Fe-C相图与非平衡相转变总结
七章FeFeC相图课件

二.经典合金旳结晶过程
(一)工业纯铁1.当T在T1~T2时,由L→δ;2.在T2~T3时δ旳成份不变; 3. 在T3~T4时由δ→γ; 4. T4~T5,γ成份不变 ;5. T5~T6, 由γ→α;6. T7~室温, α → Fe3CⅢ .室温组织为:α +Fe3CⅢ
含碳0.01%旳工业纯铁结晶过程示意图
α+P(F+Fe3C )
室温组织中组织构成物相对重量为: P+α
室温组织中相构成物相对重量: α+ Fe3C
C%↑P%↑α%↓
40钢
60钢
平衡组织中含碳量旳近似求法:
C%≈ P% ×0.8%
30钢
20钢
3.过共析钢旳结晶过程分析及组织
(1)T1~T2之间,由L→γ (2)T2~T3之间,γ 成份不变(3)T3~T4之间由γ→Fe3CⅡ , 组织为:γ+ Fe3CⅡ含碳量不小于1.2%旳合金,Fe3CⅡ呈网状沿γ晶界析出。(4)T4时,剩余γ发生共析反应生成P,组织为P+Fe3CⅡ反应式为:
一.相及相区:
相:L、α、γ、Fe3C、δ五个基本相。
二.线:
(一)液相线-ABCD线
(二)固相线-AHJECF线
(三)三条水平线:
1.共晶线- ECF线, E~F之间旳合金冷却到1148℃ 时将发生共晶反应,反应式为:
“Ld”为高温莱氏体,恒温结晶。
2.共析线-PSK线(A1线)
P~K之间旳合金冷却到727℃时将发生共析反应,反应式为:
(2)奥氏体:
定义:碳原子溶入γ-Fe旳八面体间隙形成旳固溶体。表达。
含碳量:①727℃时0.77%C (S点) ②1148℃时2.11%C (E点-最大含碳量)
性能:强度、硬度较低,高塑性,高韧性,具有良好旳 铸造性能;奥氏体具有顺磁性。
铁碳合金非平衡组织观察与分析

4
2 45钢840℃水淬(混合M)
5
3 45钢840℃油淬(淬火M+T)
6
4 45钢760℃水淬(淬火M+F)
7
5 45钢840℃水淬400 ℃ 回火(回火T)
8
6 45钢840℃水淬650 ℃ 回火(回火S)
9
7 T12钢球化退火(球状P⇒F+粒状K)
10
8 T12钢780℃水淬(淬火M+K+ A´ )
840℃油淬 760℃水淬 840℃水淬+400℃回火 840℃水淬+650℃回火 球化退火 780℃水淬 780℃水淬+200℃回火 920℃水淬 正火 锻后空冷 920℃水淬 等温淬火 等温淬火 正火
M+T M+F 回火T 回火S 球状P 淬火M +K+A´ 回火M +K+A´ 粗大M +A´ 魏氏组织(W) 魏氏组织W 板条M B上 B下 B粒状
3、渗碳体( Fe3C ):铁与碳形成的金属化合物。 性能---硬度高,脆性大。
4、珠光体( P ):F与Fe3C组成的机械混合物。 性能---力学性能介于两者之间。
5、莱氏体( Ld ):A与Fe3C组成的机械混合物。 性能---硬度高,塑性差。
21
第3章 铁碳合金
第二节 铁碳相图分析
引言: 关于铁碳合金状态图
铁碳合金非平衡组织观察与分析
一、实验目的: 1.研究淬火温度、冷却速度、回火温度对45钢和T12
钢组织的影响。 2. 熟悉钢热处理后的基本组织金相特征。
二、实验概述: 1. 铁碳合金相图及其作用; 2. 钢热处理后的基本组织金相特征(见下表)
三、实验内容及要求: 1. 认真观察分析碳钢热处理后的组织及其形貌特征; 2. 完成电子实验报告
铁—碳平衡图的基本知识

铁一碳平衡图的基本知识提要:铸铁的合金与熔炼与铁一碳合金相图关系密切,它是铸铁合金与熔炼的理论基础。
将合金与熔炼中发生的现象与铁一碳合金相图联系分析,可知其然并知其所以然。
从基础的理论上去分析实际问题,避免在指导与解决生产中技术问题中犯基本的错误。
铸造看似简单,实则相当复杂,大量事实证明,铸造工程师即有丰富的生产经验又有厚实的理论基础,在解决像迷阵一样的铸造缺陷中,往往思路清晰,判断准确,措施有力。
一、看懂铁一碳合金相图1、铁一碳合金相图的4个概念(1)合金相图:表示合金状态与温度、成分之间关系的图形称为合金相图,是研究合金结晶过程中组织形成与变化规律的工具。
(2)铁—碳合金相图:在极缓慢冷却条件下,不同成分的铁碳合金在不同温度下形成各类组织的图形。
(3)铁—碳双重相图:铸铁中的碳能以石墨或渗碳体两种独立相存在,因此铁一碳合金相图存在两重性,即Fe-C (石墨)相图与c 相图。
Fe—Fe3c系相图(4)稳定系与亚稳定型铁碳相图:在一定的条件下,Fe—Fe3可以向Fe—C (石墨)转化,故称Fe—C (石墨)为稳定系相图(用虚线表示),Fe—Fec为亚稳定系相图(用实线表示),3如图1所示。
C%图1 Fe—C (石墨)、Fe—Fe3c双重相图1)铸铁的性能是由铸铁中的组织决定的要保证铸铁的性能,就必须控制组织,合金相图就是研究合金组织是如何形成的,在形成的过程中,它的变化规律是怎样的,铸造工程师必须了解这些规律,才能有效地控制组织,达到满足铸铁性能的目的。
这就是我们为什么要研究铁碳合金相图的目的,其中对(2)(3)(4)概念的理解尤为重要。
2)铁-碳合金相图概念阐明了三点:在极缓慢的冷却条件下、在不同的成分下、在不同的温度下形成的各类组织。
铁一碳相图是在极缓慢冷却下形成的,实际生产中冷却速度远大于合金相图中的冷却速度铸型材料不同,导致冷却速度各异,所形成的组织大相径庭。
因此我们必须研究冷却速度对铸铁组织的影响。
铁碳合金相图分析

第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。
第五章 相平衡和相图-Fe-FeC3相图131104

• 铁素体从727℃冷却时也会析出极少量的渗碳体,以三次渗碳体 Fe3CIII称之,以区别上述两种情况产生的渗碳体。
材料科学基础 第四节 Fe-C相图
4. 铁碳合金的分类
第五章 相平衡与相图
铁碳合金通常可按含碳量及其室温平衡组织分为三大类:
(1)工业纯铁,C<0.0218% (2)碳钢,0.0218%<C<2.11%
材料科学基础 第四节 Fe-C相图
三、 Fe- 石墨相图
1. 相图中的线和区 CD——从液相结晶出一次石墨GI; ES ——从奥氏体中析出二次石墨GII; PQ ——从铁素体中析出三次石墨GIII; ECF——共晶反应线,LC E + G PSK ——共析反应线, S P + G 2. Fe- 石墨结晶平衡组织
第五章 相平衡与相图
• 完全按Fe- 石墨相图结晶的的所有铸铁的平衡组织都是由铁素体和 片状石墨组成。
• 随含碳量增加,石墨数量增加,铁素体数量减少。
材料科学基础 第四节 Fe-C相图
2. 铁碳合金的石墨化
第五章 相平衡与相图
铁碳合金中形成石墨的过程称为石墨化,分为两个阶段: (1) 液态石墨化:
• 从液体中直接形成一次石墨和共晶石墨;
• 一次渗碳体和共晶渗碳体的高温分解。 (2)固态石墨化:
• 从奥氏体中形成的二次石墨和共析石墨;
• 二次渗碳体和共析渗碳体的分解。
材料科学基础 第四节 Fe-C相图
3. 铸铁的类型和组织
第五章 相平衡与相图
根据石墨化程度,铸铁可分为
(1)白口铸铁 • 完全按Fe- Fe3C相图结晶的铸铁的平衡组织由铁素体和渗碳体组成。其 断口呈现白色,故称为白口铸铁。 (2)灰口铸铁 • 第一阶段的石墨化可以充分进行,第二阶段的石墨化充分或部分,铸铁 组织由基体组织和石墨组成。其断口呈现深灰色,故称为灰口铸铁。
Fe-C相图具体分析

Fe-C 相图分析一. Fe-C 双重相图铁碳合金是铁与碳组成的合金,在合金中当碳含量超过固溶体的溶解限度后,剩余的碳以两种存在方式:渗碳体Fe 3C 或石墨。
在通常情况下,铁碳合金是按Fe-Fe 3C 系进行转变。
但在极为缓慢冷却或加入促进石墨化的元素的条件下碳才以石墨的形式存在,因此Fe-石墨系是更稳定的状态。
按照这样情况,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图,如图6.1所示。
Fe 3C T /0CD 'K 'δC wt.%图6.1 Fe-C 双重相图图中实线部分为Fe-Fe 3C 相图,虚线表示Fe-C 相图,实线与虚线重合的部分以实线表示。
尽管Fe-Fe 3C 相图是一个亚稳相图,但一般情况下铁碳合金中的相变化遵循Fe-Fe 3C 相图,所以通常也将其称为平衡相图,在Fe-Fe 3C 相图中的相或反应生成的各种组织都分别称为平衡相或平衡组织。
二. Fe-Fe3C相图分析1.相区五个单相区:ABCD(液相线)—液相区(L) AHNA—δ相区NJESGN—奥氏体区(γ或A) GPQG—铁素体区(α或F)DFK—渗碳体区(Fe3C或Cm)ABCD为固相线,AHJECF为液相线。
七个两相区:L+δ、L+γ、L+ Fe3C、δ+γ、γ+α、γ+Fe3C、α+ Fe3C五条水平线:HJB—包晶转变线、ECF—共晶转变线、PSK—共析转变线770℃(MO)虚线—铁素体的磁性转变线(又称为A2线)230℃虚线—渗碳体的磁性转变线2. 三个恒温转变(1)包晶转变(1495℃HJB水平线):凡成分贯穿HJB恒温线的铁碳合金(w(C)=0.09-0.53%),冷却到1495℃,w(C)=0.53%的液相与w(C)=0.09%的δ相发生包晶反应,生成w(C)=0.17%的γ相即奥氏体A。
包晶反应式记为1495CB H JLδγ︒+→,其中的下标字母表示该相的成分点。
(2)共晶转变(1148℃ECF水平线):反应式为11483CC EL Fe Cγ︒↔+,w(C)=2.11-6.69%的合金冷却时,在1148℃都发生共晶转变。
Fe-C相图解析

室温组织
过共晶白口铸铁 在室温时的组织由一次渗碳体和莱氏体组成。用硝酸酒精溶 液浸蚀后,在显微镜下可观察到在暗色斑点状的莱氏体基本上分布着亮白色 的粗大条片状的一次渗碳体,其显微组织如图所示。
当wc=4.3%,温度为1148℃时铁碳合金发生共晶转变。 L4.3←→(A+Fe3C)≡Ld即碳的质量分数为4.3%铁碳 合金液相结晶时发生共晶转变产生了奥氏体和渗碳体机 械混合物的共晶体。这个共晶体命名为高温莱氏体,代 号为Ld。高温莱氏体是存在于727℃以上的一种基本组 织。 在727℃以下高温莱氏体中的奥氏体又发生共析转变变 成珠光体。这是的莱氏体就变成由 P和Fe3C 组成。成为 低温莱氏体,低温莱氏体是铁碳合金在室温下的另一个 基本组织。 另外,各个相若是独立存在于铁碳合金中,也都可以看 作是单相的基本组织。这些基本组织均被称为铁碳合金 显微组织的组织组成物。
室温组织 过共析钢其组织由珠光体和先共析渗碳体(即二次渗碳体)组 成。钢中含碳量越多,二次渗碳体数量就越多。图为含碳量1.2 %的过共析钢的显微组织。组织中存在片状珠光体和网络状二 次渗碳体,经浸蚀后珠光体成暗黑色,而二次渗碳体则呈白色 网络状。
过共析钢(1.2%C)室温显微组织
共晶白口铸铁
平衡态下的相变过程 合金⑤是碳的质量分数为共晶成分(wc=4.3%)的共晶铁碳合金。从相图上可 看到当温度在1点(1148C)之上是均匀的液相状态,当温度降到1点之后发生 恒温共晶转变。即 L4.3→(A2.11+Fe3C)≡Ld。液相全部以共晶转变的方式结晶成 高温莱氏体(Ld)。组成高温莱氏体的奥氏体和渗碳体分别被称为共晶奥氏体 和共晶渗碳体。共晶奥氏体通常以树枝状分布在共晶渗碳体的基体上。但当温 度降到1点以下,随温度的下降,碳在奥氏体中溶解度的下降,Ld中的共晶奥氏 体也同样会析出Fe3CⅡ,并与Ld中作为基体的共晶渗碳体混成一体。在1~2点 之间合金⑤的显微组织是Ld。当Ld中的共晶奥氏体析出Fe3CⅡ,时其本身的碳 的质量分数也不断下降,当温度降到2点(727℃)时共晶奥氏体的wc=0.77%, 随即发生共析转变,共晶奥氏体转变成珠光体,从2点直到室温,合金⑤的显微 组织是在渗碳体的基体上分布着树枝状的珠光体。这种显微组织称为低温莱氏 体,也称为变态莱氏体,符号是Fe3CⅡ+Ld` 。
热处理中最重要的铁碳合金相图的知识总结

铁碳合金相图1、纯铁的同素异构转变许多金属在固态下只有一种晶体结构,如铝、铜、银等金属在固态时无论温度高低,均为面心立方晶格(金属原子分布在立方体的八个角上和六个面的中心,如图a)。
钨、钼、钒等金属则为体心立方晶格(八个原子分布在立方体的八个角上,一个原子处于立方体的中心,如图b所示)。
但有些金属在固态下存在两种或两种以上的晶格形式,如铁、钴、钛等,这类金属在冷却或加热过程中,其晶格形式会发生变化。
金属在固态下随着温度的改变,由一种晶格转变为另一种晶格的现象,称为同素异构转变。
图a 面心立方晶体 图b 体心立方晶体图1是纯铁的冷却曲线。
液态纯钛在1538℃进行结晶,得到体心立方晶格的δ-Fe 。
继续冷却到1394℃发生同素异构转变,成为面心立方晶格γ-Fe。
在冷却到912℃又发生一次同素异构转变,成为体心立方晶格α-Fe。
正因为纯铁的这种同素异构转变,才使钢和铸铁通过热处理来改变其组织和性能成为可能。
图1 纯铁的冷却曲线纯铁的同素异构转变与液态金属的结晶过程相似,遵循结晶的一般规律:有一定的平衡转变温度(相变点);转变时需要过冷度;转变过程也是由晶核的形成和晶核的长大来完成。
但是这种转变是在固态下进行的,原子扩散比液态下困难,因此比液态金属结晶具有较大的过冷度。
另外,由于转变时晶格致密度的改变,将引起晶体体积的变化。
如:γ-Fe转变为α-Fe时,他可能引起钢淬火时产生应力,严重时会导致工件变形或开裂。
纯铁的磁性转变温度为770℃。
磁性转变不是相变,晶格不发生转变。
770℃以上无铁磁性,770℃以下有铁磁性。
2、铁碳合金的基本组织在铁碳合金中,铁和碳是两个基本组元。
在固态下,铁和碳有两种结合方式:一是碳溶于铁中形成固溶体,二是铁与碳形成渗碳体,它们构成了铁碳合金的基本组成相。
(1)液相 用”L”表示。
是铁碳合金在熔化温度以上形成的均匀液体。
(2)铁素体用符号"F"(或“α”、“δ”)表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fe-C相图与非平衡相转变总结
钢通常被定义为一种铁和碳的合金,其中碳含量在几个ppm到2.11wt%之间。
其它的合金元素在低合金钢中可总计达5wt%,在高合金钢例如工具钢,不锈钢(>10.5%)和耐热CrNi钢(>18%)合金元素含量甚至更高。
钢可以展现出一系列的性能,这些性能依据于钢的组成,相状态和微观组成结构,而这些又取决于钢的热处理。
Fe-C相图
理解钢的热处理
的基础是Fe-C相图(图
一)。
图一实际上有两
个图:(1)稳定态Fe-C
图(点划线),(2)亚
稳态Fe-Fe3C图。
由于
稳态需要很长时间才能达到,特别是在低温和低碳情况下,亚稳态往往引起人们更多的兴趣。
Fe-C相图告诉我们,在不同碳含量的组成和温度下,达稳态平衡或亚稳态平衡时哪些相会生成。
我们区别了a-铁素体和奥氏体,a-铁素体在727°C (1341°F)时最多溶解0.028%C,奥氏体在1148°C (2098°F)可溶解2.11wt%C。
在碳多的一侧我们发现了渗碳体(Fe3C),另外,除了高合金钢之外,高温下存在的a-铁素体引起我们较少的兴趣。
在单相区之间存在着两相混合区,例如铁素体和渗碳体,奥氏体
和渗碳体,铁素体和奥氏体。
在最高温下,液相区可被发现,在液相区以下有两相区域液态奥氏体,液态渗碳体和液态铁素体。
在钢的热处理中,我们总是避免液相的生成。
我们给单相区一些重要的边界特殊的名字:(1)A1,低共熔温度,是奥氏体生成的最低温度;(2)A3,奥氏体区域的低温低碳边界,也即r/(r+a)边界;(3)Acm,奥氏体区域的高碳边界,也即r/(r+Fe3C)边界。
低共熔温度碳含量是指在奥氏体生成的最低温度时的碳含量(0.77wt%C)。
铁素体-渗碳体混合相在冷却形成时有一个特殊的外貌,被称为珠光体,可作为微观结构实体或微观组成物来进行处理。
珠光体是一种a-铁素体和渗碳体薄片的混合物,渗碳体薄片又退化为渗碳体颗粒散步在一个铁素体基质中,散步过程发生在铁素体基质扩散接近A1边界之后。
Fe-C相图源于实验。
但是,热力学原理和现代热力学的数据的相关知识可以为我们提供关于相图的精确计算。
当相图边界不得不被推测和低温下实验平衡很慢达到时,这种计算特别有用。
如果合金元素加入Fe-C相图,A1,A3,Acm边界的位置和低共熔组成的位置会变化。
值得一提的是,所有重要的合金元素降低了低共熔碳含量。
奥氏体的稳定元素锰,镍降低了A3,铁素体稳定元素铬,硅,钼和钨增加A3。
平衡相图不能说明的相变动力学过程与亚稳态相,必须用非稳态相转变图来描述。
各种相转变图
在钢的热处理中,相变的动力学因素与平衡图表同样重要。
对于
钢的性能特别重要的亚稳相马氏体和形态上亚稳态的微观组成物贝氏体,可以在相对急速冷却至环境温度时产生。
这时碳和合金杂质的扩散受抑制或者限制在极小范围内。
贝氏体是一种低共熔组成物,是铁素体和渗碳体的混合物。
最硬的组成物马氏体,在极度饱和的奥氏体快速冷却时通过完全转化形成,当碳含量增加至大约0.7wt%时,马氏体的硬度增加。
如果这些不稳定的亚稳态产物接下来加热至一个适度的高温,它们分解为更稳定的铁素体和碳化物。
这种重新加热的过程有时被称为回火或退火。
钢加热奥氏体化是热处理的前提。
环境温度下铁素体-珠光体或镇定马氏体的结构到高温下奥氏体或奥氏体-碳化物的结构转变对于钢的热处理同样重要。
钢的热处理涉及的四种相转变条件
我们可以利用相图方便地描述出在相变时发生了什么。
四种不同的图可以被区别,它们是:(1)加热过程的奥氏体的等温转变,奥氏体化;(2)冷却过程奥氏体的等温转变,奥氏体的分解;(3)连续加热过程的奥氏体化;(4)连续冷却过程的奥氏体的分解。
加热过程的奥氏体化
这种图展现了当钢在恒温时维持很长一段时间时所呈现的状态。
通过维持一些小样品在铅或盐浴中并在依次增加维持时间后每次冷却一个样品,之后在显微镜下观察在微观结构中生成的相的数量可以了解微观结构随时间的变化。
共析钢加热过程的奥氏体化
在奥氏体的转变中,先从原始的铁素体和珠光体或镇定马氏体转
变为较为紧密的奥氏体,这
种转变中体积减小。
在延长
的曲线中,奥氏体形成的开
始和结束时间通常被分别
定义为转变进行至1%和99%
时。
ITh diagrams
冷却过程奥氏体的等温转变,奥氏体的分解,TTT DIAGRAMS 这个过程在高温下开始,通常是在维持长时间获得均一的奥氏体而没有不溶解的碳化物后在奥氏体范围内发生,这之后又通过快速冷却至理想温度。
A3边界上没有转变可以发生,在A1边界到A3边界之间只有铁素体可以通过奥氏体形成。
连续加热过程的奥氏体化,CRT DIAGRAMS
在实际热处理情况下,恒温不要求,但要求在冷却或加热时有一个连续变化的温度。
因此,如果相图使用的连续增加或减小的温度建立在膨胀计数据之上,我们可以获得更多的实用信息。
如同ITH图,
CRT图在预测发生在感应和之后的变硬过程中的短期奥氏体化的效果很有用。
一个典型的问题是在一个规定的加热速率下,达到完全的奥氏体化最大的表面温度有多高。
当温度太高时,可引起我们不希望的奥氏体晶粒成长,这些又会导致一个更易破碎的马氏体的微观结构。
连续冷却过程的奥氏体的分解,CCT DIAGRAMS
对于加热的图表,清晰地阐述转变图来源于哪种冷却曲线是很重要的。
在实验操作中使用一个恒定的冷却速率是很平常的,但是,这种现象在实验状况下很少发生。
我们也可以根据牛顿冷却定律找出所谓的自然冷却曲线,这些曲线模拟了大范围内部的行为,例如,在特殊条带上距冷却端一段距离的冷却速率。
接近条纹样本的表面冷却速率的特征非常复杂。
每一个CCT图包含了一系列在圆柱样本不同深度的冷却速率曲线。
最慢的冷却速率曲线代表了圆柱的中心。
冷却介质越不均匀,C形状曲线需要越长时间去改变,但M温度不受影响。
但是值得注意的是,这种转变图不能用于预言那些不同于构建图表的热学历史的反应。
例如,在Ms之上第一次冷却从急速到缓慢而后重新加热至高温是一个很快的转变,这种转变快于在TTT图表上所显示的因为在开始的冷却中成核过程大大加速。
同样值得注意的是转变图对于在一定允许组成范围内精确的合金含量是十分敏感的。
冶金064班学习小组:赖晓寒同学整理完成。