锅炉燃烧控制系统课程设计
锅炉第二版课程设计

锅炉第二版课程设计1. 简介本课程设计是基于锅炉第二版的教材,主要面向锅炉的学习者,旨在通过锅炉的结构、原理、工作流程等方面的介绍,让学习者了解锅炉的基本知识。
2. 课程设计目标本课程设计的目标主要为以下几点:1.熟悉锅炉的基本概念;2.理解锅炉的结构和工作原理;3.掌握锅炉的调整、控制和运行;4.熟悉锅炉的安全操作和维护。
3. 课程设计内容本课程设计的内容主要包括以下几个方面:3.1 锅炉的基本概念本部分主要介绍锅炉的定义、分类、用途等,让学习者对锅炉有一个基本的了解。
3.2 锅炉的结构和工作原理本部分主要介绍锅炉的主要组成部分,包括锅筒、炉排、过热器、再热器、空预器、除尘器、脱硫器等,以及锅炉的工作原理、热力循环和水循环等方面的内容。
3.3 锅炉的调整、控制和运行本部分主要介绍锅炉的调整、控制和运行方面的内容,包括锅炉的运行控制策略、操作控制技巧、运行参数的调整等。
3.4 锅炉的安全操作和维护本部分主要介绍锅炉的安全操作和维护方面的内容,包括锅炉的安全操作规程、事故处理流程、日常维护检修等方面的内容。
4. 课程设计教学方法针对本课程设计的内容,教学方法主要包括以下几个方面:1.讲授法:通过讲授来介绍锅炉的相关知识,让学习者了解锅炉的基本概念、结构和工作原理等方面的内容。
2.案例法:通过具体案例来讲解锅炉的调整、控制和运行方面的内容,让学习者了解实际操作中的注意事项和技巧。
3.互动法:通过提问、讨论等形式来促进学习者的思考和交流,加深对锅炉相关知识的理解。
5. 课程设计评估方式为了评估学习者对本课程设计内容的掌握情况,本课程设计采用以下几种评估方式:1.期中考试:对学习者在学习本课程过程中掌握的基本概念和结构、工作原理等方面的知识进行考核。
2.实验报告:对学习者在锅炉调整、控制和运行方面的操作技巧、实际操作能力等方面进行评估。
3.期末论文:要求学习者对本课程内容的整体理解情况进行总结,并针对锅炉在工程实践中的应用做出探讨和思考。
锅炉课程设计600

锅炉课程设计600一、教学目标本课程的教学目标是让学生掌握锅炉的基本原理、结构和运行机制,学会锅炉的选型、安装、调试和维护方法,能够运用所学知识解决实际工程问题。
1.了解锅炉的定义、分类和性能参数。
2.掌握锅炉的热平衡和物料平衡原理。
3.熟悉锅炉的主要组成部分及其功能。
4.理解锅炉的运行原理和操作方法。
5.掌握锅炉的安全技术和环保要求。
6.能够熟练使用锅炉相关的计算软件。
7.具备锅炉系统的设计和施工能力。
8.学会锅炉的运行调试和故障排除方法。
9.能够进行锅炉的维护保养和节能改造。
情感态度价值观目标:1.培养学生对锅炉行业的兴趣和热情。
2.增强学生的工程实践能力和创新精神。
3.培养学生的团队合作意识和责任感。
二、教学内容本课程的教学内容主要包括锅炉的基本原理、结构和运行机制,锅炉的选型、安装、调试和维护方法。
1.锅炉的基本原理:包括热平衡和物料平衡原理,热量传递和压力升高原理。
2.锅炉的结构:包括锅炉本体、燃烧设备、辅助设备及控制系统。
3.锅炉的运行机制:包括启动、运行、停炉和事故处理过程。
4.锅炉的选型:包括锅炉类型选择、容量计算和参数确定。
5.锅炉的安装:包括安装程序、施工要求和安全注意事项。
6.锅炉的调试:包括调试步骤、参数调整和性能检测。
7.锅炉的维护:包括维护内容、维护方法和维护周期。
8.锅炉的节能改造:包括节能原理、改造方法和案例分析。
三、教学方法本课程的教学方法包括讲授法、讨论法、案例分析法和实验法。
1.讲授法:通过教师的讲解,使学生掌握锅炉的基本原理和知识。
2.讨论法:通过分组讨论,培养学生的思考能力和团队合作精神。
3.案例分析法:通过分析实际工程案例,使学生学会解决实际问题。
4.实验法:通过实验室实践,使学生熟悉锅炉的运行原理和操作方法。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
1.教材:选用权威、实用的锅炉专业教材作为主要教学资源。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
《锅炉燃烧控制系统》课件

05
燃烧控制系统的应用与案 例分析
燃烧控制系统在工业锅炉中的应用
工业锅炉是燃烧控制系统的重要应用领域之一,通过采用先进的燃烧控 制系统,可以提高锅炉的燃烧效率、降低能耗和减少污染物排放。
工业锅炉的燃烧控制系统通常包括燃料供应系统、空气供应系统、燃烧 器控制系统等,通过协调控制这些系统,实现锅炉的稳定燃烧和高效运
03
根据燃烧方式,可分为 层燃炉、室燃炉、循环 流化床炉等。
04
根据用途,可分为工业 锅炉和电站锅炉等。
03
燃烧控制系统的工作原理
控制系统的基本组成
01
02
03
04
传感器
用于检测锅炉运行状态和燃烧 参数,如温度、压力、流量等
。
控制器
根据传感器采集的数据进行计 算和控制,输出控制信号。
执行器
根据控制信号调节燃烧设备的 运行,如调节阀、电机等。
04
燃烧控制系统的关键技术
燃烧控制技术
燃料控制
根据锅炉的负荷需求,调整进入锅炉的燃料 量,确保锅炉稳定运行。
燃烧效率优化
通过调整燃料和空气的配比,提高燃烧效率 ,降低能耗。
点火与火焰监测
自动点火并监测火焰状态,防止锅炉熄火, 确保安全运行。
排放控制
控制燃烧过程,减少有害气体和颗粒物的排 放。
温度控制技术
燃烧反应过程中,燃料与空气中的氧气发生化学反应,释放出能量,同时生成废气 和灰渣。
锅炉燃烧系统通过合理组织燃烧,提高燃烧效率,降低污染物排放,实现能源的高 效利用。
锅炉燃烧系统的组成
锅炉燃烧系统主要由燃烧 器、炉膛、送风系统、排 烟系统、灰渣排放系统等 组成。
燃烧器是燃烧系统的核心 部件,负责提供燃料和空 气的混合物,并组织燃烧 过程。
锅炉课程设计

电厂锅炉课程设计题目:HG—2008/18.3—540.6/540.6—M型控制循环锅炉姓名:XXX学号:10031410xx系别:机电工程系专业班级:电厂热能动力装置指导教师:武月枝2012年5月22日典型锅炉的简介如图HG—2008/18.3—540.6/540.6—M型控制循环锅炉主要参数:汽轮发电机组额定功率Pe =600MW,锅炉蒸发量De=2008t/h,锅炉设计压力p=18.3MPa,再热蒸汽压力(入口/出口)p'zp /p"zp=3.82/3.641MPa,再热汽温度(入口/出口)t'zp /t"zp=324.4/540℃,再热蒸汽流量Dzp=1683.3t/h,给水温度tgs =279.7℃,空气预热器出口温度(二次/一次)tky=322.2/312.2℃,排烟温度(修正/未修正)υpy=130/135℃,热效率η=92.8%,燃料消耗量B=248.4t/h。
锅炉设计煤种:烟煤。
煤质特性:Car =58.6%,Har=3.36%,Sar=0.63%,O ar =7.28%,Nar=0.79%,Aar=19.77%,Mar=9.61%,Vdaf=22.82%,Qar、net、p=22440kj/kg,HGI=54.81。
锅炉总图介绍:HG—2008/18.3—540.6/540.6—M型控制循环锅炉本体布置如图1所示是哈尔滨锅炉厂按照引进美国CE公司的技术制造的,为亚临界压力,一次中间再热,直流燃烧器四角切圆燃烧,固态排渣煤粉炉。
HG—2008/18.3—540.6/540.6—M型控制循环锅炉的本体采用π型布置,炉膛上部布置有墙式辐射再热器、顶棚过热器、分隔屏过热器、后屏过热器、水平烟道中依次布置了屏式过热器、高温对流过热器、高温对流再热器、立式低温过热器,在垂直烟道中依次布置了水平低温对流过热器、省煤器、回转式空气预热器。
空气预热器采用两台三分仓受热面回转式空气预热器。
锅炉控制系统课程设计

锅炉控制系统课程设计一、课程目标知识目标:1. 让学生掌握锅炉控制系统的基础理论知识,包括系统组成、工作原理和关键参数;2. 使学生了解并掌握锅炉控制系统中主要控制环节的作用及相互关系;3. 引导学生掌握锅炉控制系统的故障分析及处理方法。
技能目标:1. 培养学生运用所学知识进行锅炉控制系统的设计、调试和优化的能力;2. 培养学生运用现代自动化控制技术对锅炉控制系统进行创新改造的能力;3. 提高学生团队协作、沟通表达和实际操作的能力。
情感态度价值观目标:1. 培养学生对锅炉控制系统及自动化技术的兴趣,激发学生探究精神和创新意识;2. 增强学生的环保意识,使其认识到锅炉控制系统在节能减排方面的重要性;3. 培养学生严谨、负责的工作态度,提高学生的职业素养。
课程性质分析:本课程为专业技术课程,具有较强的理论性和实践性。
通过本课程的学习,学生应能将所学知识应用于实际锅炉控制系统的设计、调试和维护。
学生特点分析:学生具备一定的电气、自动化基础知识,具有较强的学习能力和动手能力,但对锅炉控制系统的了解相对较少,需要通过本课程的学习来提高。
教学要求:1. 理论与实践相结合,注重培养学生的实际操作能力;2. 采用案例教学、分组讨论、现场教学等多种教学方法,提高学生的参与度和积极性;3. 结合行业发展趋势,注重培养学生的创新能力和职业素养。
二、教学内容1. 锅炉控制系统概述- 锅炉控制系统的作用与意义- 锅炉控制系统的基本组成与分类2. 锅炉控制系统工作原理及关键参数- 锅炉控制系统的工作原理- 锅炉控制系统的关键参数及其影响因素3. 锅炉控制系统主要控制环节- 蒸汽压力控制- 水位控制- 燃烧控制- 空气预热器控制4. 锅炉控制系统的设计、调试与优化- 控制器选型与参数整定- 控制系统的设计与实施- 控制系统的调试与优化方法5. 锅炉控制系统的故障分析及处理- 常见故障现象及其原因- 故障诊断与处理方法- 预防性维护措施6. 现代自动化技术在锅炉控制系统中的应用- PLC在锅炉控制系统中的应用- DCS在锅炉控制系统中的应用- 人工智能及大数据技术在锅炉控制系统的应用教学大纲安排:第1-2周:锅炉控制系统概述及工作原理第3-4周:锅炉控制系统主要控制环节及关键参数第5-6周:锅炉控制系统的设计、调试与优化第7-8周:锅炉控制系统的故障分析及处理第9-10周:现代自动化技术在锅炉控制系统中的应用教学内容关联教材章节:《锅炉设备及运行》第3章 锅炉自动控制系统《自动控制原理》第5章 简单控制系统《PLC原理与应用》第6章 PLC在工业控制中的应用实例教学内容注重科学性和系统性,结合行业发展趋势,旨在培养学生的实际操作能力和创新能力。
燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统李凯凯(山东建筑大学热能工程学院山东省济南市 250101)摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。
主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。
由最终设计结果可知此方法可行。
关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力0 引言近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。
一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。
国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。
为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。
1 锅炉情况本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm³/h,排烟温度230℃,热效率90%。
1.1 燃气蒸汽锅炉的组成结构组成:具体结构由主要部件和辅助设备组成。
主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。
系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。
1.2 燃气蒸汽锅炉的工作原理燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。
锅炉燃烧系统的控制系统设计毕业论文

锅炉燃烧系统的控制系统设计摘要:锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。
主蒸汽压力的自动调节的任务是维持过热器出口气温在允许范围内,以确保机组运行的安全性和气温在允许范围内,以确保机组运行的安全性和[1]经济性。
锅炉所产生的高压蒸汽既可作为驱动透平的动力源,又可以作为精馏、干燥、反可以作为精馏、干燥、反应、加热等过程的热源。
随着工业生产的规模不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
在控制算法上、综合运用了单回路控制、串级控制、比值控制等控制方法实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效克服了彼此的扰动,使整个系统稳定运行。
运行。
关键词:锅炉;蒸汽压力;单回路控制;关键词:锅炉;蒸汽压力;单回路控制;ControlsystemdesignoftheboilercombustionsystemAbstract:Theboilerisimportantandbasicequipmentofthethermalpowerplan t,oneofthemainoutputvariableisthemainsteampressure.Thetaskoftheauto maticadjustmentofthemainsteampressureistomaintainthesuperheateroutle ttemperaturewithintheallowablerange,toensurethesafetyandeconomyofth eunitoperation.Theboilersproducehighpressuresteamcanbeusedasasource ofpower-driventurbine,butalsoasadistillation,drying,reaction,heatingandprocesshe atsource.Withindustrialproductionexpanding,asafilterforpowerandheat,b utalsotowardthehigh-capacity,high-parameter,high-efficiencydirection.Inthecontrolalgorithm,theintegrateduseofsingle-loopcontrol,cascadecontrol,ratiocontrol,thecontrolmethodoffuelcontroltoadjustthevaporpressure,airvolumecontroltoadjustthefluegasoxygenconten t,thewindcontrolthefurnacenegativepressure,andeffectivelyovercomeeac hotherdisturbancessothatthewholestabilityofthesystem.Keywords:Boiler;Vaporpressure;Single-loopcontrol引言引言随着城市的快速发展,我们对用电的需求也越来越大,如何利用好有限的能源来保证供电是一个重要的话题,在能源的利用过程中如何更加提高能源的利用率是一个可研究性的话题,本文基于上述话题对电厂的燃烧锅炉控制进行了研究。
锅炉燃烧plc课程设计

锅炉燃烧plc课程设计一、教学目标本课程旨在让学生掌握锅炉燃烧PLC的基本原理、编程方法及其在实际工程中的应用。
通过本课程的学习,学生将能够:1.知识目标:–描述PLC的基本构成和工作原理。
–解释锅炉燃烧控制系统的功能和组成。
–阐述PLC在锅炉燃烧控制中的应用。
2.技能目标:–能够使用PLC编程软件进行程序设计。
–能够进行锅炉燃烧控制系统的调试和维护。
–能够分析并解决锅炉燃烧过程中出现的问题。
3.情感态度价值观目标:–培养学生的创新意识和团队协作精神。
–增强学生对锅炉燃烧PLC技术的兴趣,提高学习的积极性。
–培养学生关注安全生产,提高责任感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.PLC基本原理:介绍PLC的定义、构成、工作原理及其发展历程。
2.锅炉燃烧控制系统:讲解锅炉燃烧控制系统的功能、组成及其工作原理。
3.PLC编程技术:学习PLC编程语言、编程方法及其在锅炉燃烧控制系统中的应用。
4.工程实践:通过案例分析,使学生掌握PLC在锅炉燃烧控制系统调试、维护和优化方面的应用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:用于讲解基本原理、概念和关键技术。
2.案例分析法:通过实际案例,使学生了解PLC在锅炉燃烧控制系统中的应用。
3.实验法:让学生动手操作,加深对PLC编程和工程实践的理解。
4.小组讨论法:鼓励学生分组讨论,培养团队协作能力和创新意识。
四、教学资源为了支持教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统、全面的学习资料。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:配置齐全的实验设备,确保学生能够进行实际操作。
5.在线资源:利用网络资源,为学生提供更多的学习资料和信息。
五、教学评估本课程的教学评估将采用多元化评价方式,全面、客观地评价学生的学习成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古科技大学目录摘要 (3)一、热电厂的生产工艺 (4)锅炉简介 (4)二、锅炉蒸汽出口压力控制重要性 (4)2.1控制重要性 (4)2.2控制要求 (5)三、锅炉出口温度控制系统的设计 (5)3.1蒸汽出口压力分类 (5)3.2 蒸汽出口压力控制系统分析 (6)3.3蒸汽控制系统的设计 (7)3.3.1控制系统中的延时环节处理 (6)3.3.2控制系统中控制方案选择 (9)3.3.3反作用及控制阀的开闭形式选择 (11)四、控制系统单元元件的选择 (11)4.1.2蒸汽压力变送器的选用 (11)4.2 燃料流量变送器的选用 (12)总结 (14)附录 (15)参考文献 (16)摘要锅炉是热电厂重要且基本的设备,其最主要的输出变量之一就是主蒸汽压力。
主蒸汽压力自动调节的任务是维持过热器出口汽温在允许范围内,以确保机组运行的安全性和经济性。
在可能获得的原料和能源条件下,以最经济的途径。
为了打到目标,必须对生产过程进行监视和控制。
因此,过程控制的任务是在了解生产过程的工艺流程和动静态特性的基础上,应用理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段。
实现生产过程的控制目标。
锅炉所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。
随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
本设计以包钢实习参观包钢热电厂为基础就锅炉出口蒸汽压力控制系统进行学习研究。
在控制算法上,综合运用了单回路控制、串级控制、比值控制、等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。
关键字:蒸汽压力,串级控制,变送器一、热电厂的生产工艺锅炉简介锅(汽水系统):由省煤器、汽包(汽水分离器)、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。
炉(燃烧系统):由炉膛、燃烧器、点火装置、空气预热器、烟风道及炉墙、构架等组成。
热电厂是利用煤和天然气作为燃料发电、产汽的,这也是目前世界上主要的电能生产方式。
生产工艺是将燃料送入炉膛内燃烧,放出的热量将水加热成为具有一定压力和温度的过热蒸汽,过热蒸汽进入汽轮机膨胀做功,高速气流冲击汽轮机叶片带动转子旋转,同时带动同轴发电机转子发电。
热电厂锅炉将经过处理后的除盐水加热至430度(根据汽机工况)左右的过热蒸汽送入汽轮机,推动汽轮机保持每分钟3000转的速度带动同轴的发电机旋转,通过同轴励磁机产生的直流电输入发电机转子,在静子上产生感应电势,同时作过功的余汽可用来当作供热源二、锅炉蒸汽出口压力控制重要性2.1控制重要性压力是热电厂的一个重要的参数,因为热点厂是靠蒸汽推动汽轮机转动汽轮机是将蒸汽的能量转换成为机械功的旋转式动力机械。
又称蒸汽透平。
蒸汽的压力会影响后面的整个工序,如果蒸汽的压力不够的话将是汽轮机无法正常工作势必会印象到厂得效益和蒸汽机的寿命。
还有就是压力过高将可能导致锅炉超压运行。
动力锅炉主要为炼油装置提供生产用蒸汽,若装置因紧急情况而突然减少或切断进汽,锅炉便会出现瞬时超压情况。
在锅炉生产过程中,过热蒸汽温度是整个汽水通道中最高的温度。
过热器温度过高将导至过热器损坏,同时还会危及汽轮机的安全运行,甚至出现爆炸这的极端的事故。
燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。
过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。
蒸汽压力对象的主要干扰是燃料量的波动与蒸汽负荷的变化。
当燃料流量和蒸汽负荷变动较小时,可采用利用蒸汽压力来调节燃料量的单回路控制系统;当燃料流量波动较大时,可采用蒸汽压力对燃料流量的串级控制系统。
主蒸汽压力控制系统的主要目的是维持主蒸汽压力恒定,因此主蒸汽压力能否准确测量直接关系到控制质量的优劣。
合理的选择压力变送器在设计中有关键作用。
蒸汽压力变送器将测量信号转换成标准统一信号DC4~20mA电流输出送到控制器。
2.2控制要求1、锅炉供给用汽设备的蒸汽压力应当保持在一定的范围内;2 、过热蒸汽温度压力保持在一定范围;3、汽包水位保持在一定范围;4、保持锅炉燃烧的经济性和安全性;5 、炉膛负压保持在一定的范围内。
本设计基于过热蒸汽压力控制做的控制系统,三、锅炉出口温度控制系统的设计3.1蒸汽出口压力分类锅炉按其出口蒸汽压力分类:(1)低压锅炉出口蒸汽压力小于或等于2.45MPa的锅炉,其蒸汽温度多为饱和温度或不高于400℃。
(2)中压锅炉出口蒸汽压力为2.94——4.90MPa的锅炉。
我国电站锅炉现行的参数系列,中压锅炉出口蒸汽压力规定为3.83MPa,蒸汽温度为450℃。
(3)高压锅炉出口蒸汽压力为7.84—10.8MPa的锅炉。
我国电站锅炉现行参数系列,高压锅炉出口蒸汽压力为9.81MPa,出口蒸汽温度多为540℃.(4)超高压锅炉出口蒸压力为11.8—14.7MPa的锅炉。
我国电站锅炉现行参数系列,超高压锅炉出口蒸汽压力规定为13.7MPa,蒸汽出口温度为540℃,少数为555℃.(5)亚临界压力锅炉出口蒸汽压力为15.7—19.6MPa的锅炉。
我国电站锅炉现行参数系列,亚临界压力锅炉出口蒸汽压力规定为16.7MPa,出口蒸汽温度为540℃或555℃,少数为570℃.(6)超临界压力锅炉出口蒸汽压力超过临界压力的锅炉。
水蒸气的临界压力为[5]3.2 蒸汽出口压力控制系统分析锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。
燃料控制的任务在于进入锅炉的燃料量随时与蒸汽压力要求相适应。
因为蒸汽压力是衡量锅炉热量平衡的标志,燃料又是影响蒸汽压力的主要因素,因此蒸汽压力可以作为燃料控制系统的被调量。
锅炉蒸汽压力是燃烧过程调节对象的主要被控量,引起蒸汽压力变化的因素有很多,如燃料量、送风量、给水量、蒸汽流量以及各种使燃烧工况发生变化的原因。
它受到的主要扰动分为内扰(燃料的变化)和外扰(蒸汽流量的改变)。
由于每个系统的输入输出之间都一定的系统延迟,即当输入变化的时候系统输出不能够马上反应其变化从而是系统的控制不及时。
下面就系统的燃料量变化、蒸汽压力之间,从系统的燃料变化后会一起系统的温度变化进而引起蒸汽压力变化期间存在时间延时。
下面只对出现介于干扰的情况下做个简单分析图2.1燃料量阶跃变化时,蒸汽压力反应曲线[2]图2.2 蒸汽流量阶跃变化时,蒸汽压力反应曲线M Pm tt DPm tt图3.1 燃料量阶跃变化时,蒸汽压力反应曲线 图3.2 蒸汽流量阶跃变化时,蒸汽压力反应曲线3.3蒸汽控制系统的设计3.3.1控制系统中的延时环节处理控制系统中滞后产生的主要原因有:对系统变量的测量、系统中设备的物理性质及物或信号的传递等。
在实际工程控制问题中,有时因滞后系统的影响不大而在系统的设计或模型中将滞后省略。
但是在更多的实际工程中,滞后是不能省略的,而且有些控制过程中,滞后往往是时变的,即滞后是时间t 的函数。
所以这些对象的纯滞后时间对控制系统的控制性能都极为不利,它使系统的稳定性降低,动态特性变坏。
由于整个控制系统存在滞后,整个系统具有一阶环节和二阶环节来近似的等效一阶滞后环节τs e Ts K s G -+=1)( 二阶滞后环节 τs e s T s T K s G -++=)1)(1()(21 在现场环境中,蒸汽的压力变化是时时刻刻的,很难用一个固定的数学公式将炉温的变化规律总结出来。
但是我们要对蒸汽的压力进行控制就必须要对蒸汽的压力变化进行一个规律的总结,所以在规定的要求范围内,对一些情况进行近似处理是很合理和必要的。
在通常情况下,我们给定蒸汽一个压力范围,作为系统的给定,使蒸汽的出口压力可以达到个满意的结果。
对于火电厂锅炉来说,炉体的容量、结构、检测元件及其安放位置等都影响着滞后的大小。
它不是一个单一的问题,是一个系统问题(容积滞后时间就是级联的各个惯性环节的时间常数之和)。
纯滞后产生的根源也要从整个测量系统来考虑,并且与温度的高低有关。
热量从热源传到温度传感器要经过多个热阻与热容相串联的热惯性环节,而串联的多容对象会产生等效纯时滞后。
随着温度的升高,辐射传热的比例增大,辐射具有穿透性,使传热路径缩短,传热速度加快。
所以纯滞后的时间会随温度升高而减小。
解决滞后的办法○1选择惰性小的快速测量元件,以减小时间常数 ○2选择合适的测量位置,以减小纯滞后 ○3使用微分单元 加入 D 控制规律 如 一阶滞后τs e Ts K s G -+=1)( 加入微分单元1+T D S,当适当的调整TD 后可以使T D =T.最后的传递函数就是K,这样就减少了延迟。
[3]主回路:TC 选择PI 控制,原因是主回路中所控制的参数为压力,压力这个参数滞后是比较小的,当干扰到来的时候会比较快的反应在输出的变化上,所以不必加入微分环节就可以达到很好的控制目的,也节省了成本。
其中的I 环节可以消除静差,使系统的控制性能的到提高。
副回路:选择P 控制。
理由是副回路是粗调所以要求随度要快,粗调也就是不要求一步到位,只是对余差进行初步的处理,最后的工作是由主回路来完成的。
微分最用也是不必要的,因为加入微分后系统过于敏感,稍有扰动就会动作,这不利于系统的稳定。
整定:两步整定法。
根据串级控制系统的设计原则,主、副过程的时间常数应适当匹配,要求衰减比4到10的范围内。
这样主、副回路的工作频率和操作周期相差很大,其动态联系很小,可忽略不计。
所以,副调节器参数按单回路系统方法整定后,可以将副回路作为主回路的一个环节,按单回路控制系统的整定方法,整定主调节器的参数,而不再考虑主调节器参数变化对副回路的影响。
在现代工业生产过程中,对于主参数的质量指标要求很高,而对副参数的质量指标没有严格要求。
通常设置副参数的目的是为了进一步提高主参数的控制质量。
在副调节器参数整定好后,再整定主调节器参数。
这样,只要主参数的质量通过主调节器的参数整定得到保证,副参数的控制质量可以允许牺牲一些。
两步整定法简单的说就是第一步整定副调节器参数,第二步整定主调节器参数。
锅炉蒸汽压力控制系统图3.1:锅炉蒸汽压力控制系统燃料控制的任务在于进入锅炉的燃料量随时与蒸汽压力要求相适应。
因为蒸汽压力是衡量锅炉热量平衡的标志,燃料又是影响蒸汽压力的主要因素,因此蒸汽压力可以作为燃料控制系统的被调量。
3.3.2控制系统中控制方案选择选择串级控制系统的理由:○1.从回路的个数分析,由于串级控制系统是一个双回路系统,因此能迅速克服进入副回路的干扰,从某个角度讲,副回路起到了快速“粗调”作用,主回路则担当进一步“细调”的功能,所以应设法让主要扰动的进入点位于副回路内。