 作用:降低摩擦功耗、减少磨损、冷却、吸振、防锈等。 气体润滑剂----空气 分类 液体润滑剂----润滑油
半固体润滑剂----润滑脂 固体润滑剂
有机油----动、植物油 矿物油----石油产品, 化学合成油
1. 润滑油 种类:
矿物油来源充足、成本低廉、稳定性好、因而应用最广。
2. 润滑脂
腐蚀磨损 微动磨损
冲蚀磨损—流动的液体或气体中所夹带的硬质物体或硬
质颗粒冲击零件表面所引起的机械磨损。利 用高压空气输送型砂或高压水输送碎石时, 管道内壁所产生的机械磨损是实例之一。。
近年来,由于燃气涡轮机的叶片、火箭发动机的尾喷管这样一些部位的破坏, 才引起人们对这种磨损形式的特别注意
磨损的机理: 磨粒磨损 粘附磨损 疲劳磨损
两种作用均有。
二、摩擦的分类 内 摩 擦:在物质的内部发生的阻碍分子之间相对运 动的现象。 外 摩 擦:在相对运动的物体表面间发生的相互阻碍 作用现象。 静 摩 擦:仅有相对运动趋势时的摩擦。 动 摩 擦:在相对运动进行中的摩擦。 滑动摩擦:物体表面间的运动形式是相对滑动。 滚动摩擦:物体表面间的运动形式是相对滚动。
随着科学技术的发展,摩擦学的理论和应用必将由宏 观进入微观,由静态进入动态,由定性进入定量,成 为系统综合研究的领域。
减少磨损
降低设备维修次数和费用,节省制造零 件及其所需材料的费用。
一、摩擦的机理
摩擦
▲ “机械说” --摩擦原因是表面微凸体的相互阻碍作用; ▲ “机械-分子说”
▲ “分子说” --摩擦原因是表面材料分子间的吸力作用;
磨损类型:
冲蚀磨损
腐蚀磨损 微动磨损
腐蚀磨损—当摩擦表面材料在环境的化学或电化学作 用下引起腐蚀,在摩擦副相对运动时所产 生的磨损即为腐蚀磨损。
磨损的机理: 磨粒磨损 粘附磨损 疲劳磨损
磨损类型:
冲蚀磨损
腐蚀磨损 微动磨损
微动磨损—是指摩擦副在微幅运动时,由上述各磨损 机理共同形成的复合磨损。微幅运动可理 解为不足以使磨粒脱离摩擦副的相对运动。 应用实例:轴与孔的过盈配合面、滚动轴承套圈的 配合面、旋合螺纹的工作面、铆钉的工作面等。
相关文档
最新文档