直流电子负载..
直流电子负载仪

直流电子负载仪简介直流电子负载仪(DC Electronic Load)是一种用于模拟电子负载的仪器,在电源电路测试、充电器测试、锂电池测试等领域都有广泛的应用。
它可以通过调节负载电流、电压和功率等参数来模拟各种实际负载条件,以验证电源电路的性能。
原理直流电子负载仪的基本原理是利用MOSFET(金属氧化物半导体场效应晶体管)来控制电路的电流、电压和功率等参数。
在负载电路中,电子负载仪相当于一个可编程、可调节的电阻负载,它可以帮助测试人员模拟各种实际负载条件。
特点直流电子负载仪具有以下特点:1.高精度:直流电子负载仪的电流精度一般可以达到0.01%或更高,电压精度可以达到0.1%或更高;2.大功率:直流电子负载仪的功率一般可以达到几千瓦甚至数十千瓦;3.多种负载模式:可以模拟恒流、恒压、恒功率、恒阻等多种负载模式;4.可编程、可调节:可以通过编程方式设置电流、电压、功率等参数,并可以动态调节;5.多种保护功能:具有过温、过流、过压、短路等多种保护功能,确保测试过程的安全和稳定。
应用直流电子负载仪在以下领域有着广泛的应用:1.电源电路测试:通过模拟实际负载条件,测试电源电路的性能,包括输出电压、电流、效率、峰值因数等;2.充电器测试:模拟各种充电条件,测试充电器的性能,包括充电电流、充电时间、电池状态等;3.电池测试:模拟各种放电条件,测试电池的性能,包括剩余容量、内阻、放电时间等;4.LED驱动器测试:测试LED驱动器的性能,包括输出电流、输出电压、效率、调光性能等;5.太阳能电池板测试:测试太阳能电池板的性能,包括输出电压、输出电流、效率等。
市场现状与展望目前,直流电子负载仪已成为电子测试领域中不可或缺的一部分。
尤其是随着新能源汽车、智能家居等产业的发展,对于电源电路测试的需求也越来越高,这为直流电子负载仪的市场提供了巨大的机会。
未来,随着科技的不断进步和市场的扩大,直流电子负载仪将会更加智能化、可靠性更高,同时也将会拥有更加丰富的功能和应用场景。
简易直流电子负载

简易直流电子负载简介直流电子负载是一种可在实验室或工业环境中模拟负载条件以测试电源或电池性能的设备。
它通常用于测试电源效率、电池容量、保护功能等方面。
本文将介绍一款简易直流电子负载的设计和制作过程。
设计原理核心部件简易直流电子负载的核心部件是负载电阻和功率调节装置。
负载电阻通常由多个细丝电阻组成,通过调整细丝电阻的接入数量实现不同负载阻值的模拟。
功率调节装置则用于调节负载的电流和功率输出。
控制回路简易直流电子负载的控制回路由微控制器(MCU)和电流采样模块组成。
MCU 负责接收输入的控制信号,并通过与电流采样模块的交互来实现对负载电流的精确控制和测量。
显示与操作为了方便用户操作和监测电流输出,设计中还包括了显示屏和操作按钮。
通过显示屏可以实时显示负载电流、功率和设定参数等信息。
操作按钮则用于调整负载的工作模式和参数。
制作过程材料准备准备以下材料以制作简易直流电子负载:1.电阻:选用合适的多个细丝电阻,以满足不同的负载阻值需求;2.散热器:用于散热以保证负载的稳定工作;3.微控制器板:选用具备足够的IO口和ADC输入引脚的开发板;4.显示屏和操作按钮:选用合适的尺寸和接口的显示屏,以及用于操作调整参数的按钮。
电路连接按照设计电路图将电阻、散热器、微控制器板、显示屏和操作按钮等元件连接起来。
确保连接正确可靠,并注意保护电路免受短路和过流等问题。
程序开发根据控制要求,编写程序代码并烧录到微控制器板中。
程序应该实现以下功能:1.接收并解析用户的控制信号;2.根据控制信号调整负载电流和功率输出;3.实时采集并显示负载的电流、功率和设定参数。
散热设计在负载电阻和功率调节装置周围安装散热器,并确保散热器与电路紧密接触,以提高散热效果。
此外,还可以在散热器上添加风扇以增强散热效果。
完成调试完成以上步骤后,对整个系统进行调试和测试。
确保负载能够按照设定的电流和功率输出稳定工作,并能够准确采集和显示相关参数。
使用和注意事项使用简易直流电子负载时,应注意以下事项:1.确保输入电源符合设备要求,避免过压或过流对设备造成损坏;2.在使用高功率输出时,注意散热情况,避免设备过热;3.操作合理,并遵循设备的使用说明,以免发生意外和设备损坏。
直流“电子负载”设计

直流“电子负载”设计直流电子负载是一种能够模拟真实工作情况并对电流进行调节的设备。
它可以用于测试和验证直流电源、电池、太阳能电池和风能电池等直流电源的性能。
本文将介绍直流电子负载的设计原理、主要特点以及在各个领域的应用。
一、直流电子负载的设计原理直流电子负载的设计原理主要基于非线性电阻网络和控制电路。
通过控制电阻网络的状态,可以实现对电流的调节。
整个直流电子负载主要包括两个部分:控制电路部分和非线性电阻网络部分。
控制电路主要负责接收控制信号,并对非线性电阻网络进行控制。
控制信号可以来自于外部的操作控制台或者计算机控制界面。
在得到控制信号后,控制电路会根据信号的大小和方向调整非线性电阻网络的状态,从而实现对电流的调节。
非线性电阻网络由多个管脚连接起来,形成一个复杂的电阻网络。
通过调整各个管脚之间的电阻状态,可以实现不同的电流调节要求。
非线性电阻网络的设计需要考虑到电流的范围、精度和稳定性等因素,以确保直流电子负载的性能达到设计要求。
二、直流电子负载的主要特点1.高精度控制:直流电子负载能够对电流进行精确控制,可以满足各种电流调节要求,尤其适用于对电源和电池性能的测试和验证。
2.大电流容量:直流电子负载具有较大的电流容量,可以承受较高的电流负载,同时保持稳定的输出。
3.快速响应:直流电子负载能够迅速响应控制信号,并在极短的时间内实现电流的调节,以满足实时的工作需求。
4.多功能应用:直流电子负载可以根据需要进行不同的电流调节模式,如恒流、恒压、恒功率等模式,适用于不同的测试和验证场景。
5.保护功能:直流电子负载具有多种保护功能,如过流保护、过压保护、过功率保护等,可以有效保护被测试设备以及负载本身的安全性。
三、直流电子负载的应用领域1.电源测试:直流电子负载可以模拟负载情况,测试电源的性能指标,如输出电流、输出电压、稳定性等。
2.电池测试:直流电子负载可以模拟不同工作条件下对电池进行测试,如充放电测试、容量测试、循环寿命测试等。
直流电子负载

电子负载的原理是控制内功率MOSFET 或晶体管的导通量(量占空比大小),靠功率管的耗散功率消耗电能的设备,它能够正确检测出负载电压,精确调整负载电流。
一般开关电源电源的调试检测是不可缺少的。
这里选择了一种低成本的功率MOS 场效应管——IRF540。
IRF540是一种N 沟道增强型功率MOS 场效应管,可耐压 100V ,最大工作电流30A 。
左图是N 沟道增强型功率MOS 场效应管的表示符号。
工作时,在栅极G 和源极S 之间加上正电压 Vgs ,源极电流Id 将随着门源电压 Vgs 的变化而变化。
右上图为IRF540 的转移特性曲线,由IRF540的转移特性曲线可知,IRF540 是电压控制电流型器件,当栅源电压 Vgs 达到 3~4V 时,Vgs 同漏极电流 Id 几乎呈线性变化,直流电子负载恒流和恒压模式时,主要就工作在这个线性变化的区域。
直流电子负载的主要原理是MCU 对采集到的电压,电流数据与设定的电压,电流进行对比,然后根据误差来调整输出电压的大小,从而控制功率MOS 场效应管的导通量,对被测电池的输出电压,电流进行控制,达到按指定电压,电流放电的目的。
设计框图如下:功率MOSFET:主要是作为功率消耗器件,拟采用一组小功率的功率管IRF540并联组成功率消耗电路。
电流检测电路:主要是检测被测电源的放电电流,这里采用电阻电压法测量,即在功率MOSFET的源极串接上阻值很小的电阻,通过测量电阻两端的电压,由I=U/R 可计算出电流。
电流检测电路:主要作用是检测被测电源的工作电压,这里通过两个精密电阻分压得到0~4V的电压,通过跟随、滤波送至A/D。
A/D:这里使用MAX1303,内部基准电压4.096V。
D/A:这里使用MAX5444,外部基准电压2.5V,将MCU根据一定算法给出的数字控制信号转换成模拟电压用以驱动功率MOS场效应管。
驱动电路:主要作用是给功率MOSFET提供驱动电压,将D/A输出电压放大2倍。
简易直流电子负载

9.2 简易直流电子负载电子负载仪是电源制作和电池性能测试必不可少的一种仪器。
它是由电子器件组成的模拟负载,用来检测各类电源带负荷特性和化学电源输出性能的仪器。
在恒电流测试时加以同步计时,就可精确测出电池容量值。
9.2.1 功能要求设计和制作一台恒流(CC)工作模式的简易直流电子负载。
技术要求:电流设置范围为100mA~1000mA ,设置分辨率为10mA,设置精度为±1%。
当电子负载两端电压变化10V时,要求输出电流变化的绝对值小于变化前电流值的1%。
具有过压保护功能,过压阈值电压为18V±0.2V。
能实时测量并数字显示电子负载两端的电压,电压测量精度为±(0.02%+0.02%FS ),分辨力为1mV。
能实时测量并数字显示流过电子负载的电流,电流测量精度为±(0.1%+0.1%FS),分辨力为1mA。
具有直流稳压电源负载调整率自动测量功能,测量范围为0.1%~19.9%,测量精度为±1%。
为方便,本题要求被测直流稳压电源的输出电压在10V以内。
9.2.2总体方案论证系统的关键在设计恒流源电路和高精度A/D转换电路。
1.恒流源电路方案【方案一】恒流源可以通过一个经典的数控稳压源来实现。
在输出回路串联一个电流取样电阻,通过实测电流与给定电流的比较,运用恰当的控制算法,调整输出电压使实测与给定两个电流相等,就可以达到恒流的目的。
此种方案最大的问题是:不论是输入电源电压变化,还是负载变化,都要经过一段时间才能使电流稳定。
【方案二】最好的方案是一个硬件的闭环稳流电路,稳流的过程几乎不需要时间。
图9.2.1就是一个典型电路。
根据集成运放虚短的概念可得:I L ≈ V i / RR为电流取样电阻,由于R固定,因此I L完全由V i决定,只要V i不变,则I L不变,这就是恒流原理。
对某一特定的V i下的I L,无论是V CC或是R L变化,利用负反馈的自动调节作用,都能维持I L的稳定。
直流电子负载

直流电子负载2010111王士凡、曹伟、檀胜顺【摘要】本设计主要以运放OP07DP和具有自我保护功能的大功率场效应管IRFB41N15D为核心构成电压反馈和电流反馈电路;实现具有恒流、恒压、恒阻三种方式的直流电子负载电路,电路具有预置电流、电压值的功能。
系统包括恒流电路,恒压电路,过流保护电路,采样电路、显示电路等;能够检测被测电源的电流值、电压值;检测值通过AD转换发送给51单片机,由单片机控制1602显示各个参数。
关键字:电子负载,1602,OP07DP,51单片机,IRFB41N15D一、设计方案论证与选择1、总体设计方案的论证与选择按照系统的功能设计要求,直流电子负载的设计采用以恒流方式电路和恒压方式电路为核心实现,由恒流模块、恒压模块、恒阻模块、显示模块等模块组成。
用1602来实现电压以及电流的显示。
电路系统框图如图1所示。
图一、总体电路图2、各电路模块设计方案的论证与选择(1)恒流模块方案一:采用简单的三极管构成的恒流模块的电路;方案二:采用运放构成的放大电路,反馈电路和恒流模式;由于方案一的设计中采用的是简单的三极管构成的恒流模式电路,由于我们要求可调,且稳定性好,功率较大,三极管并不具有我们想要的精度要求,而场效应管具有与我们符合的精度要求,所以我们选用方案二,采用运放和场效应管构成的恒流模块。
具体的方案框图如下图2二所示。
图二、恒流模块电路设计图(2)恒压模块方案一:采用一个稳压二极管构成的恒压电路。
方案二:采用运放,场效应管构成的恒压模块。
由于方案一的设计中输出电压被限制在所接稳压二级管的稳压值,且最重要的一点是该稳压管稳定的电压不可调节,极度严重的不符合我们的设计需要,而方案二中虽然电路相对比较复杂,但有着很好的稳压作用,且还具有可调功能,符合我们的设计要求,方案二的具体设计方案方框图如下图3所示。
图三、恒压模块电路设计图(3)显示方案的选择方案一:采用单片机控制1602来显示。
程控直流电子负载设计

程控直流电子负载设计程控直流电子负载是一种专业的测试设备,用于测试电源、电池、电子产品等的性能和稳定性。
程控直流电子负载的设计需要考虑多方面因素,包括额定功率、负载电阻、响应时间、稳定性等等。
下面将对程控直流电子负载的设计进行详细介绍。
一、额定功率程控直流电子负载的额定功率是其最重要的指标之一,它决定了其能够承受的最大电功率。
额定功率的选择需要根据使用环境和测试需求来确定。
通常情况下,程控直流电子负载的额定功率应该比测试电源的额定功率高出一些,以保证其在测试过程中不会因功率过载而导致故障。
二、负载电阻程控直流电子负载的负载电阻需要根据测试电源的输出电压和电流来选择。
负载电阻的选择应该保证程控直流电子负载的输入端和输出端之间的电压降不超过规定范围,在电压和电流范围内保持稳定。
一般来说,负载电阻应该具备线性可变的特性,以适应不同的测试需求。
三、响应时间程控直流电子负载的响应时间是指其从接收到控制信号到实际转换为负载电流所需的时间。
响应时间越短,程控直流电子负载的稳定性越高,测试结果也越准确。
因此,响应时间是一个重要的设计指标之一。
一般来说,程控直流电子负载的响应时间应该控制在几毫秒以内,以保证测试结果的准确性和稳定性。
四、稳定性程控直流电子负载的稳定性是指其输出电流和电压的精度和稳定度。
稳定性是直接影响测试结果准确性的因素之一。
为了提高程控直流电子负载的稳定性,需要采用高质量的元器件和控制电路。
同时,还需要对电源电压波动、温度变化等因素进行优化和控制,以保证稳定性和精度。
五、安全性程控直流电子负载的安全性是设计的基本要求之一。
安全性包括电路安全设计、防护措施、安装位置等多个方面。
在设计过程中,需要考虑到使用环境的安全性,根据不同的使用环境和需求,采取相应的保护措施,保证用户操作和使用的安全性。
六、易用性程控直流电子负载的易用性也是设计的重要考虑因素之一。
易用性不仅包括人机界面的设计,还包括操作方法、故障诊断等方面。
直流电子负载器的基本原理

直流电子负载器的基本原理直流电子负载器(DC Electronic Load)是一种能够模拟真实负载电流特性并对电子设备进行负载测试的仪器。
其主要原理是通过模拟负载电流和电压来对被测试设备进行负载测试,并能够实时测量参数和反馈给被测试设备。
1.恒流源:直流电子负载器的主要功能之一是模拟不同负载条件下的恒流特性。
恒流源通常由高精度的运放和电阻组成。
在测试中,恒流源通过调节电阻值以控制负载电流的大小。
具体来说,运放根据输入的电压信号调整输出电流,而反馈电路则测量输出电流并将其与设定的目标电流进行比较,从而实现闭环控制。
通过这种方式,负载器可以在不同负载电流下模拟真实工作条件。
2.电压源:直流电子负载器的另一个重要功能是模拟负载电压。
电压源通常由运放和电阻组成。
当被测试的设备需要反馈电压信号时,电压源会提供一个与设备需求相匹配的电压值。
恒流源和电压源可以独立或同时操作,以模拟不同的工作条件。
3.测量电路:直流电子负载器配备了高精度的测量电路,用于测量被测试设备的电流、电压、功率等参数。
一般来说,测量电路包括模拟前端和数字信号处理部分。
模拟前端负责将被测试设备的电流和电压信号转换为数字信号,并进行放大和滤波。
数字信号处理部分负责采集和处理模拟前端输出的数字信号,通过数学算法计算电流、电压、功率等参数,并将其显示在负载器的屏幕上。
4.控制电路:直流电子负载器还配备了一套控制电路,用于设定负载条件、实时监测和调整负载参数。
这个控制电路通常由微处理器、控制芯片和外部接口等组成。
通过控制电路,用户可以设定负载器的工作模式、目标电流和目标电压,并可以实时监测被测试设备的电流、电压和功率。
负载器还可以根据设定的负载条件和安全措施进行自动保护,以避免设备被过载或过热。
综上所述,直流电子负载器模拟恒流源和电压源的特性,通过测量和控制电路来实现对被测试设备的负载测试。
其主要原理是通过恒流源和电压源模拟真实负载条件,并通过测量电路测量被测试设备的电流、电压和功率等参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论在电子技术应用领域,经常要对开关电源、线性电源、UPS 电源、变压器、整流器、电池、充电器等电子设备进行测试,如何对其输出特性进行可靠、全面且比较简单、快捷的测试,一直是仪表测试行业研究的问题。
传统的测试方法中一般都采用电阻、滑线变阻器、电阻箱等充当测试负载,但这些负载不能满足我们对负载多方面的要求,如:恒定电流的负载;带输出接口的负载;随意调节的负载、恒功率的负载、动态负载;多输出端口的负载等。
现在有一种新型多功能的电子负载,可据实际应用中对负载特性的要求进行设置,满足了我们对负载的各种要求,解决了开发研制测试中的困难。
电子负载即电子负荷。
凡是能够消耗能量的器件,可以广泛地称为负载。
电子负载能消耗电能,使之转化成热能或其它形式的能量。
静态的电子负载可以是电阻性(如功率电阻、滑线变阻器等) 、电感性、电容性。
但实际应用中,负载形式就较为复杂,如动态负载,消耗功率是时间函数,或电流、电压是动态的,也可能是恒定电流、恒定电阻、恒定电压,不同峰值系数(交流情况下),不同功率因数或瞬时短路等。
电子负载就是在实际应用中负载比较复杂的情况下而设计生产的测试设备。
它能替代传统的负载,如电阻箱、滑线变阻器、电阻线、电感、电容等。
尤其对吸收恒定电流或以恒定电压吸收电流,或电压电流都要在设定范围突变等传统方法不能解决的领域里,更能显示出优越性能。
直流电子负载可以具备恒定电流、恒定电阻、恒定电压、动态负载及短路负载等工作方式。
本课题主要讨论恒压和恒流两种模式。
第二章总体设计方案需要设计一个直流负载,可以实现恒压和恒流两种模式,并可以切换,且电压值和电流值都可以设定在一定范围内。
本实验采用的是手动切换两种模式的方式。
恒压、恒流两种模式都是采用运算放大器和反馈网络所组成的电路而实现的,其中,电路中的反馈网络是以场效应管为核心而构成的可调式放大电路,并增加了软启动电路和电压补偿电路进行补充。
可调式放大电路就是指放大电路根据输出要求的需要改变经过反馈电路的反馈信号,以达到输出需求。
软启动电路可以使电压由零慢慢提升到额定电压,这样电路在启动过程中的启动电流,就由过去过载冲击电流不可控制变成为可控制。
电压补偿电路即功率因数的补偿,电流在经过负载会消耗部分能量,以致最终得到的结果和预期值有较大差距,电压补偿电路则可以弥补损失。
第三章恒流模式3.1 恒流模式基本原理在定电流工作模式时,电子负载所流入的负载电流依据所设定的电流值而保持恒定,与输入电压大小无关,即负载电流保持不变。
恒流模式下的电路原理图,如图3.1所示。
该恒流电路是以集成运算放大器OP07为核心,OP07芯片是一种低噪声,非暂波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低(OP07A为±2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面这样的电路更容易获得稳定及精确的电流值。
如图3.1所示,R2为取样电阻,当从OP07的3端给定一个信号VREF时,如果R2 上的电压小于VREF,也就是OP07 的-IN 小于+IN,OP07 加输出大,使MOS 加大导通使R2 的电流加大。
如果R2 上的电压大于VREF 时,-IN 大于+IN,OP07 减小输出,也就降了R2 上的电流,这样电路最终维持在恒定的给值上,也就实现了恒流工作。
如给定VREF 为可调节的直流源,R2为2 欧时,改变VREF 可改变恒流值,VREF 可用电位器调节输入或用DAC芯片由MCU 控制输入,采用电位器可手动调节输出电流。
如采用DAC 输入可实现数控恒流电子负载。
输出恒流值:I=(R3/(R1+R3))/R2*U图3.1 恒流模式原理图3.2横流模式最小输出电流为了获得最小的电流,现将R3的电阻调到最大,即滑动变阻器打到100%处,如图3.2所示。
图3.2.1 横流模式最小输出电流图3.2.2 横流模式最小输出电流根据恒流输出值的公式,并将数值代入,可以求得最小输出电流为:I=230.69mA3.3横流模式最大输出电流为了获得最大的电流,现将R3的电阻调到最小,即滑动变阻器打到5%处,如图3.2.1和3.2.2所示。
图3.3.1 横流模式最大输出电流图3.3.2 横流模式最大输出电流根据恒流输出值的公式,并将数值代入,可以求得最大输出电流为:I≈3.36A这个电路图是在调节R3的基础上进行的,R3调节范围在5%~100%,可以使输出电流为235.305mA~3.028A,基本满足了电流设置在了100mA~3A,并可以保持恒定的要求。
3.4 恒流模式存在的问题及改进方案由于上述电路的输出电流的调整完全依赖电位器R3 的改变,因此R3的改变范围较大,这样在输出电流的调整过程中,容易调过头或调不足,要准确地实现100mA-3A 范围的电流任一电流有些调整比较麻烦,必须反复调整,只依赖R3是比较困难的,如果将电位器R3用一个电位器R3'和电阻R 档串联实现,通过一个开关实现电阻R 档的改变从而改变输出电流的范围,并在所选择的输出电流范围内通过改变电位器R3'的阻值得到所需要的准确的直流电流输出。
如图3.4所示。
图3.4改进方案第四章恒压模式4.1恒压模式基本原理在恒压工作模式时,电子负载所流入的负载电流依据所设定的负载电压而定,此时负载电流将会增加直到负载电压等于设定值为止,即负载电压保持不变。
恒压电路在用于测试充电器时是很有用的。
恒压模式下的原理图,如图4.1所示。
该电路采用的是三端集成稳压器电路方案,并辅以软启动电路和电压补偿电路设计而成的。
由LM317系列三端集成稳压器构成的稳压电路,其输出电压调节范围在1.25-37 V之间,输出电流可达1.5 A,内部带有过载保护电路,具有稳压精度高、工作可靠等特点。
由于LM317 有一稳定的基准电压U(1.25 V),故有:U0=U*(1+R5/R3)=1.25*(1+R5/R3),其中R3为固定电阻,故调节R5可以调节输出电压UO。
软启动电路由晶体管T,电阻R2,R4和电容器C3组成。
其作用是使电路输出电压U0有一个缓慢的上升过程,以适应感性负载(如直流电机)的启动特性。
当输入电压UI接入时,因C3上的电压不能突变,故T因基极电位较高而饱和导通,使U2(LM317的2 脚电位)和U3都很低,故U0很小,随着C的充电,T的基极电位下降,其集电极电位(即U2)升高,使U3 升高(因U32 为一稳定电压),所以U0也升高。
当C 充满电时,T被截止,启动电路失去作用,U0也达到设定值。
启动的时间可以通过改变C3和R4的值进行调整。
电压补偿电路是由电阻R1和二极管D组成。
因为要求输出电压从0 V 起调,LM317 集成稳压器不能直接满足要求,需设计一个电压补偿电路,抵消LM317 的1.25 V 最小输出电压。
U0=U3-UD式中,U3 为LM317 的3 脚电压;UO 为输出电压;UD 为二极管D 的正向压降,即为补偿电压,其值略大于LM317 的基准电压(1.25 V)。
当调节R1,使U3 达到与UD 相等时,输出电压即为0 V。
之后,当调节R4 逐渐增大时,UO 即由0 V 开始增大。
由于负载电流流过D,故D 的最大工作电流应能适应负载电流的要求。
图4.1 恒压模式电路图4.2 恒压模式最小输出电压为了获得最小的恒定输出电压,将R5的电阻调到最小,即滑动变阻器打到0%处,如图4.2.1,图4.2.2和图4.3.3所示。
图4.2.1 恒压模式最小输出电压图4.2.2 恒压模式最小输出电压图4.2.3 恒压模式最小输出电压此时获得最小恒定电压1.263V4.3 恒压模式最大输出电压为了获得最小的恒定输出电压,将R5的电阻调到最大,即滑动变阻器打到100%处,如图4.3.1,,图4.3.2和图4.3.3所示。
图4.3.1 恒压模式最大输出电压图4.3.2 恒压模式最大输出电压图4.3.3 恒压模式最大输出电压此时获得了最大恒定电压20.548V。
恒压模式是在调节R5的基础上进行的,R5调节范围在0%~100%,输出电压为1.263V~20.548V,基本满足了电压设置在1V~20V,并可以保持恒定的要求4.4 恒流模式存在的问题及改进方案由于上述电路的输出电压的调整完全依赖电位器R5 的改变,因此R5 的改变范围较大,这样在输出电压的调整过程中,容易调过头或调不足,要准确地实现1-20V 宽范围的电压任一电压有些调整比较麻烦,必须反复调整,只依赖R5 是比较困难的,如果将电位器R5 用一个电位器R5'和电阻R 档串联实现,通过一个开关实现电阻R 档的改变从而改变输出电压的范围,并在所选择的输出电压范围内通过改变电位器R5'的阻值得到所需要的准确的直流电压输出。
如图 4.4所示。
图4.4 改进电路总结经过这一次的课程设计,我感触颇多,对所学内容也进一步的加深了理解,学会了如何查找资料,利用资料,更重要的是合作。
在这一次的设计中,遇到了好多问题,却有很多收获。
首先是第一次的设计,按照最先的原理图连接出来后,我没能调试出正确的结果,仿真出了问题。
后来搜索了好多资料,和同组同学进行了激烈的讨论,最终大胆选择了新的设计方案,并利用网络和图书馆的资源,最终使这次课程设计得以顺利完成。
直流电子负载的设计方案有好几种,在网上找的资料好多采用的是单片机原理,由于时间有限,要学习单片机不大现实,串联式直流稳压负载的稳定性又不高,而三端集成稳压器电路简单易学,又有很好的稳定效果所以最终采用的是三端集成稳压器电路。
这次的设计还有很多不足之处,有待进一步改进。
要想获得更稳定的电路,可以尝试使用单片机,这需要日后更多的学习和实践来实现。
致谢经过两个星期的艰苦奋战,我的课程设计基本完成。
在这里我要忠心的感谢我的指导老师,方俊初老师,正是他的悉心教导才能让我在这么短的时间内就完成了这一次的课程设计。
期间,方老师每天都来学校为我们指点,我也经常向方老师请教,他都很仔细耐心的向我解说。
在我遇到困难时,他不断的鼓励我,给我信心。
他风趣幽默的风格,让我们在解决问题和学习知识时感到无比轻松愉快。
这段时间和方老师的接触让我受益匪浅,在此在此表示,我对方老师的敬意和感激之情。
课程设计期间,同学和室友的帮助是巨大的,尤其是在方案确定的时候,感谢他们对我的支持和帮助,在此对他们致以最诚挚的谢意。
还要感谢那些帮助过我的,给我提出宝贵意见的,以及那些关心我的人。
最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位老师表示衷心地感谢!此致敬礼附录表一:恒流模式元器件清单表二:恒压模式元器件清单参考文献【1】华成英,童诗白著《模拟电子技术基础》第四版高等教育出版社,2006【2】阎石著《电子技术基础》第五版高等教育出版社,2006【3】《单片机原理及应用》第三版机械工业出版社,2005.【4】全国大学生电子设计竞赛训练教程。