第3章空间数据模型资料复习过程

合集下载

第3章 空间计量模型的极大似然估计

第3章 空间计量模型的极大似然估计
i 1 n
ˆ T X T )(Y XB ˆ) Y T Y B ˆ T X T Y Y T XB ˆB ˆ T X T XB ˆ (Y T B ˆB ˆ T X T XB ˆ Y T Y 2Y T XB
OLS 估计结果:如X T X 可逆,即|X T X | 0, ( T ) ˆ 0 0 2 X T Y 2 X T XB ˆ B -1 T ˆ X TY B ˆ X T XB (X T X) X Y
2.3 SEM模型的极大似然估计结果
ˆ 。 依据SEM模型的极大似然估计结果,可以估算最优的
SEM模型的最终估计结果:
ˆ ˆ) 解释变量的参数估计值: (
ˆ) ˆ 2 n1S ( 随机误差项的方差估计值:
ˆW )T ( I ˆW )T ]1 方差-协方差矩阵估计值: ˆ 2 [( I n n
Lacombe模型参数估计优化的最小二乘法过程: ˆ (Z T Z )1 Z T ( I W W ) y 参数估计结果: n 1 1 2 2
2 =n1eT e 随机误差项方差估计结果:
Lacombe模型的对数似然函数设定:
2
eT e ln L (n 2) ln( ) ln I n 1W1 -2W2 2 2 其中,e ( I n 1W1 2W2 ) y Z
1.2 SAR、SDM模型中多参数优化向单参数优化的转化
多参数优化向单参数优化转化:将模型中需要优化的多个参数通过等
价变形,转变为一个参数的优化问题,以使所分析的问题更为简单。
SAR、SDM模型的单元优化过程:
第一,设定SAR、SDM模型; y n Wy X ; y n Wy X WX

第三章空间数据模型第3节矢量数据模型

第三章空间数据模型第3节矢量数据模型

(xn,yn) (x(1x,ny,1y)n) (x1,y1)
(a) (xn,yn)
(b)
(xn,yn)
A
KI
H
J
BC
G
FE
D
(c)
第三章空间数据模型第3节矢量数据模型
一维矢量具有方向、长度
方向:即有起始结点和终止结点
长度:可以用以下方式表达:
引入欧氏空间的距离概念:
n
长度 [(xi xi1)2 ( yi yi1)2 ]1/2 i2
一.基本概念 二.关系数据模型和关系表 三.矢量数据模型( Spaghetti Model ) 四.矢量数据模型(拓扑数据模型)
第三章空间数据模型第3节矢量数据模型
一、基本概念
• 现实世界和矢量表达 • 位置和边界被清楚地记录 • 对象可以被识别 • 属性值与对象相联系 • 空间关系可以清晰表达
第三章空间数据模型第3节矢量数据模型
(1) 地理要素被当成单个对象对待
空间边界可以被清晰的编码
(2)对象之间没有关系
要素间的空间拓扑不被记录
第三章空间数据模型第3节矢量数据模型
矢量表达法
• 不同的空间特征具有不同的矢量维数
– 0维矢量-点:即空间中的一个点,没有大小、 方向,二维和三维欧氏空间中为:(x,y),(x,y,z)
– 一维矢量-线:空间中的线划要素或空间对象间 的边界,也称为弧段、链
用的概念,是三维空间中曲面法向矢量的 另外一种描述方法
第三章空间数据模型第3节矢量数据模型
空间曲面
• 矢量实现方法多样 • 常用等值线法、剖面法
第三章空间数据模型第3节矢量数据模型
三维矢量-体
• 指三维空间中的实体

第三章 空间数据模型

第三章 空间数据模型
• 地理系统是个开放的复杂系统,所谓开放就是与 其它系统有关联,所谓复杂就是子系统种类非常 多
• 地理系统主要涉及地球内部系统、地球表层空间、 天体系统
• GIS涉及范围主要在地球表层空间,即岩石圈、 水圈、生物圈、大气圈
• 地理系统:自然环境系统和社会经济环境系统, 系统中各种要素特征都与地理空间位置有关
拓扑点n 拓扑链n 拓扑Biblioteka n拓扑点n 拓扑链n 拓扑面n
拓扑点n 拓扑链n 拓扑面n
拓扑关系--隐式表达
拓扑链 始拓扑点 终拓扑点 左拓扑面 右拓扑面
1 .能够派生出所有的以显示表达的拓扑关系 2 .避免数据存储冗余
3 .拓扑数据能以定长关系表格形式存储
4.空间对象的矢量表达
• 矢量模型最小单元与它表达的真实世界空 间实体有直接的对应关系
第三章 空间数据模型
邹逸江
目录
• 地理系统与地理现象 • 空间对象及其定义 • 空间对象描述 • 空间对象关系 • 空间对象的矢量表达 • 空间对象的栅格表达 • 矢量与栅格数据结构比较 • 混合数据结构与一体化数据结构 • 空间对象的地面高程模型表达 • 空间对象的编码体系
1.地理系统与地理现象--地理系统
• 相离关系:面与面相互隔离(与水库相隔5公里的 湖泊)
• 包含关系:一个面完全落入另一个面内(省级行 政边界内包含了县级行政边界)
• 重合关系:不存在
3.空间对象关系--空间拓扑关系
• 空间对象关系:相邻、相离、相交、包含、重合 • 相离、相交、重合空间对象关系:不适合用固定
的表达式(数学计算)事先表达出来
• 将地理现象进行抽象得到空间对象 • 空间对象分为0、1、2、3维简单和复杂对
象,其中复杂对象由0、1、2、3维对象组 合而成 • 0维空间对象的定义 • 1维空间对象的定义 • 2维空间对象的定义 • 3维空间对象的定义

空间数据模型介绍课件

空间数据模型介绍课件

地理信息系统(GIS): 用于地理空间数据的 存储、管理和分析
遥感技术(RS):用 于对地球表面进行观
测和监测
导航定位系统 (GNSS):用于定位
和导航
城市规划与设计:用 于城市规划、交通规 划、土地利用规划等
环境监测与评估:用 于环境监测、生态评
估、灾害预警等
资源管理与开发:用 于资源调查、资源评
城市规划中的应用
城市用地规划:利用空间数据模型分析土地利 用情况,优化城市用地布局
交通规划:利用空间数据模型分析交通流量和 拥堵情况,优化交通网络和设施布局
公共设施规划:利用空间数据模型分析公共设 施的分布和需求,优化公共设施布局和配置
环境规划:利用空间数据模型分析环境污染和 生态状况,优化环境保护和生态建设措施
04 数据特征提取:从原
始数据中提取出与建 模相关的特征信息, 为后续建模提供基础
空间数据模型的构建方法
01
确定空间数据的类 型和属性
03
构建空间数据的拓 扑关系和几何特征
05
验证空间数据模型 的正确性和有效性
02
设计空间数据的数 据结构和存储方式
04
设计空间数据的查 询和更新方法
06
优化空间数据模型 的性能和效率
面向对象数据模型:以 对象和类表示空间实体, 支持空间数据的继承、 封装和多态性
01
02
03
04
空间数据模型的应用
1
地理信息系统 (GIS):用于 存储、管理和分 析地理空间数据
4
城市规划:用于 分析城市空间布 局、交通网络和
土地利用情况
2
遥感技术:用于 获取和分析地球 表面的遥感图像
数据

GIS第三章空间数据模型

GIS第三章空间数据模型

图元素独 立存储
点坐标文件 线坐标文件
通过FID连接
点属性表文件 线属性表文件
面坐标文件
面属性表文件
不包含拓扑数据
101 202
203
301
201 302
102
(b)拓扑模型
图元素非 独立存储
点坐标文件 线坐标文件
通过FID连接
点属性表文件 线属性表文件
几类?
3.要素模型
2)离散欧氏平面上的空间对象
离散一维对象 B 样条曲线
多边线 线段
3.要素模型
3)要素模型和场模型的比较
要素模型
现实世界
场模型
选择要素
选择一个位置
它在哪里
那里怎么样
数据
3.要素模型
• 2. 矢量数据模型
空间图形
空间数据
属性数据
101 202
203
301
201 302
102
(a)Spaghetti模型
• 常用的嵌入式空间类型: – 欧式空间(距离、方位) – 量度空间(距离) – 拓扑空间(拓扑关系) – 面向集合的空间(只采用一般的基于集合的关系)
3.要素模型
1)欧氏平面上的空间对象类型
空间对象
零维对象点
延伸对象
一维对象
二维对象


面对象
简单弧
简单环
面域对象
域单位对象
要素(对象) 的类型有哪
– 欧氏平面:把空间特性转换成实数的元组特性,而形成 的二维模型即欧氏平面
– 地理实体:分布于地球表面的人文和自然现象的总称 实体必须符合三个条件:
• 可被识别 • 重要(与问题有关) • 可被描述(有特征)

p03第三章 空间数据模型-第六-八节1

p03第三章 空间数据模型-第六-八节1

第六节、 ArcGIS介绍
1. 厂家:ARCGIS是美国环境系统研究所(Environmental System Research Institute, Co.,简称ESRI)于20世纪80年 代初推出的一个通用GIS软件 。
2. 运行平台:uninx-NT(96年)(2000)-pc
Ar析
2、ArcCatalog
• 空间数据管理:
– ESRI coverage、 shape file
– CADData – 遥感图像 – 栅格 – TINS – Geodatabase – 属性表格
• 察看空间数据、源 数据等
3、ArcToolbox
• 超过140个工具,用 于进行geoprocessing 处理;
六、ARCGIS的开发环境
在Windows环境下以可编程控件(OCX)的形式为用户提 供在其应用中增加制图和GIS功能的可能性(MapObjects);
在ArcView和MapObjects中提供Internet网上的GIS和制图 功能;
ArcObject和ArcEngineer面向组件的开发技术。 Arcsever开发工具
三、ArcGIS Workstation 的功能模块(1)
1. ARC是ARCGIS Workstartion的其他功能模块的运行环境;
① ARC主要完成对工作空间和数据单元的操作和管理; ② 进行空间数据操作; ③ 建立拓扑关系,进行数据格式和投影转换; ④ 进行某些基于矢量的空间分析。
2. INFO是一个完整的关系型数据库管理系统,用于完成对属 性数据库的管理和维护;
第三章 空间数据模型
空间数据模型是GIS的基础;
空间数据模型:指利用特定的数据结构来表达空间对 象的空间位置、空间关系和属性信息;是对空间对象 的数据描述。

地理信息系统原理第三章 空间数据模型与数据结构3.2

地理信息系统原理第三章 空间数据模型与数据结构3.2
第1行第N列亮度值 波段2 第1行第1列亮度值
第1行第N列亮度值 波段n 波段1 第2行第1列亮度值 波段n
BSQ结构
BIP结构
BIL结构
星蓝海学习网13
以行为记录单位按行存储 地理数据。属性明显,位 置隐含。 缺点:存在大量冗余,精 度提高有限制。
星蓝海学习网14
0 0 0 0 0 4 4 4 记录1 0 0 0 0 0 4 4 4
星蓝海学习网
• 优点:
• 栅格加密时,数据量不会明显 增加,压缩效率高,最大限度 保留原始栅格结构,
• 编码解码运算简单,且易于检 索、叠加、合并等操作,得到 广泛应用。
• 缺点:
• 不适合于类型连续变化或类型 区域分散的数据。
星蓝海学习网
(2)压缩栅格数据结构
块码(二维游程编码)(行,列,半径,属性值)
弧段ID a b c d e
起始点 5 7 1 13 7
终结点 1 1 13 7 5
… … … 左多边形 Q A Q D D
右多边形 A B B B A
f
13
5
Qห้องสมุดไป่ตู้
D
点号 1 2
…… 25
坐标 (x1,y1) (x2,y2)
…… (x25,y25)
g
25
弧段ID
点号
a
5,4,3,2,1
b
7,8,1
c
1,9,10,11,12,13
• 采用方形区域作为记录单元,每个记录单元包括相邻的若干栅格,数据结构由初始位置(行、 列号)和半径,再加上记录单元代码组成。特点:
• 一个多边形所包含的正方形越大,多边形的边界越简单,块状编码的效率就越好。
• 块状编码对大而简单的多边形更为有效,而对那些碎部较多的复杂多边形效果并不好。

第三章 空间概念和数据模型

第三章 空间概念和数据模型

3.1 空间信息模型 三、空间对象操作
面向方位的操作:
绝对的:以全球作为参照系,如东、西、南、 北、东北等 相对的:以给定目标为参照,如左、右、前、 后、上、下等
面向度量的操作:
度量空间:集合X满足下列条件就称为一个度量 空间:如果对X中的任意一点对x、y,都存在与之 相关联的实数d(x,y),称x到y的距离(也称为一种 度量),且对于任意x、y、z满足如下性质:
3.1 空间信息模型 六、空间对象模型小结
OGIS 标准预定义了一系列空间数据类型和操作 空间对象模型和面向对象的软件有很多相似之处 可以方便地和多种语言集成,采用类似Java, C++, Visual basic等编程实现建模(如2.1.6节中JAVA程序实 现) 和后关系数据库(Post-relational databases, e.g. OODBMS, ORDBMS)集成。
3.1 空间信息模型 二、对象模型
对象模型: 对象:空间信息中可以抽象成明确的、可识别的和 相关的事物或实体。 对象具有相应的属性和方法 以道路图为例: 对象:道路, 里程碑, ... 道路对象属性: 空间属性:位置, 如道路的多边形边界 非空间属性:道路名, 道路类型 (国道、省道等),车 道数, 限速等 道路对象的方法: 确定道路中心线,确定道路长度, 确 定道路交叉口等
Dimension
Point
Curve Surface
City
River Country
0
1 2
OGIS数据模型中的空间对象 UML表示
3.1 空间信息模型 三、空间对象操作
面向集合的:面向集合的空间操作。在所有内
嵌空间中,最简单且最通用的类型是面向集合的 内嵌空间。这种集合可以利用一些常见的关系, 即在基于集合的关系中常见的并、交、包含和属 于关系。层次关系(如森林包含林分,州立公园 包含森林,州包含州立公园)就适于用集合理论 来建模 。如两个多边形的相交操作产生一个新的 多边形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间数据概念模型
• 连续变化的空间现象难以观察,在研究实际问题中,往往 在有限时空范围内获取足够高精度的样点观测值来表征场 的变化
• 二维空间场一般采用6种具体的场模型来描述
– 规则分布的点。在平面区域布设数目有限、间隔固定且规则排列 的样点,每个点都对应一个属性值,其他位置的属性值通过线性 内插方法求得
– 对象模型 – 网络模型 – 场模型
对象模型
网络模型
场模型
空间数据概念模型
• 对象模型
– 也称作要素模型,将研究的整个地理空间看成一个空 域,地理现象和空间实体作为独立的对象分布在该空 域中
– 按照空间特征分为点、线、面、体四种基本对象,对 象也可能由其他对象构成复杂对象,并且与其他分离 的对象保持特定的关系,如点、线、面、体之间的拓 扑关系
• 属性特征
– 也称为非空间特征或专题特征,是与空间实体相联系 的、表征空间实体本身性质的数据或数量,如实体的 类型语义定义、量值等
– 类型
• 定性属性,如名称、类型、特性等 • 定量属性,如数量、等级等
地理空间与空间实体
• 时间特征
– 指空间实体随着时间变化而变化的特性 – 空间位置和属性同时变化
• 如旧城区改造中,房屋密集区拆迁新建商业中心
– 空间位置和属性独立变化
• 实体的空间位置不变,但属性发生变化,如土地使用权转让 • 属性不变而空间位置发生变化,如河流的改道
地理空间与空间实体
• 空间关系特征
– 在地理空间中,空间实体一般都不是独立存在的,而 是相互之间存在着密切的联系,这种相互联系的特性 就是空间关系
数据世界 (计算机)
信息
空间事物或现象
选择、综合、简化和抽象
概念模型 Conceptial Model
最高层
编码、表达、建立空间关系
逻辑数据模型 Logical Data Model
中间层
数据结构对数据进行组织
物理数据模型 Physical Data Model
最底层
空间数据库
空间数据概念模型
• 根据GIS数据组织和处理方式,地理空间数据的 逻辑模型分为三类
• 一个空间要素必须同时符合三个条件
– 可被标识 – 在观察中的重要程度 – 有明确的特征且可被描述
空间数据概念模型
• 传统的地图以对象模型进行地理空间抽象和建模
空间关系 非空间关系 时间关系
地理空间 空间要素
分类 几何坐标
子类/超类 等效
子部分 超部分
非空间属性
空间数据概念模型
• 场模型
– 场模型,也称作域(field)模型,把地理空间中的现 象作为连续的变量或体来看待
空间数据概念模型
• 不规则多边形区。将平面区域划分为简单连通的多边形区 域,每个多边形区域的边界由一组点所定义;每个多边形 区域对应一个属性常量值,而忽略区域内部属性的细节变 化
• 不规则三角形区。将平面区域划分为简单连通三角形区域, 三角形的顶点由样点定义,且每个顶点对应一个属性值; 三角形区域内部任意位置的属性值通过线性内插函数得到
第3章空间数据模型资料
地理空间与空间抽象
• 地理空间与空间实体
– 地理空间(GeographicSpace)是指地球表面及近地表空间,是 地球上大气圈、水圈、生物圈、岩石圈和土壤圈交互作用的区域
– 地理空间实体是对复杂地理事物和现象进行简化抽象得到的结果 – 空间实体的特征
• 与地理空间位置有关,具有一定的几何形态,分布状况以及彼此之 间的相互关系
• 首先对地理事物进行观察,认知其类型、特征、 行为和关系,再对它进行分析、判别归类、简化、 抽象和综合取舍
• 概念模型是地理空间中地理事物与现象的抽象概 念集,是地理数据的语义解释,从计算机系统的 角度来看,是抽象的最高层
空间认知和抽象
• 构造概念模型的基本原则
– 语义表达能力强 – 独立于具体计算机实现 – 尽量与系统的逻辑模型保持同一的表达形式,不需要任何转换,
– 每个对象对应着一组相关的属性以区分各个不同的对 象
空间数据概念模型
• 对象模型强调地理空间中的单个地理现象 • 对象模型适合于对具有明确边界的地理现象进行抽象建模
– 如建筑物、道路、公共设施和管理区域等人文现象 – 湖泊、河流、岛屿和森林等自然现象
• 对象模型把地理现象当作空间要素(Feature)或空间实 体(Entity)
– 不规则分布的点。在平面区域根据需要自由选定样点,每个点都 对应一个属性值,其他任意位置的属性值通过克里金内插、距离 倒数加权内插等空间内插方法求得
– 规则矩形区。将平面区域划分为规则的、间距相等的矩形区域, 每个矩形区域称作格网单元(gridcell)。每个格网单元对应一个 属性值,而忽略格网单元内部属性的细节变化
• 空间位置特征 • 属性特征 • 时间特征 • 空间关系
地理空间与空间实体
• 空间位置特征
– 表示空间实体在一定坐标系中的空间位置或几何定位, 通常采用地理坐标的经纬度、空间直角坐标、平面直 角坐标和极坐标等来表示
– 也称为几何特征,包括空间实体的位置、大小、形状 和分布状况等
地理空间与空间实体
• 如大气污染程度、地表温度、土壤湿度、地维
• 二维场就是在二维空间R2中任意给定的一个空间位置上,都 有一个表现某现象的属性值,即A=f(x,y)
• 三维场是在三维空间R3中任意给定一个空间位置上,都对应 一个属性值,即A=f(x,y,z)
– 空间关系分类
• 拓扑关系(topologicalspatialrelation) • 顺序关系(orderspatialrelation) • 度量关系(metricspatialrelation)
空间认知和抽象
• 数据模型是对现实世界进行认知、简化和抽象表 达,并将抽象结果组织成有用、能反映形式世界 真实状况数据集的桥梁,是地理信息系统的基础
或者容易向逻辑数据模型转换
• 逻辑数据模型是GIS描述概念数据模型中实体及其关系的 逻辑结构,是系统抽象的中间层,是用户通过GIS(计算 机系统)看到的现实世界地理空间
• 物理数据模型是概念数据模型在计算机内部的存储形式和 操作机制,即在物理磁盘上如何存放和存取,是系统抽象 的最底层
观察和认知 现实世界 概念世界
相关文档
最新文档