波导到微带转换电路-设计报告
V波段波导-微带探针转换器设计

好 使探 针处 于波 导 内 电场 最 强位 置 , 微带 探 针 经 一 段 高 阻抗 线变 换到 5 0 Q 微带线 上 , 实现 了波 导 到微带 的 转 换 。波导 一微 带 探 针 过 渡 又可 分 为 两 种 形 式 , 一 种 为 基片 表面 与波 导 中波 传 播 方 向垂 直 , 另一 种 为 基 片 表 面 与波导 中波传 播 方 向平行 , 如 图 1和 图 2所示 。
( S e v e n t h P r o f e s s i o n a l D i v i s i o n ,X i ’ a n E l e c t r o n i c E n g i n e e i r n g R e s e a r c h I n s t i t u t e ,X i ’ a n 7 1 0 1 0 0 ,C h i n a )
随着 毫米 波技 术 的发 展 , 微 波 毫 米 波混 合 集 成 电 路与 单片集 成 电路在 通信 、 雷达 、 制 导 以及其 他一 些 系 统 中得 到 了广 泛 应用 , 微 带传 输 线 正 在 越来 越 多 的场 合取 代金 属波 导 , 成 为 制 作毫 米 波 集 成 电路 的重 要 传 输线 。而 矩形 波导具 有 功率容 量 大 、 损耗 小 、 无 辐射 损 耗、 结构 简单 、 Q值 高 的 特 点¨ J , 因此 在 微 波 毫 米 波 电 路 和系统 中被 广 泛应 用 , 现在 大 多 毫 米 波 实验 设 备 的 输入 输 出端 口均 为波导 形式 。在 毫米波 电路 和 系统 中 经常 需要 进行 这两 种传 输线形 式 的转换 , 因此 , 波导 到 微带 过 渡结构 性 能 的优 劣成 为影 响 系统性 能 的关 键 。
基片集成波导及其微带过渡的设计

舰 船 电 子 对 抗
SH I PB0A RD ELECTR0 N I C0 U NT ER M EA SU RE C
A u .2 1 g 02
Vo . 5 No 4 I3 .
第 3 5卷第 4期
基 片集 成波 导及 其 微 带过 渡 的设 计
赵 元 英 袁 皓 ,
收 稿 日期 : 0 2 5—1 2 1 —0 0
0 引 言
矩形 波导具 有 功 率 容量 大 、 耗 小 、 辐射 、 损 无 品 质 因数高 的特点 , 高频波 段其优 势更 加 明显 , 在 因此 在微 波 、 米波 电路 和系统 中被广 泛应 用 , 在许 多 毫 现 毫米波 设备 的输 入 输 出端 口均 为 波 导形 式 。但 是 , 由于其 体积 大 , 量 大 , 本 高 , 须通 过 各 种 过渡 重 成 必
(. 国 电子 科 技 集 团公 司 1 所 , 家庄 0 0 5 ;. 1中 3 石 5 0 1 2 云南 大学 , 明 60 9 ) 昆 5 0 1
摘 要 : 了工作 于毫米波频段 的基片集成波导 (I , 了基片集成波 导及其微带过 渡的原理和结构 , 推 设计 SW)阐述 公式
导 出过 渡 结 构 中各 种 参 数 的 计 算 方 法 , 过 HF S软 件 进 行 仿 真 , 作 了 SW 与 微 带 过 渡 的 样 品并 测 试 , 果 表 明 通 S 制 I 结
t n l S Sl s ha 一 1 B r m 5 5 G H zt 7 5 G H z. ur O S i e s t n 0 d fo 3 . o 3 .
Ke r : ub t a e i e r t d wa e i e; c o t i r nsto i p d nc y wo ds s s r t nt g a e v gu d mir s rp t a ii n;m e a e
波导到微带转换电路 设计报告

波导到微带转换电路学生姓名:学号:单位:时间:2010年5月6日一、技术指标:请设计一只Ka波段波导到微带转换电路。
其技术指标要求如下:工作频率:26.5~40GHz输入/输出驻波比:<1.2dB插入损耗:<1.0dB二、理论分析目前常用的微带-波导探针过渡的方式有两种,都是将微带探针从波导宽边的中心插入,一种是介质面垂直与波导传输方向,称为H面探针,如图1所示,另一种介质面平行于波导传输方向,称为E面探针,如图2所示。
本课题采用的是E面探针过渡,下面详细介绍本课题中的微带-波导过渡设计方法。
图1 H面探针图2 E面探针微带—波导过渡的构成形式如图3所示,探针从波导宽边的中心插入,任一个沿探针方向具有非零电场的波导模将在探针上激励起电流。
探针附近被激励起的高次模存储无功功率的局部场,使接头具有电抗性质。
由于探针过渡具有容性电抗,一段具有感性电抗的高阻线被串联在探针过渡器后面,以消除容性电抗,然后利用四分之一阻抗变换器实现与混频电路内微带传输线的阻抗匹配。
对微带-波导过渡性能有较大影响的电路参数共5个,由表1列出。
探针插入处波导开窗的大小对性能也有一定影响,在设计时可先将其确定。
一般的原则是开窗越小越小越好,以形成截止波导。
探针距波导终端短路面的长度D我们取四分之波导波长,因为终端短路后,波导内形成驻波,波节间距离为二分之波导波长,取四分之波导波长的短路长度,可以保证探针在波导内处于最大电压,即电场最强的波腹位置,以达到尽量高的耦表1影响微带-波导过渡性能的参数三、设计过程:确定中心频率为大气窗口35GHz,频段为26.5GHz到40GHz。
确定矩形波导尺寸、基板的材料和尺寸以及微带金属条带的初始尺寸并建立模型。
此处采用WR-28标准矩形波导,尺寸为7.112mm*3.556mm,基板材料选用Rogers5880型基片,厚度为0.254mm,相对介电常数为2.2,微带金属条带厚度为0.035mm,由ADS中LineCalc 计算得中心频率35GHz处50欧姆微带线宽度为0.754mm。
Ka波段波导-微带转换电路

Ka 波段波导-微带转换电路摘 要:本文在了解矩形波导、微带线的传输理论及分析了Ka 波段波导-微带转换电路的特性后,利用HFSS 仿真软件对它进行仿真并优化,设计出了Ka 波段波导-微带转换电路。
满足实验要求:在Ka 频段26.5GHz~40GHz 内的输入/输出驻波比≤1.2,插入损耗≤1.0dB 。
关键词:Ka 波段,微带线,矩形波导,HFSS ,转换电路Abstract :After the understanding about the transmission theory of rectangular waveguide and micro-strip line and the analysis of the speciality of Ka-band waveguide micro-strip transform circuit, this paper will design the Ka-band waveguide micro-strip transform circuit by the simulation and optimization of HFSS. It meets the requirements: the input/output standing wave ratio is 1.2 within the Ka frequency range 26.5GHz~40GHz and the insertion loss is 1.0dB.Key word :Ka-band ,Micro-strip, Waveguide, HFSS , Transform circuit1. 引言波导-微带转换电路是各种雷达、通讯、电子对抗等系统中最重要的一种无源转接过渡,又是各系统的重要组成部分,它性能的好坏直接影响系统的性能。
随着微波集成电路的发展,微带线又是微波、低频段毫米波电路的主要传输线,而实现波导-微带的过渡就成了人们日益关注的问题。
波导带通滤波器与微带转换装置的设计

波导带通滤波器与微带转换装置的设计陈宪龙;罗勇【摘要】A K-band E-plane bandpass waveguide filter with seven-order inductance and a waveguide-tcrmicrostrip transition are designed using HFSS, a three-dimensional simulation software. The bandpass waveguide filter has 19 GHz center frequency, 3 GHz bandwidth, 0. 1 dB inband transmission loss, and less than-20 dB reflection coefficient. And the port reflection coefficient contributed by the waveguide-to-microstrip transition is less than-20 dB from 16 GHz to 20. 8 GHz bandwidth, and inband transmission loss is less than 0. 1 dB. Then the combination of the filter and the transition covers bandwidth from 17. 5 GHz to 20. 5 GHz in which in'uand transmission loss is less than 0. 3 dB, port reflection coefficient is less than-15 dB, out-of-band rejection is less than-30 dB, which meets the demands of the real system.%利用三维仿真软件HFSS首先设计了K波段7阶电感E面带通波导滤波器,以及波导-微带转换器.其中波导滤波器的中心频率为19 GHz,带宽为3 GHz,带内损耗小于0.1 dB,端口反射小于-20 dB;而波导-微带的转换器在16~20.8 GHz的带宽内端口反射小于-20 dB,带内损耗小于0.1 dB.然后将两者有效结合为一体,其工作带宽为17.5~20.5 GHz,带内损耗为0.3 dB,端口反射小于-15 dB,带外抑制小于-30 dB,可以满足实际系统应用的需求.【期刊名称】《现代电子技术》【年(卷),期】2012(035)021【总页数】3页(P68-70)【关键词】波导;带通滤波器;微带;波导-微带转换器【作者】陈宪龙;罗勇【作者单位】电子科技大学物理电子学院,四川成都 610054;电子科技大学物理电子学院,四川成都 610054【正文语种】中文【中图分类】TN814-340 引言随着毫米波技术在现代无线通信系统中的广泛应用,对各种高性能毫米波集成电路的需求也日益增长。
Ka波段脊波导到微带过渡器的设计

图 1 单脊波导的几何参数 其中,x=d /b,Cd 为脊波导中的 不均匀电容。而 a、b、s、d 为脊波导的几 何参数,参见图 1。ε为波导中的介质的介 电常数。 当脊波导工作在单模 TE10 模时,可 按电压、电流定义特性阻抗,脊中心的电 压 U = E 0 d ,电流为波导底面的纵向电 流。忽略高次模影响,由金属波导的边界 条件。通过求解麦克斯韦方程,得到场分 布,从而得到特性阻抗,结果为:
参考文献 [1] Hui-wen Yao, Amr, J-Fuh Liang, “A Full Wave Analysis of Microstrip-to-waveguide Transition,” IEEE MTT-S, Vol.1, pp. 213-216, May 1994. [2] van Heuven, J.H.C, “A New Integrated Waveguide- Microstrip Transition,” IEEE Transactions on, Vol.24, pp. 144-147, Mar 1976. [3] Yi-Chi Shih, Thuy-Nhung Ton, and Long Q. Bui, “Waveguide-to-microstrip Transition for Millimeter-wave Applications,” IEEE MTT-S, Vol. 1, pp. 473-475, May 1988. [4] Yoke-Choy Leong, Sander Weinreb, “Full Band Waveguide-to-microstrip Probe Transitions,” IEEE MTT-S, Vol.4, pp. 1435-1438, June 1999. [5] S.Llorente-Romano, B.P.Dorta-Naranjo, F. perez-Martinez, M.Salazar-Palma, “Ka-band Waveguide-to-microstrip Transition Design and Implementation,” IEEE, Vol.3, pp. 404-407, June 2002 [6] Hopfer S. The design of ridged waveguides. IRE Transsctions on MTT 1995,October,20. [7]吴万春,甘本拔.现代滤波器的结构与 设计[J]. 北京:科学出版社. 1 9 7 4 . 作者简介 张洪林(1 9 8 2 - ), 男 , 硕 士 生 , 专 业 方向:电子与通信工程。
一种Ku波段波导-微带转换器的研制

一种Ku波段波导-微带转换器的研制宋志东;康颖【摘要】本文利用三维高频仿真软件HFSS设计并分析了中心频率为15GHz的波导一微带过渡结构。
这种结构的输入输出是直通方向的,与以往的波导-微带过渡结构相比,这种结构体积小、气密性好、更利于小型化。
根据测试结果,设计的过渡结构在13GHz-17GHz频率范围内有良好的性能,插入损耗小于0.5dB,端口驻波系数小于1.35。
%A ku-band waveguide to microstrip transition structure with 15GHz of central frequency is designed and analyzed by using 3-dimensional high frequency simulation software (HFSS). In this transition structure, the waveguide and microstrip line are connected in a straight line. Comparing with the former waveguide to microstrip transit structure, this structure is featured with small size and good airtightness, and is benefit to miniaturization. On basis of tested results, the designed transit structure has perfect performance within 13GHz-17GHz of frequency range, its insertion loss is less than 0. 5dB, and the port standing wave ratio is less than 1.35.【期刊名称】《火控雷达技术》【年(卷),期】2011(000)004【总页数】4页(P78-80,86)【关键词】脊波导;波导-微带过渡;气密性【作者】宋志东;康颖【作者单位】西安电子工程研究所,西安710100;西安电子工程研究所,西安710100【正文语种】中文【中图分类】TN8141 引言采用微带的毫米波集成电路往往都必须包含波导——微带过渡接口。
基片集成波导与微带线的转换设计

基片集成波导与微带线的转换设计随着通信技术的发展,无线通信系统越来越广泛地应用于日常生活和工业生产中。
在无线通信系统中,波导和微带线是常见的传输介质。
波导是一种用于传输电磁波的管道,其优点是低损耗、高传输效率和较大的带宽,但是波导的制作成本较高,体积较大,无法直接集成于集成电路中。
而微带线是一种用于传输微波信号的导行线,在集成电路中易于制作和集成,但是其损耗较大,带宽较小,因此在实际应用中需要将波导与微带线进行转换。
波导与微带线的转换设计是无线通信系统中的重要环节,其设计需要考虑到传输效率、损耗、带宽和制作成本等多方面因素。
本文将重点介绍基片集成波导与微带线的转换设计。
基片集成波导与微带线的转换设计是指将波导和微带线集成在同一电路板上,并设计出高效的波导与微带线之间的转换结构。
基片集成波导与微带线的转换设计既可以利用波导的优点,又可以利用微带线的优点,从而在无线通信系统中取得更好的性能。
基片集成波导与微带线的转换设计主要包括以下几个方面:波导与微带线之间的传输结构设计、波导与微带线之间的阻抗匹配设计、波导与微带线之间的传输效率和损耗分析、基片集成工艺等。
首先,波导与微带线之间的传输结构设计是基片集成波导与微带线的转换设计的重要部分。
传输结构的设计需要考虑到波导与微带线的特性,并设计出合适的结构来实现波导与微带线之间的信号传输。
目前常用的波导与微带线之间的传输结构有耦合槽、耦合窗、天线和耦合结构等,这些结构的设计需要考虑到波导与微带线的工作频率、阻抗匹配和传输效率等因素。
其次,波导与微带线之间的阻抗匹配设计是基片集成波导与微带线的转换设计的关键环节。
阻抗匹配设计需要将波导与微带线的阻抗进行匹配,从而实现波导与微带线之间的高效能量传输。
阻抗匹配设计需要考虑到波导与微带线的特性、工作频率、波导结构和微带线结构等因素。
第三,波导与微带线之间的传输效率和损耗分析是基片集成波导与微带线的转换设计的重要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波导到微带转换电路
学生姓名:学号:
单位:时间:2010年5月6日
一、技术指标:
请设计一只Ka波段波导到微带转换电路。
其技术指标要求如下:
工作频率:~40GHz
输入/输出驻波比:<
插入损耗:<
二、理论分析
目前常用的微带-波导探针过渡的方式有两种,都是将微带探针从波导宽边的中心插入,一种是介质面垂直与波导传输方向,称为H面探针,如图1所示,另一种介质面平行于波导传输方向,称为E面探针,如图2所示。
本课题采用的是E面探针过渡,下面详细介绍本课题中的微带-波导过渡设计方法。
图1 H面探针图2 E面探针
微带—波导过渡的构成形式如图3所示,探针从波导宽边的中心插入,任一个沿探针方向具有非零电场的波导模将在探针上激励起电流。
探针附近被激励起的高次模存储无功功率的局部场,使接头具有电抗性质。
由于探针过渡具有容性电抗,一段具有感性电抗的高阻线被串联在探针过渡器后面,以消除容性电抗,然后利用四分之一阻抗变换器实现与混频电路内微带传输线的阻抗匹配。
对微带-波导过渡性能有较大影响的电路参数共5个,由表1列出。
探针插入处波导开窗的大小对性能也有一定影响,在设计时可先将其确定。
一般的原则是开窗越小越小越好,以形成截止波导。
探针距波导终端短路面的长度D我们取四分之波导波长,因为终端短路后,波导内形成驻波,波节间距离为二分之波导波长,取四分之波导波长的短路长度,可以保证探针在波导内处于最大电压,即电场最强的波腹位置,以达到尽量高的耦
表1影响微带-波导过渡性能的参数
三、设计过程:
确定中心频率为大气窗口35GHz,频段为到40GHz。
确定矩形波导尺寸、基板的材料和尺寸以及微带金属条带的初始尺寸并建立模型。
此处采用WR-28标准矩形波导,尺寸为*,基板材料选用Rogers5880型基片,厚度为,相对介电常数为,微带金属条带厚度为,由ADS中LineCalc计算得中心频率35GHz处50欧姆微带线宽度为。
通过设计矩形波导宽边开口的宽度和长度,使其达到将波导中的能量传播到微带线的要求,并抑制带内谐振,主要考虑到要对高次模进行抑制和衰减,开口不能过大,应该保证开口能够对高次模有20dB的衰减,通过仿真优化,观察gamma实部可确定其对高次模的衰减大小。
最后确定开口宽,高1mm,可以满足衰减而且具有良好的输入输出驻波比。
由于参考论文得到相应的初始值,用HFSS建立如图5所示的探针过渡仿真模型,然后对重要参数进行扫参优化。
最终的参数结果:探针宽度w1为mm,探针长度L1为mm,高阻线宽度w2为mm,高阻线长度L2为mm,波导短路面至端口的距
离D为mm。
图5探针过渡模型
四、设计结果及存在问题分析:
最终S21仿真结果如图6所示,可以看到,在整个Ka波段内,S21<,信号能很好地传输,满足了指标的要求。
图6 S21仿真结果
最终S11仿真结果如图7所示,可以看到,在整个Ka波段内,S11<-22dB,信号反射很小,满足了指标的要求。
图7 S11仿真结果
经过初步设计及优化仿真,该过渡结构在Ka全频段达到了要求的指标,但是仍有一些不足。
这种结构只能用于仿真,实际加工中还有一些问题需要考虑,比如(1)在波导短路面及拐弯处设计倒角,便于加工;(2)为波导腔及约束腔内基板设计固定基板使其固定。