数字通信系统的设计与仿真

合集下载

Matlab在通信系统设计和仿真中的应用

Matlab在通信系统设计和仿真中的应用

Matlab在通信系统设计和仿真中的应用一、概述通信系统是现代社会中不可或缺的重要组成部分,它为人们的信息交流提供了关键的基础。

而通信系统的设计与仿真则是确保通信系统能够高效可靠地运行的重要环节。

在通信系统设计和仿真中,Matlab作为一种强大的工具,提供了丰富的功能和算法,被广泛应用于各个领域。

本文将介绍Matlab在通信系统设计和仿真中的应用。

二、数字通信系统的设计数字通信系统是一种将信息以离散的形式传输的通信系统。

在数字通信系统的设计中,需要考虑信道编码、调制、调制解调器、帧同步等多个环节。

Matlab提供了丰富的函数和工具箱,能够便捷地进行这些环节的设计和仿真。

1. 信道编码信道编码用于提高数字通信系统对信道噪声的容忍性。

Matlab中的通信工具箱提供了多种常见的信道编码算法,如卷积码、LDPC码和Turbo码等。

通过使用这些编码算法,可以提高系统的纠错性能,保证信息传输的可靠性。

2. 调制调制是将数字信号转换为模拟信号,以便在仿真或实际通信中传输。

Matlab提供了一系列的调制函数,如二进制相移键控(BPSK)、正交相移键控(QPSK)和16进制相移键控(16QAM)等。

这些调制方法能够在不同的信噪比下提供不同的传输速率和误码率性能。

3. 调制解调器调制解调器是数字通信系统中的核心组件,用于将模拟信号转换为数字信号以及将数字信号转换为模拟信号。

Matlab中提供了丰富的调制解调器设计工具和仿真函数,如raised cosine滚降因子设计、匹配滤波器设计和误码性能仿真等。

这些工具和函数帮助工程师更好地设计和优化调制解调器,提高其性能和效率。

4. 帧同步帧同步是指在传输过程中能够正确地检测和定位接收信号中的每一个数据帧。

Matlab中提供了多个帧同步算法,如基于前缀检测、自相关和相关性判决等。

这些算法能够在通信系统中实现准确的帧同步,提高系统的性能和容错能力。

三、射频通信系统的设计射频通信系统是一种利用电磁波在空间中传递信息的通信系统。

通信工程系统仿真实验报告

通信工程系统仿真实验报告

通信原理课程设计实验报告专业:通信工程届别:07 B班学号:0715232022姓名:吴林桂指导老师:陈东华数字通信系统设计一、 实验要求:信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。

对传输系统进行误码率分析。

二、系统框图三、实验原理:QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。

QAM 就是一种频率利用率很高的调制技术。

t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号;t 0s i n ω 为正交信号或者Q 信号;m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅;m 为m A 和m B 的电平数,取值1 , 2 , . . . , M 。

m A = Dm*A ;m B = Em*A ;式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空间上的坐标,有输入数据决定。

m A 和m B 确定QAM 信号在信号空间的坐标点。

称这种抑制载波的双边带调制方式为正交幅度调制。

图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M)QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。

图3.3.5 QAM 相干解调原理图四、设计方案:(1)、生成一个随机二进制信号(2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制(5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调五、实验内容跟实验结果:本方案是在“升余弦脉冲成形滤波器以及眼图”的示例的基础上修改得到的。

通信系统仿真(精)

通信系统仿真(精)

一、物理层仿真实验1、实验目的:初步掌握数字通信系统的仿真方法。

完成一个通信系统的搭建,并仿真得到相应的BER-Eb/No性能曲线,完成系统性能的分析。

2、实验原理通信系统仿真就是要通过计算机产生各种随机信号,并对这些信号做相应的处理以获得期望的结果,但是要求计算机产生完全随机的数据时不可能的,只能算是伪随机数。

从预测的角度看,周期数据是完全可以预测的,但当周期趋于无穷大时,可以认为该数据具有伪随机特性。

产生伪随机数的算法通常有:Wishmann-Hill算法产生均匀分布随机变量该算法是通过将3个周期相近的随机数发生器产生的数据序列进行相加,进而得到更大周期的数据序列。

定义三个随机数发生器:Xi+1=(171xi)mod(30269)Yi+1=(170yi)mod(30307)Zi+1=(172zi)mod(30323)以上三式中均需要设定一初始值(x0,y0,z0),这三个初始值一般称为种子。

产生的三个序列的周期分别是:30269、30307、30323。

将这三个序列组合相加即可得到一个周期更大的均匀分布随机序列:Ui=(Xi/30269+Yi/30307+Zi/30323)mod(1)逆变换法产生Rayleigh分布随机变量逆变换法的基本思想是:将一个不相关均匀分布的随机序列U映射到一个具有概率分布函数Fx(x)的不相关序列随机序列X,条件是要产生的随机变量的分布函数具有闭合表达式。

R=sqrt(-2σ2 ln(u))根据上式即可将均匀分布的随机变量映射为Rayleigh分布的随机变量。

根据Rayleigh分布随机变量产生Gussian分布随机变量通信系统中的噪声通常建模为白高斯噪声,其含义是功率谱是白的,信号分布是满足高斯的。

基于Rayleigh随机变量,可以方便的产生Gussian分布的随机变量。

关系如下:X=R*COS(2πu1)Y=R*SIN(2πu2)其中U1和U2分别是两个均匀分布的随机变量,产生的X和Y均为高斯随机变量。

通信系统仿真实验报告-模拟信源数字化的建模与仿真

通信系统仿真实验报告-模拟信源数字化的建模与仿真

实验一模拟信源数字化的建模与仿真一.实验目的:1、掌握MATLAB语言的基本命令、基本运算、函数等基本知识;2、掌握MATLAB语言的程序设计流程和方法;3、掌握模拟信源数字化的建模与仿真方法。

二.实验内容及步骤:1、编写MATLAB函数文件仿真实现模拟信号的抽样过程;1)单频正弦波模拟信号的抽样实现。

要求输入信号的幅度A、频率F和相位P可变;要求仿真时间从0到2/F,抽样频率分别为Fs=F、Fs=2F、Fs=20F;要求给出相应抽样信号samp11、samp12、samp13的波形图。

2)多频正弦波合成模拟信号的抽样实现。

要求输入信号为幅度A1、频率F1、相位P1的正弦波和幅度A2、频率F2、相位P2的正弦波的叠加;要求仿真时间从0到2/min(F1,F2),抽样频率为Fs=max(F1,F2)、Fs=2*max(F1,F2)、Fs=20*max(F1,F2);要求给出相应抽样信号samp21、samp22、samp23的波形图。

2、编写MATLAB程序仿真实现模拟信号的量化过程;1)单频正弦波模拟信号均匀量化的实现。

要求对抽样信号sampl3归一化后再进行均匀量化;要求量化电平数D可变;要求输出信号为平顶正弦波;要求给出量化序号indx1,给出量化输出信号quant1的波形图,并与抽样信号samp13画在同一图形窗口中进行波形比较。

2)改变量化电平数,分析它和量化误差的关系,并给出仿真图;3)多频正弦波合成模拟信号均匀量化的实现。

要求对抽样信号samp23归一化后再进行均匀量化;要求量化电平数D可变;要求输出信号为平顶正弦波;要求给出量化序号indx2,给出量化输出信号quant2的波形图,并与抽样信号samp23画在同一图形窗口中进行波形比较。

4)要求对抽样信号sampl3归一化后再分别进行满足A律和u律压缩的非均匀量化;要求压缩参数a、u可变;要求量化电平数D可变;要求输出信号为平顶正弦波;要求给出量化输出信号quant11和quant12的波形图,并与抽样信号samp13画在同一图形窗口中进行波形比较。

使用MATLAB进行通信系统设计和仿真

使用MATLAB进行通信系统设计和仿真

使用MATLAB进行通信系统设计和仿真引言:通信系统在现代社会中扮演着至关重要的角色,使人们能够传递信息和数据。

为了确保通信系统的可靠性和效率,使用计算工具进行系统设计和仿真是至关重要的。

在本篇文章中,我们将讨论使用MATLAB这一强大的工具来进行通信系统的设计和仿真。

一、通信系统的基本原理通信系统由多个组件组成,包括发射机、传输媒介和接收机。

发射机负责将输入信号转换为适合传输的信号,并将其发送到传输媒介上。

传输媒介将信号传输到接收机,接收机负责还原信号以供使用。

二、MATLAB在设计通信系统中的应用1. 信号生成与调制使用MATLAB,可以轻松生成各种信号,包括正弦波、方波、脉冲信号等。

此外,还可以进行调制,例如将低频信号调制到高频载波上,以实现更高的传输效率。

2. 信号传输与路径损耗建模MATLAB提供了各种工具和函数,可以模拟信号在传输媒介上的传播过程。

通过加入路径损耗模型和噪声模型,可以更准确地模拟实际通信环境中的传输过程。

这些模拟结果可以帮助我们评估和优化通信系统的性能。

3. 调制解调与信道编码MATLAB提供了用于调制解调和信道编码的函数和工具箱。

通过选择适当的调制方式和编码方案,可以提高信号传输的可靠性和容错能力。

通过使用MATLAB进行仿真,我们可以评估不同方案的性能,从而选择出最优的设计。

4. 多天线技术与信道建模多天线技术可显著提高通信系统的容量和性能。

MATLAB提供了用于多天线系统仿真的工具箱,其中包括多天线信道建模、空分复用和波束成形等功能。

这些工具可以帮助我们评估多天线系统在不同场景下的性能,并优化系统设计。

5. 频谱分析与功率谱密度估计频谱分析是评估通信系统性能的重要方法之一。

MATLAB提供了各种频谱分析函数和工具,可以对信号进行频谱分析,并计算功率谱密度估计。

这些结果可以帮助我们了解系统的频率分布特性,并进行性能优化。

6. 误码率分析与性能评估对于数字通信系统而言,误码率是一个重要的性能指标。

水声数字语音通信系统的设计与仿真

水声数字语音通信系统的设计与仿真

水声通信原理课程设计姓名:班级:学号:摘要本次设计以水下语音通信为背景,建立一个数字通信系统,首先通过分析设计要求了解了课题背景,从课本、图书馆、网络获取一定的资料,进行整理之后,先大致建立多个方案想法并比较其优缺点,结合各个方案想法的优缺点进行结合分析,然后选择其中之一重点分析确定该系统原理为:信源经过码激励线性预测语音编码(CELP)编码。

再用卷积码对水声信道进行编码,然后用QPSK的方式进行调制。

在水声信道中,由于水介质的吸收使得可利用的工作频率较低,信道带宽较窄,因而通信速率也较低。

要想在水中进行数字语音通信就必须对语音信息进行大幅度压缩,降低传输所需的比特率。

本论文对数字语音压缩算法进行研究,采用码激励线性预测语音编码(CELP)对原始语音进行编码,并采用带宽利用率较高的相位调制技术对压缩语音进行传输,同时结合自适应均衡等技术来有效地克服信道多途传播产生的码间干扰,纠错编码技术进一步降低系统的误码率。

在设计过程中,先确定整个的流程框架,对该系统进行大致设计,画出整个设计的流程图,并初步分析系统画出系统框架图,对整个系统建立模型,并且运用具体知识分块设计,在每一步中进行设计,在给定参数的条件下完成系统设计,反复核查系统的可行性与可靠性,为了使系统能够正常运转,还运用了Matlab软件进行仿真,具体的分析仿真结果,依据仿真的结果进行综合性能分析与误差分析,以便更好的了解此系统的整体性能。

然后对于系统的结构可行性和最后的综合性能分析以及误差分析对系统进行总体评价。

最后通过一段时间的准备与设计,对这次课程设计进行了总结,总结这次设计中出现的问题以及自己的收获,了解问题出现的原因并进行解决,并分析自己的收获,争取在下次的设计或者其他工作中取得更好的成绩关键字:水声数字通信 CELP matlab QPSK调制 Viterbi译码一.引言 (4)二.原理介绍 (6)三.方案选择 (8)四.方案设计 (13)五.仿真及结果 (13)六.方案总结 (39)七.心得体会 (40)八.参考文献 (40)一.引言设计要求期望达到如下指标:平均传输速率:4kbits /s传输距离:4千米左右误码率: 0.001以下带宽:3kHz ,载频60k 。

数字与模拟通信系统课程设计

数字与模拟通信系统课程设计

数字与模拟通信系统课程设计设计背景数字与模拟通信系统是通信工程专业必修课程之一。

本课程涉及了信号与系统、调制与解调、信道编码、信道调制、多址技术、多媒体通信等重要内容。

本次课程设计旨在掌握数字通信系统和模拟通信系统的基本原理,了解通信系统的设计和模拟实验的方法。

设计要求本次课程设计要求学生掌握以下内容:1.掌握数字信号与模拟信号的特点和区别;2.掌握调制解调的基本原理和信号的传输过程;3.掌握信道编码和信道调制的基本原理;4.能够使用MATLAB等软件进行模拟实验;5.完成设计报告并进行答辩。

实验内容本次课程设计包括以下实验内容和要求:实验一:数字信号的产生和基带信号的调制解调实验目的通过数字信号的产生和基带信号的调制解调,掌握数字信号和模拟信号的区别,以及调制解调的基本原理。

实验要求•产生一个语音信号,观察其时域和频域特征;•使用AM(调幅)调制将语音信号调制到1000Hz的载波上;•使用解调器将调制后的信号还原成原始语音信号;•绘制信号的时域波形、频域波形和信噪比等图形。

实验步骤1.使用MATLAB产生一个语音信号;2.绘制语音信号的时域波形和频域波形;3.使用AM调制将语音信号调制到1000Hz的载波上;4.绘制调制后信号的时域波形和频域波形;5.使用解调器将调制后的信号还原成原始语音信号;6.绘制解调后信号的时域波形和频域波形;7.计算信噪比。

实验二:数字信道编码和调制实验目的通过数字信道编码和调制,了解信道编码和调制的基本原理,掌握数字通信系统的信号传输过程和信道编码的方法。

实验要求•使用CRC和卷积码对二进制序列进行编码;•对编码后的数据进行QPSK和16QAM信号调制;•绘制信号的时域波形、频域波形和误码率等图形。

实验步骤1.产生一个随机二进制序列;2.使用CRC和卷积码对二进制序列进行编码;3.绘制编码后数据的时域波形和频域波形;4.使用QPSK调制对编码后的数据进行调制;5.绘制调制后信号的时域波形和频域波形;6.使用16QAM调制对编码后的数据进行调制;7.绘制调制后信号的时域波形和频域波形;8.对QPSK和16QAM信号进行解调,还原二进制序列;9.绘制解调后数据的时域波形和频域波形;10.计算误码率。

Simulink通信系统建模与仿真教学设计

Simulink通信系统建模与仿真教学设计

详解MATLAB/Simulink通信系统建模与仿真教学设计MATLAB/Simulink是一款广泛应用于各个领域的数学工具,其中Simulink可用于建立系统级仿真模型,以便进行电子、机械、流体和控制系统等领域内的实验分析和设计。

在通信领域中,Simulink非常适合建立通信系统的仿真模型,并用于进行传输计算、信道建模、信号处理和多模调制等。

本文将介绍MATLAB/Simulink通信系统模型的建立,及如何将其应用于通信系统教学设计。

通信系统模型建立数字调制数字调制是通信系统中的关键技术之一。

首先,我们需要在Simulink中建立基带信号源,并使用Math Function模块产生载波信号。

Modulation 模块可用于将基带信号和载波信号结合起来。

为了使得调制系统工作稳定和正常,通常在模型中加入Equalization和Resampling模块,以消除接收端接收到的噪声和信号失真。

当系统处理完成后,我们可以使用Scope模块来对模型工作情况进行进一步的分析。

数字解调数字解调需要在接收端建立解调器模型。

接收端模型包括匹配滤波器、采样器、时钟恢复器、色散补偿器和多值/二次干扰恢复器。

在这个模型中,也需要添加Equalization和Resampling模块以消除接收端所受的噪声和信号失真。

在接收端处理完成之后,我们也可以使用Scope模块对模型结果进行进一步分析。

信道建模信道建模是通信系统中另一个关键环节。

在Simulink中建造通信信道仿真模型,需要引入建立通信信道的数学模型,并建立符合通道模型的信道传输系统。

在建立仿真模型中,包括噪声源、多路复用技术、OFDM技术、信号调制和解调技术。

对于每个信道结构,我们都可以建立相应的仿真模型,进行仿真分析。

OFDM信息传输系统OFDM技术利用多个正交子载波来传输信息,以提高通信质量和可靠性,同时提高频带利用率。

OFDM系统建模主要包括加脉冲造型、IFFT、添加循环前缀、调制调制、运动模糊和色散模拟、反向调制、解压缩、去定时和轻度等模块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字通信系统的设计与
仿真
-CAL-FENGHAI.-(YICAI)-Company One1
数字通信系统的设计与仿真
摘 要:本次设计的是一种数字通信系统,该通信系统主要采用数字信源为输入、交织编码译码技术、MP 信道、2FSK 的调制和非相干解调技术。

利用system view 对系统进行仿真,并分析眼图和误码率。

关键字:system view,仿真,数字通信
1 数字通信系统基本原理
数字通信系统的模型
图1 数字通信系统的模型
信息源
它的作用是把各种消息转换为原始电信号,信源分为模拟信源和数字信源。

本文的输入信号采用模拟信源,通过A/D 转换把输入的模拟信号转换为数字信号,模拟信号转化为数字信号包括三个步骤:抽样、量化和编码。

模拟信号首先被抽样。

通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。

模拟信号被抽样后,成为抽样信号,它在时间上是离散的,但是其取值仍然是连续的,所以是离散模拟信号。

第二步是量化。

量化的结果使抽样信号变成量化信号,其取值是离散的。

故量化信号已是数字信号了,它可以看成是多进制的数字脉冲信号。

第三步是编码。

第一步抽样的定理:设一个连续模拟信号m(t)中的最高频率<H f 且带宽受到限制时,则以间隔时间为1/2H T f 的周期性冲击脉冲对它抽样时,()m t 将被这些抽样值所安全确定。

由于抽样时间间隔相等。

),低通滤波107中的最低频率是10Hz ,108的增益为300Hz 。

即奈奎斯特的定理。

第二步:量化。

模拟信号的抽样值为m(KT),其中T 是抽样周期,k 是整数。

量化原理公式:
,()q i m kT q =≤i-1i 当m m(kT)<m ()
在非均匀量化时,量化间隔是随信号抽样值的不同而变化的。

信号抽样值小时,量化间隔 v 也小;信号抽样值大时,量化间隔 v 也大。

非均匀量化的实现方法通常是在进行量化之前,先将信号抽样值压缩,再进行均匀量化。

其压缩是用一个非线性电路将输入电压x 变换成输出电压y :
()x y f
= () 第三步:通常把从模拟信号抽样、量化,直到变换成为二进制符号的过
程,称为脉冲编码调制。

信源编码与译码 它的基本功能一是提高信息传输的有效性,即通过某种数据压缩技术设法减少码元数目和降低码元速率。

码元速率决定传输所占的带宽,而传输带宽反映了通信的有效性。

二是完成模/数(A/D )转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。

信源译码是信源编码的逆过程。

信道编码与译码
本文采用交织编码模块来实现它。

信道编码的目的是增强数字信号的抗干扰能力。

数字信号是信道传输时受到噪声等影响后将会引起差错。

为了减小差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓的“抗干扰编码”。

接收端的信道译码器按相应的逆规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性。

加密与解密
在需要实现保密通信的场合,为了保证所传信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫做加密。

在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息。

(本文没做加密与解密)
数字调制与解调
二进制频移键控,是用载波的频率来携带二进制信息的调制方式。

也就是说,0值对应一个频率f1,1对应另一个频率f2。

二进制频移键控可以采用模拟信号调频电路来实现;但更容易实现的方法是键控法。

由于二进制频移键控已调信号可以看作两个不同载波的幅度键控已调信号之和,它的频带宽度是两倍的基带信号宽度(B )和| f 2- f 1|之和,2FSK 键控法理论框图如图所示。

选择
开关
载波1输出
二进制
信息
载波2
图2 2FSK调制器
2FSK的解调有很多方法,本系统采用非相干解调,原理图3如图所示
带通
滤波
带通
滤波
包络
检波
包络
检波
抽样
判决
输入抽样时钟输出
图3 2FSK非相干解调
2 数字通信系统仿真的模型建立和参数设定及结果波形
2FSK调制解调仿真图及仿真波形图
图4 2FSK调制仿真图图5 2FSK非相干解调仿真图各参数设置:模块1的频率为100Hz,振幅为1V;模块2的频率为
150Hz,振幅为1V;模块12和模块13的频率都为5Hz;模块6的最低频率为80Hz,最高频率为130Hz;模块7的最低频率为115Hz,最高频率为170Hz;
图6 2FSK调制后的波形图
图7 2FSK解调后的波形图
其他元器件的仿真参数
信源:频率为10Hz,振幅为1V;
交织编码译码:rows(smpls)为1,columns(smpls)为1;数字通信系统仿真总图及输入输出波形对比
数字通信系统的仿真总图
图8 数字通信系统的仿真总图
输入输出波形对比
图9 输出波形图
图10 输出波形图
3 眼图及误码率分析
眼图的模型及分析
眼图的形状越规则,噪声干扰越小,眼图越不规则噪声干扰越大。

观察眼图模型
图11 观察眼图模型
有噪声干扰下的眼图跟无噪声干扰下的对比:
图12 无噪声干扰下的眼图
图13 有噪声干扰下的眼图
误码率分析
所谓误码率是衡量数据在规定时间内数据传输精确性的指标.误码率=传输中的误码/所传输的总码数*100%.如果有误码就有误码率.在一定时间内收到的数字信号中发生差错的比特数与同一时间所收到的数字信号的总比特数之比,就叫做“误码率”,也可以叫做“误比特率”。

误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏或受到外界的干扰,产生误码.噪音、交流电或闪电造成的脉冲、传输设备故障或在通信系统内部由于各个组成部分的质量不够理想而使传送的信号发生畸变等都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。

误码率模块
图14 误码率模块
误码率 SYSTEMVIEW 分析窗口
选择输出波形,点击波形观察窗口下的计算器图标,选择COMM选项选择theoretical BER Plots 选择相应的调制模式,点确定,然后可以观察到输出波形与理想情况下误码率的曲线对比。

误码率的波形
图15 误码率波形图
4 总结
本次课程设计主要根据数字信号模型图来设计的,采用数字信源输入,在经过交织编码进行信道编码,利用2FSK调制信号,通过MP信道到2FSK非相干解调,最后进行交织译码。

本次设计是利用system view进行仿真,所有模块均是采用仿真软件是自带的模块,误码率、眼图及所有波形也是通过system view来观察分析的。

整个课程设计历时10天,通过这次设计,进一步掌握了数字通信系统的相关知识,也对仿真软件system view有了进一步的认识,并加强了仿真软件的实践能力。

这次课程设计还是毕业设计的一次简单模拟,让我对毕业设计有了一定的了解,也初步认识到毕业设计的一些相关的信息,让我对毕业设计跟有信心。

参考文献
[1] 樊昌信等. 通信原理(第6版)【M】.北京:国防工业出版社,2001
[2] 曹志刚,钱亚生.现代通信原理【M】.北京:清华大学出版社,2001
[3] 李建新等.现代通信系统分析与仿真——MATLAB通信工具箱【M】.西
安:西安电子科技大学出版社,2000
[4] 王沫然.Simulink4建模及动态仿真【M】.北京:电子工业出版社,2002.
[5] ,著,张航等译.精通MATLAB6【M】.北京:清华大学出版社,2002
[6] 约翰.G.普罗克斯,马苏德.萨勒赫著.刘树棠译.现在通信系统——使
用MATLAB【M】.西安:西安交通大学出版社,2001
[7] 戴虹,戴悟僧. MATLAB在通信原理仿真中的应用【J】.上海第二工业大
学学报. 2001年,第1期
[8] 娄莉. GMSK数字调制的仿真与分析.现代电子技术【J】. 2004年第18
期总第185期。

相关文档
最新文档