高三数学高考模拟题

合集下载

广东省2023届高三高考模拟数学试题(原卷版)

广东省2023届高三高考模拟数学试题(原卷版)
2023届高三年级校模
数学
本试卷共4页满分150分考试用时120分钟.
第I卷选择题
一、单项选择题:本题共8小题每小题5分共40分.在每小题给出的四个选项中只有一项是符合题目要求的.
1.已知集合 则 ()
A. B. C. D.
2.已知复数z满足 则z在复平面内对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
17.(10分)请在这三个条件:① ;② ;③ 中任选一个条件补充在下面的橫线上并加以解答.如图锐角 中 ______ 在边 上且 点 在边 上且 交 于点 .
(1)求 的长;
(2)求 及 的长.
18.设等差数列 的前n项和为 已知 且 是 与 的等比中项数列 的前n项和 .
(1)求数列 的通项公式;
C.y与x的线性相关系数
D.七月的借阅量一定不少于6. 12万册
10.已知 下列选项正确的是()
A. 的值域为
B. 的对称中心为
C. 的单调递增区间为 和
D. 图像向右平移 个单位与 的图像重合
11.如图点M是棱长为l的正方体 中的侧面 上的一个动点(包 平面
(2)若 对任意 总有 恒成立求实数 的最小值.
19.甲乙两人进行围棋比赛约定先连胜两局者直接赢得比赛若赛完5局仍末出现连胜则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 乙获胜的概率为 各局比赛结果相互独立.
(1)求乙只赢1局且甲赢得比赛的概率;
(2)记 为比赛决出胜负时的总局数求 的分布列和期望.
3.已知向量 满足 则 在 方向上的投影向量的模为()
A. B.3C. D.
4.如图l在高为h的直三棱柱容器 中 现往该容器内灌进一些水水深为 然后固定容器底面的一边AB于地面上再将容器倾斜当倾斜到某一位置时水面恰好为 (如图2)则 =()

2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B = ,则集合P 的子集共有()A .2个B .3个C .4个D .8个2.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18°表示,即12sin182-=,设12m =,则2tan 811tan 81=+()A.4mB.2m C.m3.若5(4)(2)x m x --的展开式中的3x 的系数为600-,则实数m =()A.8.B.7C.9D.104.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .895.设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为()A.52B.5C.9D.926.已知函数()()()sin f x x x ωω=+,若沿x 轴方向平移()f x 的图象,总能保证平移后的曲线与直线1y =在区间[]0,π上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.82,3⎡⎫⎪⎢⎣⎭B.102,3⎡⎫⎪⎢⎣⎭C.10,43⎡⎫⎪⎢⎣⎭D.[)2,47.已知()6116,ln ,log 71ln 510115a b c =+==-,则()A.a b c >> B.b c a>> C.a c b >> D.c a b>>8.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A.,24⎤⎥⎣⎦B.4⎣C.1⎣D.4⎣二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12||||z z =B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z =D.若1212||||z z z z -=+,则120z z =10.已知抛物线2:4C x =y 的焦点为F ,准线为l ,过F 的直线与抛物线C 交于A,B 两点,M 为线段AB 中点,,,A B M '''分别为A,B,M 在ι上的射影,且||3||AF BF =,则下列结论中正确的是A.F 的坐标为(1,0)B.||2||A B M F '''=C.,,,A A M F ''四点共圆D.直线AB 的方程为313y x =±+11.对于[]()0,1,x f x ∈满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤.恒有()()12f x f x ≤.则()A .10011011002i i f =⎛⎫=⎪⎝⎭∑B .112624f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某工厂生产的产品的质量指标服从正态分布2(100,)N σ.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到95.45%,则需调整生产工艺,使得σ至多为.(若2~(,)X N μσ,则{||2}0.9545)P X μσ-<=13.ABC △中,,,a b c ,分别为角,,A B C的对边,若3A π=,a b c +=+,则ABC △的面积S 的最小值为.14.函数sin cos ()e e x x f x =-在(0,2π)范围内极值点的个数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.16.(本小题满分15分)某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m (2m >且*m ∈N )人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A ,否则该组标为B ,记询问的某组被标为B 的概率为p .(i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用()g p 表示恰有3组被标为B 的概率,试求()g p 的最大值及此时m 的值.17.(本小题满分15分)如图,在平行六面体1111ABCD A B C D -中,AC BD O = ,2AB AD ==,13AA =,11π3BAA BAD DAA ∠=∠=∠=,点P 满足1221333DP DA DC DD =++ .(1)证明:O ,P ,1B 三点共线;(2)求直线1AC 与平面PAB 所成角的正弦值.18.(本小题满分17分)已知椭圆22:11612x y E +=的左右焦点分别为12,F F ,点A 在椭圆E 上,且在第一象限内,满足1|| 5.AF =(1)求12F AF ∠的平分线所在的直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异的两点,若存在,请找出这两点;若不存在请说明理由;(3)已知双曲线M 与椭圆E 有共同的焦点,且双曲线M 与椭圆E 相交于1234,,,P P P P ,若四边形1234P P P P 的面积最大时,求双曲线M 的标准方程.19.(本小题满分17分)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.。

高三数学-2024年全国普通高中九省联考仿真模拟数学试题(一)(解析版)

高三数学-2024年全国普通高中九省联考仿真模拟数学试题(一)(解析版)

2024年高考仿真模拟数试题(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ()A.4B.5C.6D.7【答案】C 【解析】【分析】根据百分位数的定义求解即可.【详解】这组数据为:1,1,,4,5,5,6,7a ,但a 大小不定,因为80.756⨯=,所以这组数据的75%分位数为从小到大的顺序的第6个数和第7个数的平均数,经检验,只有6a =符合.故选:C .2.已知椭圆E :()222210x y a b a b+=>>的长轴长是短轴长的3倍,则E 的离心率为()A.3B.223C.33D.233【答案】B 【解析】【分析】根据题意可得26a b =,再根据离心率公式即可得解.【详解】由题意,26a b =,所以13b a =,则离心率3c e a ====.故选:B .3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =()A.150B.120C.75D.68【答案】D 【解析】【分析】由等差数列的性质及求和公式计算即可得解.【详解】由等差数列的性质可知78910911205a a a a a a ++++==,所以94a =,()1171791717682a a S a +===,故选:D.4.已知空间中,l 、m 、n 是互不相同直线,α、β是不重合的平面,则下列命题为真命题的是()A.若//αβ,l ⊂α,n β⊂,则//l nB.若//l α,//l β,则//αβC.若//m β,//n β,m α⊂,n ⊂α,则//αβD.若l α⊥,//l β,则αβ⊥【答案】D 【解析】【分析】对A 、B 、C 选项,可通过找反例排除,对D 选项,可结合线面平行的性质及面面垂直的判定定理得到.【详解】对A 选项:若//αβ,l ⊂α,n β⊂,则l 可能与n 平行或异面,故A 错误;对B 选项:若//l α,//l β,则α与β可能平行或相交,故B 错误;对C 选项:若//m β,//n β,m α⊂,n ⊂α,可能//m n ,此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p ,又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选:D.5.7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有()种站排方式.A.672 B.864 C.936 D.1056【答案】D 【解析】【分析】分甲站在每一排的两端和甲不站在每一排的两端这两种情况解答即可.【详解】当甲站在每一排的两端时,有4种站法,此时乙的位置确定,剩下的人随便排,有554A 480=种站排方式;当甲不站在每一排的两端时,有3种站法,此时乙和甲相邻有两个位置可选,丙和甲不相邻有四个位置可选,剩下的人随便站,有1142443C C A 576=种站排方式;故总共有4805761056+=种站排方式.故选:D .6.在平面直角坐标系xOy 中,已知()1,0A ,()0,3B ,动点P 满足OP xOA yOB =+,且1x y +=,则下列说法正确的是()A.P 的轨迹为圆B.P 到原点最短距离为1C.P 点轨迹是一个菱形D.点P 的轨迹所围成的图形面积为4【答案】C 【解析】【分析】由题意得3x ab y =⎧⎪⎨=⎪⎩,结合1x y +=可知33a b +=,画出图形可知P 点轨迹是一个菱形,故C错误A 正确;由点到直线的距离即可验证B ;转换成ABC 面积的两倍来求即可.【详解】设P 点坐标为(),a b ,则由已知条件OP xOA yOB =+ 可得3a x b y =⎧⎨=⎩,整理得3x a b y =⎧⎪⎨=⎪⎩.又因为1x y +=,所以P 点坐标对应轨迹方程为33a b +=.0a ≥,且0b ≥时,方程为33a b +=;0a ≥,且0b <时,方程为33b a =-;a<0,且0b ≥时,方程为33b a =+;a<0,且0b <时,方程为33a b +=-.P 点对应的轨迹如图所示:3AB CD k k ==-,且AB BC CD DA ====P 点的轨迹为菱形.A 错误,C 正确;原点到AB :330a b +-=1.10=<B 错误;轨迹图形是平行四边形,面积为122362⨯⨯⨯=,D 错误.故选:C .7.已知函数()3sin 44sin 436f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,设()00,,()x x f x f x ∀∈∃∈≤R R ,则02tan 43x π⎛⎫-⎪⎝⎭等于()A.43-B.34-C.34D.43【答案】B 【解析】【分析】根据诱导公式得到()f x 最大值,即得到关于0x 的关系式,代入02tan 43x π⎛⎫-⎪⎝⎭利用诱导公式即可.【详解】()3sin 44sin 43sin(4)4sin(4)36323f x x x x x πππππ⎛⎫⎛⎫=++-=++-++ ⎪ ⎪⎝⎭⎝⎭,()3sin(4)4cos(433f x x x ππ∴=+++,4()5sin(4)(tan 33f x x πϕϕ∴=++=,max 5()f x =∴,()00,,()x x f x f x ∀∈∃∈≤R R ,0234(Z)2k k x πππϕ+=+∈+∴,0213tan 4tan(2)32tan 4x k πππϕϕ⎛⎫∴-=-+-=-=- ⎪⎝⎭.故选:B.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,离心率为e ,直线(0)y kx k =≠分别与C 的左、右两支交于点M ,N .若1MF N 的面积为160MF N ∠=︒,则22e 3a +的最小值为()A.2B.3C.6D.7【答案】D 【解析】【分析】作出辅助线,121F NF MF N S S == 124NF NF ⋅=,利用双曲线定义和余弦定理求出21243b F N F N ⋅=,求出23b =,进而求出22223e 31317a a a +=++≥+=.【详解】连接22,NF MF ,有对称性可知:四边形12MF NF 为平行四边形,故2112,NF MF NF MF ==,12120FNF ∠=︒,121F NFMF N S S ==由面积公式得:121sin1202NF NF ⋅︒=124NF NF ⋅=,由双曲线定义可知:122F N F N a -=,在三角形12F NF 中,由余弦定理得:()222221212121212244cos12022F N F N F N F N cF N F N c F N F N F N F N-+⋅-+-︒==⋅⋅2121224122F N F N b F N F N ⋅-==-⋅,解得:21243b F N F N ⋅=,所以2443b =,解得:23b =,故22223e 31317a a a +=++≥+=,当且仅当2233a a=,即21a =时,等号成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()2sin sin 2f x x x=-,则下列结论正确的有()A.()f x 为奇函数B.()f x 是以π为周期的函数C.()f x 的图象关于直线π2x =对称 D.π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x的最大值为22-【答案】AD 【解析】【分析】对于A ,由正弦函数的奇偶性即可判断;对于B ,判断()()πf x f x +=是否成立即可;对于C ,判断ππ22f x f x ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭是否成立即可;对于D ,可得π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,由此即可得解.【详解】对于A ,()2sin sin 2f x x x =-的定义域为()π,2k x k ≠∈Z (关于原点对称),且()()()()22sin sin sin 2sin 2f x x x f x x x ⎛⎫-=--=--= ⎪-⎝⎭,对于B ,()()()()22πsin πsin sin 2sin 2πf x x x f x x x +=+-=--≠⎡⎤+⎣⎦,故B 错误;对于C ,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫+=+-=+⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭+ ⎪⎢⎥⎝⎭⎣⎦,ππ22sin cos 22sin 2πsin 22f x x x x x ⎛⎫⎛⎫-=--=-⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭- ⎪⎢⎥⎝⎭⎣⎦,但ππ22f x f x ⎛⎫⎛⎫+≠-⎪ ⎪⎝⎭⎝⎭,即()f x 的图象不关于直线π2x =对称,故C 错误;对于D ,π0,4x ⎛⎤∈ ⎥⎝⎦时,sin ,sin 2y x y x ==均单调递增,所以此时2sin 2y x=-也单调递增,所以π0,4x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递增,其最大值为π2242f ⎛⎫=- ⎪⎝⎭.故选:AD.10.已知复数1z ,2z ,则下列命题成立的有()A.若1212z z z z +=-,则120z z = B.11,Z nnz z n =∈C.若22120z z +=,则12=z z D.1212z z z z ⋅=⋅【答案】BCD 【解析】【分析】举例说明判断A ;利用复数的三角形式计算判断B ;利用复数的代数形式,结合模及共轭复数的意义计算判断CD.【详解】对于A ,当121i,1i =+=-z z 时,12122z z z z +==-,而1220z z =≠,A 错误;对于B ,令1(cos isin ),0,R z r r θθθ=+≥∈,则1(cos isin )n nz r n n θθ=+,于是1|||cos isin |nnnz r n n r θθ=+=,而1||z r =,即有1||nnz r =,因此11nnz z =成立,B 正确;设复数1i(,R)z a b a b =+∈,2i(,)z c d c d =+∈R ,对于C ,由22120z z +=,得2222()(22)i 0a b c d ab cd -+-++=,则22220220a b c d ab cd ⎧-+-=⎨+=⎩,2222120z z -=-=,因此12=z z ,C 正确;对于D ,21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,则21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,因此1212z z z z ⋅=⋅,D 正确.故选:BCD11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则()()f x f y ≠.则()A.()0f 的值为2B.()()4f x f x +-≥C.若()13f =,则()39f = D.若()410f =,则()24f -=【答案】ABC 【解析】【分析】对于A ,令0x y ==,结合“若x y ≠,则()()f x f y ≠”即可判断;对于B ,由基本不等式相关推理结合()2040f =>即可判断;对于C ,令1y =得,()()()1332f x f x f x +++=+,由此即可判断;对于D ,令()1xf x =+,即可判断.【详解】对于A ,令0x y ==,得()()23002f f =+⎡⎤⎣⎦,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,但这与②若x y ≠,则()()f x f y ≠矛盾,所以只能()02f =,故A 正确;对于B ,令y x =-,结合()02f =得,()()()()()()22f x f x f x f x f x f x ⎛⎫+-+-=⋅-≤ ⎪⎝⎭,解得()()4f x f x +-≥或()()0f x f x +-≤,又()02f =,所以()2040f =>,所以只能()()4f x f x +-≥,故B 正确;对于C ,若()13f =,令1y =得,()()()1332f x f x f x +++=+,所以()()121f x f x +=-,所以()()2161521f f =-=-=,所以()()21101932f f =-=-=,故C 正确;对于D ,取()1xf x =+,则()()11232xyx yx yf x f y +⎡⎤⎡⎤+++=+++⎢⎥⎢⎥⎣⋅=⎣+⎦⎦()()()f x y f x f y +++=且()1xf x =+单调递增,满足()410f =,但()423f -=,故D 错误.故选:ABC.【点睛】关键点睛:判断D 选项的关键是构造()1xf x =+,由此即可证伪.三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2,0,1M =-,{}1N x x a =-<,若M N ⋂的真子集的个数是1,则正实数a 的取值范围为______.【答案】()()0,11,3 【解析】【分析】分{}0M N = 和{}2M N = 讨论即可.【详解】{}1N x x a =-<,则11x a -<-<,解得11a x a -+<<+,若M N ⋂的真子集的个数是1,则M N ⋂中只含有一个元素,因为a 为正实数,则11a +>,11a -+>-,若{}0M N = ,则10120a a a -+<⎧⎪+≤⎨⎪>⎩,解得01a <<,若{}2M N = ,则012120a a a ≤-+<⎧⎪+>⎨⎪>⎩,解得13a <<,综上所述,a 的取值范围为()()0,11,3 .故答案为:()()0,11,3 .13.已知正四棱台1111ABCD A B C D -的上、下底面边长分别为4、6,则正四棱台1111ABCD A B C D -的体积为______,外接球的半径为______.【答案】①.3②.【解析】【分析】利用棱台的体积公式计算即可得第一空,根据棱台与球的特征结合勾股定理计算即可得第二空.【详解】根据题意易知该棱台的上、下底面积分别为:2212416,636S S ====,所以正四棱台1111ABCD A B C D -的体积为()12176233V S S =++=;连接AC ,BD 交于点2O ,连接11A C ,11B D 交于点1O,如图所示:当外接球的球心O 在线段12O O 延长线上,设1OO h =,外接球半径为R,则(222O O h =-,因为12=O O ,上、下底面边长分别为4、6,则111112==D O B D 212DO BD ==,所以(22222112R D O h DO h h R =+=+-⇒==当外接球的球心O 在线段21O O 延长线上,显然不合题意;当球心O 在线段12O O 之间时,则)222O O h =,同上可得,h =故答案为:3.14.若sin 0αβγ+-=+-的最大值为______.【答案】【解析】≤=消去α、β求最大值即可,再应用三角函数的单调性即可得.【详解】由题意得:0sin 1αβγ≤+=≤,0α≥,0β≥,则()22αβαβαβαβ=+++++=+,当且仅当αβ=时等号成立,+≤=≤,则有0sin 10cos 1γγ≤≤⎧⎨≤≤⎩,则π2π2π2k k γ≤≤+,Z k ∈,有sin γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,单调递增,cos γ在π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递减,π2π2π2k k ⎡⎤+⎢⎥⎣⎦,上单调递增,则当π2π2k γ=+时,即sin 1γ=、cos 0γ=时,,+-的最大值为..【点睛】本题关键在于如何将多变量求最值问题中的多变量消去,结合基本不等式与题目条件可将α、β消去,再结合三角函数的值域与单调性即可求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.函数()e 2xf x ax a =--.(1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)求导后,分别在0a ≤和0a >的情况下得到()f x '正负,进而得到()f x 单调性,由极值定义可求得结果;(2)由(1)可知()f x 单调性,分别讨论极小值大于零、等于零和小于零的情况,结合零点存在定理可得结论.【小问1详解】由题意得:()e 2xf x a '=-;当20a ≤,即0a ≤时,()0f x ¢>恒成立,()f x \在R 上单调递增,无极值;当20a >,即0a >时,令()0f x '=,解得:ln 2x a =,∴当(),ln 2x a ∈-∞时,()0f x '<;当()ln 2,x a ∈+∞时,()0f x ¢>;()f x \在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增,()f x \的极小值为()ln 22ln 2f a a a a =-,无极大值;综上所述:当0a ≤时,()f x 无极值;当0a >时,()f x 极小值为2ln 2a a a -,无极大值.【小问2详解】由(1)知:当0a >时,()f x 在(),ln 2a -∞上单调递减,在()ln 2,a +∞上单调递增;当02a <<时,()ln 22ln 20f a a a a =->,()0f x ∴>恒成立,()f x 无零点;当a =时,()ln 22ln 20f a a a a =-=,()f x 有唯一零点ln 2x a =;当2a >时,()ln 22ln 20f a a a a =-<,又()010f a =->,当x 趋近于正无穷大时,()f x 也趋近于正无穷大,()f x \在()0,ln 2a 和()ln 2,a +∞上各存在一个零点,即()f x 有两个零点;综上所述:当e 02a <<时,()f x 无零点;当2a =时,()f x 有且仅有一个零点;当e 2a >时,()f x 有两个不同的零点.16.已知n 把相同的椅子围成一个圆环;两个人分别从中随机选择一把椅子坐下.(1)当12n =时,设两个人座位之间空了X 把椅子(以相隔位子少的情况计数),求X 的分布列及数学期望;(2)若另有m 把相同的椅子也围成一个圆环,两个人从上述两个圆环中等可能选择一个,并从中选择一把椅子坐下,若两人选择相邻座位的概率为114,求整数(),3,3m n m n >>的所有可能取值.【答案】(1)分布列见解析,数学期望为2511(2)9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩【解析】【分析】(1)根据题意得到随机变量X 可以取0,1,2,3,4,5,并计算出相应的概率,列出分布列,利于期望公式计算即可;(2)利于概率求得两人选择相邻座位的概率,建立方程后依据条件可求得整数解即可.【小问1详解】由题意,得随机变量X 可以取0,1,2,3,4,5,其中()()21212220,1,2,3,4A 11P X i i ⨯====,()21212115A 11P X ⨯===,所以随机变量X 的分布列为:X012345P 211211************故()2222212501234511111111111111E X =⨯+⨯+⨯+⨯+⨯+⨯=.【小问2详解】记“两人选择n 把相同的椅子围成的圆环”为事件A ,“两人选择m 把相同的椅子围成的圆环”为事件B ,“两人选择相邻座位”为事件C .因为两个人从上述两个圆环中等可能选择一个,所以()()1111,2244P A P B =⨯==,()()()()()()()P C P AC P BC P A P C A P B P C B =+=+()()12121114141211n m n n m m n m ⨯⨯⎛⎫=⨯+⨯=+ ⎪----⎝⎭.因为()114P C =,所以111117n m +=--.化简,得4988n m =+-.因为*3,3,m n n >>∈N ,所以498m ∈-Z ,且4958m >--.所以81,7,49m -=,即9,15,57m =,此时9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩所以,m n 的所有可能取值为9,57m n =⎧⎨=⎩或15,15m n =⎧⎨=⎩或57,9.m n =⎧⎨=⎩17.如图,在多面体ABCDEF 中,底面ABCD 为平行四边形,//EF 平面AB CD -,EAB 为等边三角形,22,60BC CE AB EF ABC ===∠=︒.(1)求证:平面EAB ⊥平面ABCD ;(2)求平面ECD 与平面FCD 夹角的余弦值.【答案】(1)证明见解析(2)31010【解析】【分析】(1)根据面面垂直的判定定理证明即可;(2)建立空间直角坐标系,利用向量的方法即可求得平面平面ECD 与平面FCD 的夹角的余弦值.【小问1详解】不妨设1AB =,则2BC CE ==,在平行四边形ABCD 中,2BC = ,1AB =,60ABC ∠=︒,连接AC ,由余弦定理得22212211cos 603AC =+-⨯⨯⨯︒=,即3AC =,222AC AB BC += ,AC AB ∴⊥.又 222AC AE CE +=,AC AE ∴⊥,AB AE A = ,AC ⊥平面EAB ,又 AC ⊂平面ABCD .∴平面EAB ⊥平面ABCD .【小问2详解】取AB 中点G ,连接EG ,EA EB = ,EG AB ∴⊥,由(1)易知EG ⊥平面ABCD ,且32EG =.如图,以A 为原点,分别以射线,AB AC 所在直线为,x y 轴,竖直向上为z 轴,建立空间直角坐标系A xyz -,则1,0,22E ⎛⎫ ⎪ ⎪⎝⎭,0,,22F ⎛⎫ ⎪ ⎪⎝⎭,()C,()D -,()12,B -,(11,C -,()1,0,0CD =- ,330,,22FC ⎛⎫=- ⎪ ⎪⎝⎭,1322EC ⎛⎫=-- ⎪ ⎪⎝⎭ ,设平面FCD 的法向量为(),,n x y z = ,则00n CD n FC ⎧⋅=⎪⎨⋅=⎪⎩ ,得0022x y z -=⎧-=⎩,令1y =,得()0,1,1n = ,设平面ECD 的法向量为()111,,m x y z = ,则00m CD m EC ⎧⋅=⎪⎨⋅=⎪⎩ ,得1111013022x x z -=⎧⎪⎨-+-=⎪⎩,令11y =,得()0,1,2m =,310cos ,10m n m n m n ⋅===⋅ ,所以平面ECD 与平面FCD 夹角的余弦值31010.18.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.【答案】(1)22y x=(2)10x -=【解析】【分析】(1)结合抛物线定义即可.(2)设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程联立得12y y +,12y y .将每条直线表达出来,1S 、2S 、3S 、4S 表达出来,再由12344S S S S =得出m 即可.【小问1详解】设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.【小问2详解】如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m R ∈),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y==,∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==.又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,∴12342242S S S S m =+=,得m =,∴直线AB的方程为1x =+即10x ±-=.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。

河北省石家庄市2024届高三下学期高考模拟预测 数学试题【含答案】

河北省石家庄市2024届高三下学期高考模拟预测 数学试题【含答案】

2024年河北省石家庄市高考数学模拟试卷附解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2024180,Z A k k αα︒==-︒+⋅∈∣中的最大负角α为()A .2024-︒B .224-︒C .44-︒D .24-︒2.已知()41i 1iz +=-,则z 的虚部为()A .2iB .2i-C .2-D .23.已知平面内的向量a 在向量b 上的投影向量为12b,且1a b == ,则2a b - 的值为()AB .1C .34D .324.设正项等比数列{}n a 的前n 项和为n S ,11a =,且3a -,2a ,4a 成等差数列,则2024S 与2024a 的关系是()A .2024202421S a =-B .2024202421S a =+C .2024202443S a =-D .2024202441S a =+5.已知变量x 和y 的统计数据如表:x 12345y66788根据上表可得回归直线方程0.6y x a =+,据此可以预测当8x =时,y =()A .8.5B .9C .9.5D .106.现将四名语文教师,三名心理教师,两名数学教师分配到三所不同学校,每个学校三人,要求每个学校既有心理教师又有语文教师,则不同的安排种数为()A .216B .432C .864D .10807.已知椭圆221222:1(0),,x y C a b F F a b+=>>为左、右焦点,P 为椭圆上一点,1260F PF ∠=,直线:l y x t =-+经过点P .若点2F 关于l 的对称点在线段1F P 的延长线上,则C 的离心率是()A .13B .22C .12D .238.已知函数()xf x x =,()0,x ∈+∞,则下列命题不正确的是()A .()f x 有且只有一个极值点B .()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增C .存在实数()0,a ∈+∞,使得()1ef a =D .()f x 有最小值1e1e二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中,正确的是()A .一组数据10,11,11,12,13,14,16,18,20,22的第40百分位数为12B .两组样本数据1x ,2x ,3x ,4x 和1y ,2y ,3y ,4y 的方差分别为21s ,22s ,若已知10i i x y +=(1,2,3,4i =),则2212s s =C .已知随机变量X 服从正态分布()2,N μσ,若()()261P X P X ≥-+≥=,则2μ=D .已知一系列样本点(),i i x y (1,2,3,i =⋅⋅⋅)的回归方程为ˆˆ3y x a =+,若样本点(),3m 与()2,n 的残差(残差=实际值i y -模型预测值ˆy)相等,则310m n +=10.若关于x 的不等式22e 2ln x x ax x x -+-≥在()0+∞,上恒成立,则实数a 的值可以是()A .1eB .12C .e 3D .211.已知定义在实数集R 上的函数()f x ,其导函数为()f x ',且满足()()()f x y f x f y xy +=++,()()110,12f f '==,则()A .()f x 的图像关于点()1,0成中心对称B .()322f '=C .()202410122023f =⨯D .20241()10122024k f k ='=⨯∑三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}22230,0,M x x x N x x ax x =--<=-<∈Z ,若集合M N ⋂恰有两个元素,则实数a 的取值范围是.13.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为.14.如图,在梯形ABCD 中,190,22ABC BAD AB BC AD ∠=∠====,将BAC 沿直线AC 翻折至1B AC △的位置,13AM MB =,当三棱锥1B ACD -的体积最大时,过点M 的平面截三棱锥1B ACD -的外接球所得的截面面积的最小值是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()e e axf x x b =--在0x =处的切线为x 轴.(1)求,a b 的值;(2)求()f x 的单调区间.16.如图,三棱锥A BCD -中,,,,AD CD AD CD ADB BDC E ∠∠⊥==为线段AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设3,2,0AB BD BF FD EF BD ===⋅=,求直线CF 与平面ABC 所成角的正弦值.17.有无穷多个首项均为1的等差数列,记第()*N n n ∈个等差数列的第()N,2m m m ∈≥项为()m a n ,公差为()0n n d d >.(1)若()()22212a a -=,求21d d -的值;(2)若m 为给定的值,且对任意n 有()()12m m a n a n +=,证明:存在实数,λμ,满足1λμ+=,10012d d d λμ=+;(3)若{}n d 为等比数列,证明:()()()()()1122mm m m m a a n n a a a n +⎡⎤⎣⎦+++≤ .18.设椭圆E :22221x y a b +=()0a b >>经过点()2,1P -,且离心率e =:3m x =垂直x 轴交x 轴于T ,过T 的直线l 1交椭圆E 于()11,A x y ,()22,B x y 两点,连接PA ,PB ,PT .(1)求椭圆E 的方程;(2)设直线PA ,PB 的斜率分别为1k ,2k .(ⅰ)求12k k +的值;(ⅱ)如图:过P 作x 轴的垂线l ,过A 作PT 的平行线分别交PB ,l 于M ,N ,求||||MN MA 的值.19.在函数极限的运算过程中,洛必达法则是解决未定式00型或∞∞型极限的一种重要方法,其含义为:若函数()f x 和()g x 满足下列条件:①()lim 0x a f x →=且()lim 0x a g x →=(或()lim x a f x →=∞,()lim x ag x →=∞);②在点a 的附近区域内两者都可导,且()0g x '≠;③()()lim x af x Ag x →'='(A 可为实数,也可为±∞),则()()()()limlimx ax af x f x Ag x g x →→'=='.(1)用洛必达法则求0limsin x xx→;(2)函数()()232112!3!21!n x x x f x x n -=+++++- (2n ≥,*n ∈N ),判断并说明()f x 的零点个数;(3)已知()()2cos g x g x x =⋅,()01g =,ππ,22x ⎛⎫∈- ⎪⎝⎭,求()g x 的解析式.参考公式:()()lim lim x a x af x f x →→=,()()lim lim x a x a kf x k f x →→=.1.C【分析】利用任意角的定义与集合A 所表示的角即可得解.【详解】因为04420211481︒=-︒-⨯︒-,所以集合{}2024180,Z A k k αα︒==-︒+⋅∈∣中的最大负角α为44-︒.故选:C.2.D【分析】利用复数的乘方运算和四则运算法则求出复数z ,继而得z 的虚部.【详解】由()42221i [(1i)](2i)4(1i)2(1i)22i 1i 1i 1i (1i)(1i)z ++-+=====-+=------+,则22i z =-+,z 的虚部为2.故选:D.3.A【分析】先根据条件,确定向量的夹角,再根据向量数量积的性质求模.【详解】因为2·1·2a b b b b = ⇒2·12a b b= ,又1a b == ,所以·12·a b a b =⇒1cos ,2a b = ⇒,60a b =︒ .所以:()2222a b a b-=-= 2214·41411432a ab b -+=-⨯⨯⨯+=,所以2a b -= 故选:A 4.A【分析】先利用等比数列的通项公式列方程求公比,然后求出2024S 和2024a 观察它们之间的关系即可.【详解】设正项等比数列{}n a 的公比为q ,0q >因为3a -,2a ,4a 成等差数列,所以2342a a a =-+,所以232q q q =-+,解得2q =,所以()20241202420241211a q S q-==--,20232023202412a a q==,则2024202421S a =-.故选:A.5.D【分析】根据给定的数表,求出样本的中心点,进而求出a 即可得解.【详解】依题意,1234535x ++++==,6678875y ++++==,即样本的中心点为(3,7),于是70.63a =⨯+,解得 5.2a =,即0.6 5.2y x =+,当8x =时,预测0.68 5.210y =⨯+=.故选:D 6.B【分析】根据给定条件,利用分步乘法计数原理,结合分组分配列式计算得解.【详解】求不同的安排种数需要分成3步,把3名心理教师分配到三所学校,有33A 种方法,再把4名语文教师按2:1:1分成3组,并分配到三所学校,有2343C A 种方法,最后把2名数学教师分配到只有1名语文教师的两所学校,有22A 种方法,由分步乘法计数原理得不同的安排种数为32323432A C A A 432⋅⋅=.故选:B 7.B【分析】根据题意,得到点M 与点2F 关于PH 对称,从而2120F PM ∠=,在12PF F △中,利用正弦定理得到121212sin15sin105sin PF PF F F F PF +=+∠ ,结合sin 60sin15sin105c e a ==+,即可求解.【详解】由直线:l y x t =-+,且点2F 关于l 的对称点在线段1F P 的延长线上,如图所示,可得点M 与点2F 关于PH 对称,且1260F PF ∠=,故在2PF M 中,则2120F PM ∠= ,故230PF M ∠=又PH 的倾斜角为135 ,则245HF M ∠=,故在12PF F △中,有1260F PF ∠= ,21105PF F ∠=,1215PF F ∠= ,又由1212211212sin sin sin PF PF F F PF F PF F F PF ==∠∠∠,可得121212sin15sin105sin PF PF F F F PF +=+∠,即1222sin15sin105sin a cF PF =+∠ ,又因为1sin15sin(4530)22224=-⨯-⨯=,1sin105sin(6045)2=++ ,所以sin 602sin15sin1052c e a ===+.故选:B.8.C【分析】由条件可得函数ln z x x =可以看作为函数ln z y =与函数x y x =的复合函数,然后求导判断其单调性与极值,即可得到结果.【详解】由x y x =得ln ln y x x =,令ln z x x =,则函数ln z x x =可以看作为函数ln z y =与函数x y x =的复合函数,因为ln z y =为增函数,所以ln z x x =与x y x =单调性、图象变换等基本一致,ln 1z x '=+,由0z '=得1ex =,列表如下:x10,e ⎛⎫ ⎪⎝⎭1e 1,e ∞⎛⎫+ ⎪⎝⎭z '-+z1e-由表知,ln z x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增,在1ex =时,取得极小值(最小值)1e -,所以()xf x x =在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增,即B 正确;在1e x =时,取得唯一极值(极小值,也是最小值)1e 1e e->,即A 、D 都正确,C 错误.故选:C 9.BC【分析】A 选项,根据百分位数的运算公式得到答案;B 选项,利用平均数定义得到10y x =-,根据方差的计算公式得到()()()()2222123422214s x x x x x x x xs -++-++-++-+==;C 选项,由正态分布的对称性得到C 正确;D 选项,由题意得到()()ˆˆ336m an a -+=-+,得到D 错误.【详解】A 选项,0010404⨯=,故从小到大从第4个和第5个数的平均数作为第40百分位数,即121312.52+=,A 错误;B 选项,12344x x x x x +++=,12344y y y y y +++=,因为10i i x y +=,(1,2,3,4i =),故123410101010104x x x x y x -+-+-+-==-,故()()()()22221423124s x x x x x x x x-+-+--=+,()()()()2222123422*********s y x y x y x y x-++-++-++-+=()()()()2222123410101010101010104x x x x x x x x --++--++--++--+=()()()()222212344x x x x x x x x-++-++-++-+=,故2212s s =,B 正确;C 选项,因为()2,X N μσ ,()()261P X P X ≥-+≥=,2,6X X =-=关于x μ=对称,所以2622μ-+==,C 正确;D 选项,由题意得()()ˆˆ336m an a -+=-+,整理得39m n +=,D 错误.故选:BC 10.AB【分析】根据题意分12a ≤和12a >两种情况讨论,当12a ≤时,有222ln e e 12ln 1ln e 1ln x x x x ax x x x x x x x----+-++-+=+-+≥,通过求导,判断函数的单调性,确定函数的最值得出2ln e 1ln 0x x x x --+-+≥结论验证;当12a >时,令()2ln u x x x =--,求导判断出函数存在零点设为0x ,即可判断020000e 12ln (12)0x ax x a x x -+-+=-<,最后综合得出a 的取值范围.【详解】依题意,2e 12ln 0x ax x x -+-+≥在()0+∞,上恒成立,当12a ≤时,222ln e e 12ln 1ln e 1ln x x x x ax x x x x x x x----+-++-+=+-+≥,令2ln t x x =--,则()e 1t h t t =--,()e 1t h t '=-,故当t (,0)∈-∞时,()0h t '<,当(0,)t ∈+∞时,()0h t '>,故()(0)0h t h >=,故2ln e 1ln 0x x x x --+-+≥,则不等式成立;当12a >时,令()2ln u x x x =--,因为(1)10u =-<,(4)22ln 20u =->,故()x μ在()1,4内必有零点,设为0x ,则002ln x x -=,则020ex x -=,故020000e 12ln (12)0x ax x a x x -+-+=-<,不合题意,舍去;综上所述,12a ≤.故选:AB.【点睛】恒成立问题求参数注意分类讨论;适当的构造函数通过函数的最值分析参数的取值.11.BCD【分析】对A 、B ,利用赋值法进行计算即可得;对C 、D ,利用赋值法后结合数列的性质进行相应的累加及等差数列公式法求和即可得.【详解】对A :令0x y ==,则有()()()0000f f f =++,即()00f =,令1x y ==,则有()()()2111f f f =++,又()10f =,故()21f =,()f x 不关于()1,0对称,故A 错误;对于B ,令1y =,则有()()()()11f x f x f x f x x +=++=+,两边同时求导,得()()11f x f x +='+',令1x =,则有()()13211122f f =+=+='',故B 正确;对C :令1y =,则有()()()11f x f x f x +=++,即()()1f x f x x +-=,则()()()()()()()2024202420232023202211f f f f f f f =-+-+-+ ()2023120232023202210101220232+⨯=++++==⨯ ,故C 正确;对D :令1y =,则有()()()11f x f x f x +=++,即()()1f x f x x +=+,则()()11f x f x +='+',即()()11f x f x +-'=',又()112f '=,故()11122f k k k -'=+=-,则()20241112024202422101220242k f k =⎛⎫+-⨯ ⎪⎝⎭==⨯'∑,故D 正确.故选:BCD.【点睛】关键点点睛:本题C 、D 选项关键在于利用赋值法,结合数列的性质进行相应的累加及等差数列公式法求和.12.(2,)+∞【分析】解二次不等式化简集合M ,再利用二次不等式解的形式与交集的结果即可得解.【详解】因为{}2230{13}M x x x xx =--<=-<<∣,{}20,{()0,}N x x ax x x x x a x =-<∈=-<∈Z Z ∣,又集合M N ⋂恰有两个元素,所以M N ⋂恰有两个元素1和2,所以2a >.故答案为:(2,)+∞.13【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】解:设过2F 与双曲线的一条渐近线b y x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan b F F P a ∠=可得12cos a F F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-∠ ,即有2229422aa a c a c c=+- ,化简可得,223c a =,则双曲线的离心率==c e a【点睛】本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和定义法,以及余弦定理,考查化简整理的运算能力,属于中档题.14.3π4【分析】当三棱锥1B ACD -的体积最大时,此时1B 到底面ACD 的距离最大,即此时平面1⊥B AC 平面ACD ,取AC 的中点E ,AD 的中点O ,O 是三棱锥1B ACD -的外接球球心,当且仅当过点M 的平面与OM 垂直时,截外接球的截面面积最小,此时,截面的圆心就是点M ,从而求解.【详解】当三棱锥1B ACD -的体积最大时,由于底面ACD 的面积是定值,所以此时1B 到底面ACD 的距离最大,平面1⊥B AC 平面ACD ,且平面1B AC 平面ACD AC =,取AC 的中点E ,则1B E AC ⊥,故1B E ⊥平面ACD ,取AD 的中点O,则OE =1B E =1π2B EO ∠=,则12OB =,又∵2OA OD OC ===,故O 是三棱锥1B ACD -的外接球球心,且该外接球的半径2R =;显然,当且仅当过点M 的平面与OM 垂直时,截外接球的截面面积最小,此时,截面的圆心就是点M ,记其半径为r ,则222R OM r ==+;由于AC CD ⊥,CD ⊂平面ACD ,所以CD ⊥平面1B AC ,而1AB ⊂平面1B AC ,则1CD AB ⊥,则1π2AB D ∠=,在1B AD 中,12,4B A AD ==,故1π3B AD ∠=;又13AM MB = ,故12AM =,又2OA =,故由余弦定理有211π13422cos 4234OM =+-⨯⨯⨯=,∴22234r R OM =-=,故所求面积为3π4.故答案为:3π4【点睛】关键点点睛:取AD 的中点O ,由12OA OD OC OB ====,确定点O O 是三棱锥1B ACD -的外接球球心.15.(1)e a =,1b =(2)单调递减区间为(),0∞-,单调递增区间为()0,∞+【分析】(1)求出函数的导函数,依题意可得()00f =且()00f '=,即可得到方程组,解得即可;(2)求出函数的导函数()f x ',再利用导数说明()f x '的单调性,即可求出()f x 的单调区间.【详解】(1)因为()e e ax f x x b =--,所以()e e ax f x a '=-,依题意()00f =且()00f '=,所以00e 0e e 0b a ⎧-=⎨-=⎩,解得e 1a b =⎧⎨=⎩.(2)由(1)可得()e e e 1x f x x =--函数的定义域为R ,又()()e 1e e e e e 1x xf x +'=-=-,令()()e 1e e xg x f x +'==-,则()e 2e0x g x +'=>,所以()g x (()f x ')在定义域R 上单调递增,又()00f '=,所以当0x <时()0f x '<,当0x >时()0f x ¢>,所以()f x 的单调递减区间为(),0∞-,单调递增区间为()0,∞+.16.(1)证明见解析(2)15【分析】(1)根据等腰三角形的三线合一及全等三角形的性质,利用线面垂直的判定定理及面面垂直的判定定理即可求解;(2)利用线面垂直的判定定理及性质定理,建立空间直角坐标系,求出相关点的坐标,分别求出直线CF 的方向向量与平面ABC 的法向量,利用向量的夹角公式,结合向量的夹角与线面角的关系即可求解.【详解】(1)因为DA DC =,E 为线段AC 的中点,所以DE AC⊥因为DA DC =,DB DB =,ADB CDB ∠=∠,所以ADB CDB ≌,故AB CB =.又E 为线段AC 的中点,所以BE AC ⊥.又DE BE E ⋂=,,DE BE ⊂平面BED .所以AC ⊥平面BED又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)取DA 的中点G ,连接EG ,BG ,因为EG 为中位线,所以//EG CD ,又AD CD ⊥,所以AD EG ⊥.因为AB BD =,G 为DA 的中点,所以AD BG ⊥.又⋂=EG BG G ,,EG BG ⊂平面BEG ,所以AD ⊥平面BEG ,BE ⊂平面BEG ,所以AD BE ⊥,因为BA BC =,E 为AC 的中点,所以AC BE ⊥,又AC AD A = ,,AC AD ⊂平面ACD ,所以BE ⊥平面ACD .以E 为坐标原点,分别以EA 、EB 、ED 所在的直线为x 、y 、z 轴,建立空间直角坐标系E xyz -,如图所示设(),0,0A a ,(),0,0B b ,则()0,0,0E ,()0,0,D a ,()0,,0B b ,20,,33b a F ⎛⎫ ⎪⎝⎭.20,,33b a EF ⎛⎫= ⎪⎝⎭,()0,,BD b a =- ,由22222||92033AB a b b a EF BD ⎧=+=⎪⎨⋅=-+=⎪⎩,解得a b ⎧⎪⎨=⎪⎩.所以,33CF ⎫=⎪⎪⎭.又平面ABC 的法向量()0,0,1n = .设直线CF 与平面ABC 所成角为θ,则232153sin cos ,15CF n CF n CF nθ⋅===⋅ ,所以直线CF 与平面ABC.17.(1)212d d -=;(2)证明见解析(3)证明见解析【分析】(1)代入等差数列的通项公式,即可求解;(2)根据已知条件,代入等差数列的通项公式,得到数列{}n d 的递推公式,再通过构造得到数列{}n d 的通项公式,并根据(1)的结果,证明等式;(3)根据题意,结合等差数列和等比数列的综合应用,首先证明()()()()11m m m m a n i a i a n a +-+≤+,再利用求和,即可证明.【详解】(1)由题意得()()()2221212111a a d d d d -=+-+=-,又()()22212a a -=,所以212d d -=;(2)证明:因为()()12m m a n a n +=,所以()()111211n n m d m d ++-=+-⎡⎤⎣⎦,即1121n n d d m +=+-,所以111211n n d d m m +⎛⎫+=+ ⎪--⎝⎭,因此99100111211d d m m ⎛⎫+=+ ⎪--⎝⎭,所以99100111211d d m m ⎛⎫=+- ⎪--⎝⎭,又21121d d m =+-,即21121d d m =--,因此()()()()99999910012121122222221d d d d d d d d =+---=-+-,所以存在实数999922,21λμ=-=-,满足100121,d d d λμλμ+==+;(3)证明:因为{}n d 为等比数列,所以11n n d d q -=,其中q 为{}n d 的公比,于是()()1111n m a n m d q -=+-,当1i n ≤≤时,()()()()11m m m m a n i a i a n a +-+-+⎡⎤⎣⎦()()11111n i i n m d q q q ---=-+--()()()11111n i i m d q q --=----,因为0,0,10q n i i >-≥-≥,因此()()1110m i i q q ----≥,又()110m d --<,所以()()()()11m m m m a n i a i a n a +-+≤+,因此()()()()111nm m m m m a n i a i n a n a =+-+≤+⎡⎤⎡⎤⎣⎦⎣⎦∑,即()()()()()2121m m m m m a a a n n a n a +++≤+⎡⎤⎡⎤⎣⎦⎣⎦ ,所以()()()()()1122mm m m n a a n n a a a n +⎡⎤⎣⎦+++≤ .【点睛】关键点点睛:本题的关键是利用题意,并能正确表示()m a n 和公差为n d .18.(1)22163x y +=(2)(i )2;(ii )1【分析】(1)根据条件,列出关于,,a b c 的方程组,利用待定系数法,即可求解;(2)(ⅰ)首先设直线1l 的方程,并联立椭圆方程,转化为关于斜率的一元二次方程,利用韦达定理,即可求解;(ⅱ)首先设直线,PA PB 的倾斜角分别为,αβ,根据正弦定理利用角表示边长MN ,AN ,再求比值,利用(ⅰ)的结论,即可求解.【详解】(1)由题意知2222241122a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得ab c ==所以椭圆E 的方程为22163x y +=;(2)(ⅰ)易知()3,0T ,1PT k =,11112y k x +=-,22212y k x +=-,设直线1l 的方程为()()211m x n y -++=,由直线1l 过()3,0T 知1m n +=,联立方程()()22163210x y m x n y ⎧+=⎪⎨⎪-++=⎩得()()()()()()()2224144211420n y n m x y m x -++--+++-=,变形得:()()211244414022y y n n m m x x ++⎛⎫-+-++= ⎪--⎝⎭,即()1244144842424242n n n m n k k n n n ----+====---;(ⅱ)设直线,PA PB 的倾斜角分别为,αβ,则1tan k α=,2tan k β=,5π4NMP β∠=-,π2MPN β∠=-,π4PAN α∠=-,π2APN α∠=-,在PMN 中,πsin sin πsin 2sin 4PN PNMN MPN NMP ββ⎛⎫=∠=- ⎪∠⎛⎫⎝⎭- ⎪⎝⎭,在PAN △中,πsin sin πsin 2sin 4PN PN AN APN PAN αα⎛⎫=∠=- ⎪∠⎛⎫⎝⎭- ⎪⎝⎭,所以()ππsin sin cos sin cos tan 1242ππtan 1sin sin 422MN AN βαβαααββα⎛⎫⎛⎫-⋅--- ⎪ ⎪-⎝⎭⎝⎭===--⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭由122k k +=知,tan tan 2αβ+=,即tan 11tan 1αβ-=--,故1MNAN =..【点睛】关键点点睛:本题第一问的转化比较巧妙,转化为关于斜率的方程,利用韦达定理即可求解,第二问巧妙设倾斜角,利用三角函数表示MN AN 的值.19.(1)1(2)仅在(),0x ∈-∞时存在1个零点,理由见解析(3)()()()sin ,π,00,π,1,0.x x g x x x ⎧∈-⋃⎪=⎨⎪=⎩【分析】(1)利用洛必达法则求解即可;(2)构造函数()e x f x ,结合()e xf x 的单调性求解即可;(3)利用累乘法求出()2n g x x g ⎛⎫ ⎪⎝⎭的表达式,然后结合()01g =,利用洛必达法则求极限即可.【详解】(1)001lim lim 1sin cos x x x x x →→==(2)()()2321123!21!n x x x f x x n -=+++++- ,()()232212!3!22!n x x x f x x n -'=+++++- ,所以()()()2121!n x f x f x n -'-=--,()()()()21e e e 21!n x x xf x f x f x x n -⎡⎤'-='=-⎢⎥-⎣⎦.当0x >时,()0e x f x ⎡⎤'<⎢⎥⎣⎦,函数()e x f x 在()0,∞+上单调递减,当0x <时,()0e x f x ⎡⎤'>⎢⎥⎣⎦,函数()e x f x 在(),0∞-上单调递增,()lime xx f x →-∞=-∞,()01f =,当0x >时,()0e x f x >,所以仅在(),0x ∈-∞时存在1个零点.(3)()()2cos g x x g x =,所以()cos 22g x x x g =⎛⎫ ⎪⎝⎭,2cos 44x g x x g ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,…,12cos 22n n n x g x x g -⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭将各式相乘得()cos cos cos 2422n n g x x x x x g =⋅⋅⋅⎛⎫ ⎪⎝⎭ cos cos cos sin 1sin 24222sin sin 22n n n n nx x xxx x x ⋅⋅⋅⋅=⋅ ,两侧同时运算极限,所以()1sin sin 22lim lim lim sin sin 222n n n n n n n n x x g x x x x x x g →+∞→+∞→+∞⋅==⋅⎛⎫ ⎪⎝⎭,即()()sin 2lim 0sin 2n n n x g x x xg x →+∞=,令2nx t =,原式可化为()()0sin lim 0sin t g x x t g x t →=,又()01g =,由(1)得0lim1sin t t t →=,故()()sin 0x g x x x=≠,由题意函数()g x 的定义域为()π,π-,综上,()()()sin ,π,00,π,1,0.x x g x x x ⎧∈-⋃⎪=⎨⎪=⎩【点睛】方法点睛:本题考查新定义,注意理解新定义,结合洛必达法则的适用条件,构造函数()2n g x x g ⎛⎫ ⎪⎝⎭,从而利用洛必达法则求极限.。

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷

贵州省安顺市2024年数学(高考)统编版真题(评估卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题中国古代数学家用圆内接正边形的周长来近似计算圆周长,以估计圆周率的值.若据此证明,则正整数至少等于()A.B.C.D.第(2)题函数是定义在R上奇函数,且,,则()A.0B.C.2D.1第(3)题技术的数学原理之一是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的可以忽略不计.假设目前信噪比为若不改变带宽,而将最大信息传播速度提升那么信噪比要扩大到原来的约()A.倍B.倍C.倍D.倍第(4)题在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是A .2B.3C.4D.4第(5)题欧拉恒等式(为虚数单位,为自然对数的底数)被称为数学中最奇妙的公式.它是复分析中欧拉公式的特例:当自变量时,.得.根据欧拉公式,复数在复平面上所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限第(6)题如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图像是()A.B.C.D.第(7)题设,已知直线与圆,则“”是“直线与圆相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(8)题若(为虚数单位),则()A.5B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题将函数的图象向右平移个单位,再把所得图象上各点的横坐标缩短为原来的一半,纵坐标不变,得到函数的图象,则关于的说法正确的是()A.最小正周期为B.奇函数C.在上单调递增D.关于中心对称第(2)题已知复数,,则下列结论中正确的是()A.若,则B.若,则或C.若且,则D.若,则第(3)题双曲线:,左、右顶点分别为,,为坐标原点,如图,已知动直线与双曲线左、右两支分别交于,两点,与其两条渐近线分别交于,两点,则下列命题正确的是()A.存在直线,使得B.在运动的过程中,始终有C.若直线的方程为,存在,使得取到最大值D.若直线的方程为,,则双曲线的离心率为三、填空(本题包含3个小题,每小题5分,共15分。

河北省部分重点高中2023-2024学年高三上学期普通高考模拟(12月)数学试题及答案

河北省部分重点高中2023-2024学年高三上学期普通高考模拟(12月)数学试题及答案

绝密★启用前2024年普通高等学校招生全国统一考试数学模拟试题注意事项:1.本试卷满分150分,考试时间120分钟。

2.答卷前,考生务必将自己的班级和姓名填写在答题纸上。

3.回答选择题时,选出每小题答案后,用铅笔把答题纸对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

4.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}30A x x =->,则()R N A = ð()A.{}0,1,2 B.{}1,2 C.{}0,1,2,3 D.{}1,2,32.在递增的等比数列{}n a 中,若3152a a -=,23a =,则公比q =()A.43B.32C.2D.523.已知函数()36x f x x =+-有一个零点0x x =,则0x 属于下列哪个区间()A.1,12⎛⎫⎪⎝⎭B.31,2⎛⎫⎪⎝⎭C.3,22⎛⎫⎪⎝⎭D.52,2⎛⎫ ⎪⎝⎭4.如图是国家统计局发布的2022年5月至2023年5月全国煤炭进口走势图,每组数据中的增速是与上一年同期相比的增速,则图中X 的值约为()A.90.2B.90.8C.91.4D.92.65.如图是下列四个函数中某一个的部分图象,则该函数为()A.()ln 2x f x x =+ B.()11e 1x x f x ++=-C.()()321x f x x =+ D.()()21xf x x =+6.已知离心率为32的椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,()00,P x y 是椭圆上位于第一象限的一点,且121cos 3F PF ∠=-,则0x =()A.34a B.12a C.33a D.32a 7.已知对任意实数x ,y ,函数()f x 满足()()()111f xy f x f y +=+++,则()f x ()A.有对称中心B.有对称轴C.是增函数D.是减函数8.已知半径为R 的球中有一个内接正四棱锥,底面边长为a ,当正四棱锥的高为h 时,正四棱锥的体积取得最大值V ,则()A.2h a= B.32h a =C.h a =D.12h a =二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()ln f x x =,则()A.()f x 是奇函数B.()f x 是增函数C.曲线()y f x =在e x =处的切线过原点D.存在实数a ,使得()y f x =的图象与xy a =的图象关于直线y x =对称10.先后两次抛掷一枚质地均匀的骰子,得到向上的点数分别为x ,y ,设事件1A =“5x y +=”,事件2A =“2y x =”,事件3A =“2x y +为奇数”,则()A.()119P A =B.()2112P A =C.1A 与3A 相互独立D.2A 与3A 相互独立11.已知复数01i z =-,()i ,z x y x y =+∈R ,则下列结论正确的是()A.方程02z z -=表示的z 在复平面内对应点的轨迹是圆B.方程002z z z z -+-=表示的z 在复平面内对应点的轨迹是椭圆C.方程001z z z z ---=表示的z 在复平面内对应点的轨迹是双曲线的一支D.方程()00012z z z z z ++=-表示的z 在复平面内对应点的轨迹是抛物线12.已知定义:1,0,e e ,0,xxx x +<⎧=⎨≥⎩则下列命题正确的是()A.b +∀∈R ,()e e bx bx ++= B.若12,x x ∈R ,则2211e e e xxx x ++++⋅=C.x ∀∈R ,()ln e 1ln 22xx ++-≥ D.若12,x x ∈R ,则1221e e e x x x x-+++÷=三、填空题:本题共4小题,每小题5分,共20分.13.若3cos 214cos 70θθ-+=,则cos 2θ=__________.14.高三(1)班某竞赛小组有3名男生和2名女生,现选派3人分别领取数学、物理、化学竞赛资料,则至少有一名女生的选派方法共有____________种.(用数字作答)15.已知双曲线C :()222210,0x y a b a b -=>>的左、右焦点分别为1F ,2F ,其右支上有一点P 满足1260F PF ∠=︒,过点2F 向12F PF ∠的平分线引垂线交于点H ,若212F H b =,则双曲线C 的离心率e =_________.16.在正四棱锥P ABCD -中,底面ABCD 的边长为2,PAC △为正三角形,点M ,N 分别在PB ,PD 上,且2PM MB =,2PN ND =,过点A ,M ,N 的截面交PC 于点H ,则四棱锥P AMHN -的体积为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知公差为d 的等差数列{}n a 的前n 项和为n S ,且满足()141n n n S n a a +=++.(1)证明:221n a d nd +=+;(2)若38a =,求12231111n n a a a a a a +++⋅⋅⋅+.18.(本小题满分12分)已知函数()()f x x ωϕ=+的部分图象如图所示,2πϕ<,且90ACB ∠=︒.(1)求ω与ϕ的值;(2)若斜率为4的直线与曲线()y f x =相切,求切点坐标.19.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,底面ABCD 为直角梯形,90BAD ∠=︒,2AB =,1CD AD ==,N 是PB 的中点,点M ,Q 分别在线段PD 与AP 上,且DM MP λ= ,AQ QP μ=.(1)当1λ=时,求平面MDN 与平面DNC 的夹角大小;(2)若MQ ∥平面PBC ,证明:12μλ=+.20.(本小题满分12分)已知[)0,1x ∈,()e x f x =.(1)证明:()111x f x x+≤≤-;(2)比较()2f x 与11xx+-的大小.21.(本小题满分12分)已知抛物线C :()220y px p =>上有一点()()1,0P m m >,F 为抛物线C 的焦点,,02p E ⎛⎫-⎪⎝⎭,且2EP =.(1)求抛物线C 的方程;(2)过点P 向圆E :2222p x y r ⎛⎫++= ⎪⎝⎭(点P 在圆外)引两条切线,交抛物线C 于另外两点A ,B ,求证:直线AB 过定点.22.(本小题满分12分)某排球教练带领甲、乙两名排球主力运动员训练排球的接球与传球,首先由教练第一次传球给甲、乙中的某位运动员,然后该运动员再传回教练.每次教练接球后按下列规律传球:若教练上一次是传给某运动员,则这次有13的概率再传给该运动员,有23的概率传给另一位运动员.已知教练第一次传给了甲运动员,且教练第n 次传球传给甲运动员的概率为n p .(1)求2p ,3p ;(2)求n p 的表达式;(3)设21n n q p =-,证明:()()1111sin sin 2ni i i i i q q q q ++=--<∑.数学参考答案及评分细则题号123456789101112答案C B B D D C B C BCD ACD AC AC1.C 解析:∵(]R ,3A =-∞ð,∴(){}R N 0,1,2,3A = ð,故选C.[命题意图]该试题考查集合的补集与交集运算,数学能力思维方面主要考查运算思维与抽象思维.2.B 解析:由题得213a a q ==,2311152a a a q a -=-=,联立可得32q =或23q =-(舍),故选B.[命题意图]该试题考查等比数列的运算,是高考常考点,数学能力思维方面主要考查运算思维、变换思维、方程思想等.3.B 解析:由题知()f x 在R 上单调递增,∵1 5.502f ⎛⎫=< ⎪⎝⎭,()120f =-<,3233 4.52f ⎛⎫=- ⎪⎝⎭,又323 4.50->,∴302f ⎛⎫> ⎪⎝⎭,故选B.[命题意图]该试题考查零点存在定理和二分法,数学能力思维方面主要考查转化思想和特值思想.4.D 解析:由题得增速39582055%100%92.6%2055X -=⨯≈,故选D.[命题意图]该试题考查统计知识,是高考热点,数学能力思维方面主要考查数形结合和拓展思维.5.D 解析:对于A ,函数()f x 的定义域为()()()(),33,22,11,-∞------+∞ ,A 不正确;对于B ,()00f ≠,B 不正确;对于C ,结合题中图象,()()()6427843225169f f f =>=>=,C 不正确,故选D.[命题意图]该试题考查函数的图象及其性质,是高考常考点,数学能力思维方面主要考查特值思想与数形结合思想.6.C 解析:设()1PF m m a =>,则22PF a m =-,由2c e a ==,得2c =,由余弦定理得()()22223223a m a m m a m =+-+-,解得32m a =或2a m =(合),则22200924x a y a ⎛⎫++= ⎪ ⎪⎝⎭,联立椭圆方程解得033x a =,故选C.[命题意图]该试题考查椭圆的定义与性质,是高考必考点,数学能力思维方面主要考查静态思维与迁移思维.7.B 解析:令1x y ==,得()()()222f f f =+,∴()20f =;令1x y ==-,得()()2200f f ==,∴()00f =;令1y =-,得()()()()1101f x f x f f x -=++=+,∴()f x 的图象关于直线关于1x =对称,故选B.[命题意图]该试题考查抽象函数的性质,是高考常考点,数学能力思维方面主要考查赋值思维与抽象思维.8.C 解析:设球心到底面的距离为x ,则h R x =+,a =,∴()()223V R x R x =+-,则()()()3112222333R x R x R x V R x R x R x ++++-⎛⎫=++-≤⋅ ⎪⎝⎭,当且仅当22R x R x +=-,即3R x =时取等号,此时43R h =,43Ra =,即h a =,故选C.[命题意图]该试题考查球内接正棱锥的最值问题,是高考的常考点,数学能力思维方面主要考查建模思维与化归思维9.BCD 解析:根据函数性质可得A 错误,B 正确;对于C ,()1f x x '=,在e x =处的切线斜率为1e,切线方程为()11e ey x -=-,即e x y =,显然过原点,C 正确;当e a =时,()y f x =的图象与x y a =的图象关于直线y x =对称,D 正确,故选BCD.[命题意图]该试题考查函数的奇偶性、单调性,导数的几何意义以及反函数等,数学能力思维方面主要考查运算思想和数形结合思想.10.ACD 解析:满足事件1A 的有(1,4),(2,3),(3,2),(4,1)共四种情形,其概率()141369P A ==A 正确;满足事件2A 的有(1,1),(2,4)共两种情形,其概率()2118P A =,B 不正确;()312P A =,满足事件13A A 的有(1,4),(3,2)共两种情形,()()()1313118P A A P A P A ==,C 正确;满足事件23A A 的只有(1,1)一种情形,()()()2323136P A A P A P A ==,D 正确,故选ACD.[命题意图]该试题考查古典概型以及事件的相互独立性,是高考常考点之一,数学能力思维方面主要考查分类思维和运算思维.11.AC 解析:由复数模的几何意义知A 正确;由椭圆的定义知122a F F >,但002z z =-,故B 不正确;同理由双曲线的定义知C 正确;对于D ,由复数的几何意义知z 在复平面内对应点到两定点的距离相等,轨迹是直线,故D 不正确,故选AC.[命题意图]该试题考查复数模的几何意义、共轭复数等,是高考必考点,数学能力思维方面主要考查跳跃思维与认知思维.12.AC 解析:对于A ,显然正确;对于B ,令11x =-,22x =,则122e e e x x ++⋅=,12e e x x ++=,错误;同理D也错误;对于C ,当0x <时,()ln e 1ln 2ln 222xx x++-=->,成立,当0x ≥时,()()222ln e 1ln e 1ln e ln e e ln 22x x xxx x -+⎛⎫+-=+-=+≥ ⎪⎝⎭,正确,故选AC.[命题意图]该试题考查新情境、新定义下的数学知识的应用.是高考热点题目,数学能力思维方面主要考查创新思维和探索思维.13.79-解析:由已知得26cos314cos 70θθ--+=,解得1cos 3θ=或cos 2θ=(舍),故27cos 22cos 19θθ=-=-.[命题意图]该试题考查倍角公式以及一元二次方程,是高考常考点,数学能力思维方面主要考查方程思想和运算思想.14.54解析:由题得选派方法共有()2112323233C C C C A 54+=种.[命题意图]该试题考查排列组合知识,数学能力思维方面主要考查分类思想和抽象思维.15.3解析:延长2F H 交1F P 于点Q ,则2F Q b =,∵1260F PF ∠=︒,∴2PF PQ b ==,则12F Q a =,12120F QF ∠=︒,在12F QF △中,由余弦定理得222442c a b ab =++,即23a b =,则3e ==.[命题意图]该试题考查双曲线的定义与性质、余弦定理,数学能力思维方面主要考查方程思想和拓展思维.16.9解析:如图,连接BD ,交AC 于点O ,平面AMN 交PC 于点H ,交PO 于点G ,∵2PM MB =,2PN ND =,∴2PG GO =,即点G 是PBD △的重心,也是PAC △的重心,∴H 是PC 的中点,∴PC AH ⊥,∵PC BD ⊥,∴PC MN ⊥,又AH MN G = ,∴PC ⊥平面AMHN ,故1146329P AMHN V PH AH MN -=⋅⋅⋅⋅=.[命题意图]该试题考查截面问题、线面垂直、求几何体体积以及三角形重心的性质等,数学能力思维方面主要考查空间想象以及逻辑推理.17.解:(1)当1n =时,11241S a a =++,即121a d =+,∴()()()111112n a a n d d n d =+-=++-,即221n a d nd +=+.(2)∵38a =,∴1661d d +=+,解得3d =,∴31n a n =-,∴()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,∴122311111111111325583132n n a a a a a a n n +⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪-+⎝⎭()1113232232nn n ⎛⎫=-= ⎪++⎝⎭.[命题意图]该试题考查数列的性质、等差数列的定义与性质、裂项求和等,数学能力思维方面主要考查变换思维和跳跃思维.18.解:(1)如图,过点C 向x 轴引垂线交于点D ,由正弦曲线的性质知3AD DB =,由射影定理知2CD AD DB =⋅,而CD =,∴33DB DB =⋅,∴1DB =,∴24T πω==,解得2πω=.由102f ⎛⎫=⎪⎝⎭,得()24k k πϕπ+=∈Z ,当0k =时,4πϕ=-.(2)由(1)知()24f x x ππ⎛⎫=-⎪⎝⎭,∴()cos 224f x x ππ⎛⎫'=- ⎪⎝⎭令()4f x '=,∴cos 242x ππ⎛⎫-= ⎪⎝⎭,则()2244x k k ππππ-=±∈Z ,∴4x k =或()41x k k =+∈Z ,∴其切点坐标为4,2k ⎛⎫- ⎪ ⎪⎝⎭或()41,2k k ⎛+∈ ⎪⎝⎭Z .[命题意图]该试题考查三角函数的图象与性质、射影定理、导数的几何意义等,数学能力思维方面主要考查探索思维和拓展思维.19.解:(1)建立如图所示的空间直角坐标系,则()1,0,0D ,()1,1,0C ,()0,2,0B ,()0,0,2P .当1λ=时,1,0,12M ⎛⎫⎪⎝⎭,()0,1,1N ,则1,1,02MN ⎛⎫=- ⎪⎝⎭,()1,1,1DN =-,()1,0,1CN =- .设平面MDN 的法向量为(),,m x y z = ,平面DNC 的法向量为(),,n a b c =,∴102x y -+=且0x y z -++=,0a c -+=且0a b c -++=,令1y =,1a =,则()2,1,1m = ,()1,0,1n =,∴3cos ,262m n ==⨯ ,∴平面MDN 与平面DNC 的夹角大小为30°.(2)证明:设(),,M x y z ''',由DM MP λ=,得()()1,,,,2x y z x y z λ''''''-=---,∴12,0,11M λλλ⎛⎫⎪++⎝⎭,同理由AQ QP μ= ,得20,0,1Q μμ⎛⎫ ⎪+⎝⎭,∴122,0,111MQ μλλμλ⎛⎫=-- ⎪+++⎝⎭.()0,2,2PB =- ,()1,1,0BC =- ,设平面PBC 的法向量为()111,,p x y z =,∴11220y z -=且110x y -=,令11x =,则()1,1,1p =,∴0p MQ ⋅= ,则1220111μλλμλ-+-=+++,即12μλ=+.[命题意图]该试题考查空间向量中的求夹角、线面平行等问题,是高考常考点,数学能力思维方面主要考查创新思维和数形结合思想.20.解:(1)证明:要证()111x f x x +≤≤-,即证11e 1x x x+≤≤-,设()e 1x h x x =--,∴()e 1x h x '=-,由()0h x '>,得0x >;由()0h x '<,得0x <,∴()h x 在0x =处取得最小值,即()()00h x h ≥=,∴e 1x x ≥+.当[)0,1x ∈时,∵e 1x x ≥+,用x -代替x ,得e 10x x -≥->,∴1e 1x x≤-,结论成立,∴不等式()111x f x x+≤≤-成立.(2)∵()22e x f x =,由题即证()e 1x x -与()e 1x x -+的大小,令()()()e 1e 1x x g x x x -=--+,∴()()ee x x g x x -'=-,当10,2x ⎡⎫∈⎪⎢⎣⎭时,e e 0x x --≤,∴()g x 单调递减,∵()00g =,∴()0g x ≤,即()()e 1e 1x x x x --≤+,即有21e 1x x x≤+-,得证.[命题意图]该试题考查利用导数证明不等式,是高考必考点,数学能力思维方面主要考查构造思想和等价变换.21.解:(1)由已知得22m p =,且22212122p p m ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,解得2p =,∴抛物线C 的方程为24y x =.(2)由(1)知()1,2P ,设圆E :()2221x y r ++=过点P 的切线方程为()21y k x -=-,设两条切线的斜率分别为1k ,2k,∴r =整理得()2224840r k k r --+-=,∴121k k =.设直线AB 方程为y tx n =+,代入C 的方程整理得2440ty y n -+=,设()11,A x y ,()22,B x y ,∴124y y t +=,124n y y t =,∴()()12121212221611122y y k k x x y y --=⋅==--++,∴48416n t t ++=,即32n t =-,∴直线AB 方程为()23y t x +=+,恒过点()3,2--.[命题意图]该试题考查抛物线的方程及其性质、直线与圆相切、直线与圆锥曲线的位置关系等,是高考必考内容,数学能力思维方面主要考查方程思想与转化思想。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

2024届高三数学模拟检测(江苏专用,2024新题型)(考试版)

2024届高三数学模拟检测(江苏专用,2024新题型)(考试版)

2024年高考第三次模拟考试
高三数学(江苏专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全
部选对的得6分,部分选对的得部分分,有选错的得0分)
三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
所成角的大小.
分)某中学对该校学生的学习兴趣和预习情况进行长期调查,学习兴趣分为兴趣高和
预习分为主动预习和不太主动预习两类,设事件
1 4,
4
()
5 P B=.
的值,并判断A与B是否为独立事件;
为验证学习兴趣与主动预习是否有关,该校用分层抽样的方法抽取了一个容量为
.为提高检验结论的可靠性,
的把握认为学习兴趣与主动预习有关,试确定
),其中n a b c d
=+++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学高考模拟题(一)一. 选择题(12小题,共60分,每题5分)1. 已知集合{}{}M N x x x x Z P M N ==-<∈=⋃13302,,,,又|,那么集合P 的子集共有( )A. 3个B. 7个C. 8个D. 16个2. 函数y x =-的反函数的图象大致是( )A BC D3. 已知直线l 与平面αβγ、、,下面给出四个命题:()//(),()()////12314若,,则若,若,,则若,,则l l l l l ααββαββγαγγγββαβαβ⊥⊥⊥⊥⊥⊂⊥⊥⊂其中正确命题是( )A. (4)B. (1)(4)C. (2)(4)D. (2)(3)4. 设cos ()31233x x x =-∈-,且,,则ππ等于( ) A B C D ....±±±±ππππ189295185. 设a b c a b c =+=-=sin cos cos 131********2οοο,,,则、、之间的大小关系是( )A b c aB c a bC a c bD c b a ....>>>>>>>>6. ()15+x n 展开式的系数和为a x n n ,()572+展开式的系数和为b a b a b n n n n n n,则lim →∞-+234等于( )A B C D ....---1213171 7.椭圆x y M 2249241+=上有一点,椭圆的两个焦点为F F MF MF MF F 121212、,若,则⊥∆的面积是( ) A. 96 B. 48 C. 24 D. 128. 已知椭圆x y t 2212211+-=()的一条准线的方程为y =8,则实数t 的值为( ) A. 7和-7 B. 4和12 C. 1和15 D. 09. 函数y x x x =+2sin (sin cos )的单调递减区间是( )A k k k ZB k k k ZC k k k ZD k k k Z .[].[].[].[]2827827821588583878ππππππππππππππππ-+∈++∈-+∈++∈,,,, 10. 如图在正方体ABCD -A B C D 1111中,M 是棱DD 1的中点,O 为底面ABCD 的中心,P 为棱A B 11上任意一点,则直线OP 与直线AM 所成的角( )A. 是π4B. 是π3C. 是π2D. 与P 点位置有关1A11. 在平面直角坐标系中,由六个点O(0,0)、A(1,2)、B(-1,-2)、C(2,4)、D(-2,-1)、E(2,1)可以确定不同的三角形共有( )A. 14个B. 15个C. 16个D. 20个12. 过点M C x y l l ax y a l ()()()--+-=++=242125320221,作圆:的切线,:与平行,则l l 1与间的距离是( )A B C D (852*******)二. 填空题(4小题,共16分,每题4分)13. 函数y x x x x=+-cos sin cos sin 2222的最小正周期是_________。

14. 抛物线y px p 280=>()上一点M 到焦点的距离为a ,则点M 到y 轴的距离为_______。

15. 若E 、F 、G 、H 分别是三棱锥A -BCD 的AB 、BC 、CD 、DA 棱的中点,则三棱锥A -BCD 满足条件________时,四边形EFGH 是矩形(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)16. 在平面内,(1)到两个定点的距离的和等于常数的点的轨迹是椭圆;(2)到两个定点的距离的差的绝对值为常数的点的轨迹是双曲线;(3)到定直线x a c =-2和定点F c ()-,0的距离之比为a cc a ()>>0的点的轨迹是双曲线;(4)到定点F c (),0和定直线x a c =2的距离之比为c aa c ()>>0的点的轨迹是椭圆。

请将正确命题的代号都填在横线上__________。

三. 解答题:本大题共6小题;共74分,解答题应写出文字说明、证明过程或演算步骤。

17. (本小题满分12分)已知x R y R ∈∈,,复数z x x y i z y x i z i z i 1212224121=--=++-=-+()()(),,当时,()()()I z z II z z 求;求的值。

12125⋅- 18. (12分)设集合{}A x x x zB x ax a x a a =+->-⎧⎨⎩⎫⎬⎭=-<-<|log ()|1222630,,,求使A B a ⋂=φ的的取值范围。

19. (12分)某集团投资兴办甲、乙两个企业,1998年甲企业获得利润320万元,乙企业获得利润720万元,以后每年企业的利润甲以上年利润倍的速度递增,而乙企业是上年利润的23,预期目标为两企业年利润之和是1600万元,从1998年年初起,(I)哪一年两企业获利之和最小;(II)需经过几年即可达到预期目标(精确到一年)20. (12分)如图,圆锥的轴截面是等腰Rt SAB Q ∆,为底面圆周上一点, (I)若QB 的中点为C ,OH SC OH SBQ ⊥⊥,求证平面(II)若∠==AOQ QB 6023ο,求此圆锥的体积。

(III)若二面角A -SB -Q 为θθ,且,求的大小tg AOQ =∠63。

21. (13分)设F 1是椭圆C 1:()x -+=1294927122的左焦点M 是C 1上任意一点,P 是线段F M 1上的点且满足F M MP 131::=()I C 求点P的轨迹2()()II A l l C 过点,作直线与C相交,求与有且0222仅有两个交点时,l 的斜率的取值范围。

(III)过A 与F 1的直线交C 2于BC ,求∆F BC 2的面积。

(F 2为C 2的右焦点)22. (13分)已知函数f x a x f x b f x a b f ()()()()()满足,⋅⋅=+⋅≠=012且f x f x ()()+=--22对定义域中任意x 都成立。

(I)求函数f x ()的解析式(II)若数列{}{}a S a n n n 的前几项和为,满足当n=1时,a f n 1122==≥(),当时,S f a n n n n -=+-212522()()试给出数列{}a n 的通项公式,并用数学归纳法证明。

【试题答案】1.{}{}x x x x ZN P C 2330031212328-<<<∈∴=∴==又,,,它的子集有个()2. y x y x x D =-=≤的反函数是故20()()3. A4.x x x x x C ∈-⇒∈-=-∴=±∴=±()(cos ()ππππππ33331232329,,)又 5.a b c b c aA =+=====>>∴>>2134525822826262260626050sin()sin cos sin sin ()οοοοοοοοοΘ6.a b a b a b A n nn nn n n n n n ==-+=-⋅+→-612234122312412()()()7.设将代入:||||()()()()()()MF r MF r r r a r r c r r r r C 1122121222221222122141210021221410244224==+==+==⎧⎨⎪⎩⎪=-=⋅∴= 8.中心(0,t)t a ct C ±=∴=28115或()9.y x x x x x x x k k x k k k Z D =+=⋅+=-+++++∴∈++∈22242241242223878sin (sin cos )sin sin()cos()cos()[][]()()πππππππππππ的单调递增区间是,,10.1A过及作平面,、为棱中点面O A B EFB A E F AM A EAM A B AM EFB A AM OPC 111111111⊥⊥∴⊥∴⊥()11.O 、A 、B 、C 四点共线,D 、O 、E 三点共线∴--=C C B 6343115()12. 注意M 点在⊙上,∴-+=++==-≠∴=-∴-+==-=切线:::与的距离l x y l ax y a a a a l x y l l d D 43200320433220443802085125111||()13.y x xx xx x x x tg x T =+-=+-=++=+∴=cos sin cos sin sin()sin()sin()cos()()22222242422424242ππππππ14.y px x pM aa x pM y x a p 2008222==-=+∴=-的准线为由抛物线定义点到准线距离为点到轴距离为15.四边形对边平行是平行四边形只须邻边垂直,它就是矩形即可。

或填底面,或为正三棱锥,或为正四面体等均可EFGH AC BD AC BCD A BCD A BCD ∴∴⊥⊥--()D16.(1)常数大于两定点距离时,才是椭圆(2)常数小于两定点距离时,才是双曲线 由定义可知(3)(4)正确。

17.()()I z i z i y x x y z iz iz z z z 由得解得1212121221632612121211222-=-+-=-+=-⎧⎨⎪⎩⎪=-=⎧⎨⎪⎪⎩⎪⎪∴=-+=-∴⋅=⋅=⋅= ()()()[(cossin )]()[cossin ][cos()sin()]II z z i i i i i1255552222343422154154128244128128-=-+=+=+=-+-=-ππππππ18.log ()()()()()()122222226260642123212330033252+->-⇔+->+-<⎧⎨⎪⎩⎪⇔∈--⋃∴=--⋃->-≥-<-⎧⎨⎪⎪⎩⎪⎪⇔<≤><⎧⎨⎪⎩⎪⇔<≤x x x x x x x A x a ax a ax a x a a x a x a x aa x a ,,,,或∴=⋂=≤-<≥-⎧⎨⎪⎩⎪-≤<∴≤--≤<B a a A B a a a a a a (]220211202120,为使或即或为所求φ19. 设98年为第1年则第n 年甲企业获利a n n =⋅-320151(.) 乙企业获利720⋅-()()231n 单位万元 (I)设第n 年两企业获利之和最小a b n n n n n n nn n n n n +=⋅+⋅=⋅+⋅≥⋅⋅==⋅==∴=-----+----32032720233203272032232072032960320327203232720320322199911111111222()()()()()()()()()()()万元当且仅当时取等号即即第二年两企业获利之和最小 (II)设经过n 年两企业可达到预期目标即有即令则即或32032720321600432932203232149200920402291111112⋅+⋅≥⋅+⋅≥==∴+-≥-+≥≥≤------()()()()()()n n n n n n t ttt t t t t当时,舍当时即需经过年年t n t n n n ≥<≤≤-≤⋅≥-⋅=+⋅⋅=+=+>+⋅=∴-2029322912912913322321242944520021323232323232()()log log log log log log ()20.()I C QB OC QBSO AQBQB SC QB SOCQB SQBSQB SOC SCOH SCOH SQB Θ为中点面面又面面面且交于又面∴⊥⊥∴⊥∴⊥⊂∴⊥⊥∴⊥()()II AOQ BOQ COQ QC QB R OQ OC AB OQ SAB Rt SO V R h ΘΘοοο∠=∴∠=∴∠===∴===∴==∴=∴=60120601232124213832,是等腰=立方单位⊙锥∆∆ππ()()sin cos cos (cos )(cos )()sin (cos )sin cos III SAB ABQ ABQ QD AB D QD SAB Q QP SB P DP DP SB QPD tg QD PD AOQ O RQD R OD R PBD DB R R R PD BD R QD PD R R Θ面面且交于过作于,则面过作于,连,则设,⊙半径为则,中:代入⊥∴⊥⊥⊥⊥∴∠===∠====+=+∴==+=+=∴+=⋅θθαααααααααα631122*********1226∆3332332306060====∠=即即tg AOQ αααοοο21.()()()()()()I F M x y P x y F P PM x x y y x x y y x x y P C x a b c 10010000022222102112120212123132129490271431231-===-++=++⎧⎨⎪⎪⎩⎪⎪=+=⎧⎨⎪⎪⎩⎪⎪-+=+====,设,,用定比分点坐标公式得代入并化简得为点轨迹,它是中心在原点长轴在轴上的椭圆:,,λ ()()()II l y kx y kx x y y k x kx k k k k k :消或=+=++-=⎧⎨⎪⎩⎪+++==-+>⇒>><-2234120341640161634014121222222222∆()()()()()()III F A F x y x y x y x y y x x B x y C x y BC x x x x 21222112221221221021220220341201932401245321944196019,过、的直线方程为即消得设,,-+=-+=-+=+-=⎧⎨⎪⎩⎪++==+⋅+-=⋅-⋅=k S BC h F BC =⋅-+=∴=⋅=120254512245192∆ 22.()()()()()()()()()()()()()()(I axf x b f x ax f x bax b ax f x b ax f b a a bf x f x b a x b a x a a b f x x x x Θ=+∴-=-==∴-≠∴=-=-=∴-=+=--+-=---→=∴==-∴=--=-≠11001011122212221214212111121222若则有不可能由得代入得)()()()()()()(*)II S f a n n S a n n S a n n n S a a a a n a n a a n n n n nn n n Θ-=+---=+-∴+=++=+=++==-=∴======+2125222212521252212410282863344512222221234即当时,当时,得当时,得由此猜想证明:时,成立设时有时,112112112521252111215122127821278125212211212122οοn a n k a k S a k k S k k k n k S a k k S a k k a k k k k k k k k k k k k k k ===+==++=++∴=++--∴=++=+++++=++=++-+++++++(*)()()[()()]()()()+=+∴=+=++∴=+∈=++12421111211k a k k n k n N a n k n 时真由、,对有(*)οο。

相关文档
最新文档