微带--波导转换Waveguide-to-Microstrip
W频段波导—微带的对脊鳍线过渡仿真设计

W频段波导—微带的对脊鳍线过渡仿真设计作者:金少华来源:《新生代·上半月》2018年第08期【摘要】:应用HFSS设计了一款W频(75.87-87.5)GHZ的对脊鳍线微带波导过渡结构,仿真结果表明,在W 频段(75.87-87.5)GHZ内,该过渡结构插损小于0.6dB,回波损耗在20dB以下,达到项目需要。
【关键词】:W波段波导微带过渡对脊鳍线1引言在毫米波接收系统中,各芯片间采用微带线连接.而毫米波测试系统用波导接口,需要低成本、低损耗的宽频带波导到微带过渡.常用过渡结构:阶梯脊波导过渡、对脊鳍线过渡、耦合探针过渡等.对脊鳍线过渡,因其可以采用印制版技术制作在价廉的软基片上,已成为一种普遍运用的过渡结构.本文通过软件HFSS设计并仿真了一个W波段的微带到波导鳍线过渡以满足工程项目的需要。
2 对脊鳍线过渡的仿真2.1 对脊鳍线过渡的设计经典的过渡结构(如图1所示).在这个由波导到微带的过渡结构中,两个对脊鳍线制作在基片正反两面,逐漸渐变成微带线.并且构成了一圆弧形谐振区,谐振区内的金属块是用来抑制谐振的。
在图1中,1区是渐变的对脊鳍线部分,它将波导内的TE10模转变成微带线传输的的准TEM模式(见图2),同时将波导的高阻抗转变成低阻抗。
2、3 区将对脊鳍线过渡到标准微带线.这一部分一般的处理方法是用半圆弧来过渡到微带线,这样圆心固定,经过微调可得到较好的结构。
过渡中的对脊鳍线渐变设计常采用沿渐变方向的平滑阻抗变换曲线,其中,余弦平方渐变形式加工简单,成本较低,应用广泛。
因此我采用余弦平方渐变曲线( 1)设计对脊鳍线过渡结构式中:是鳍线宽度;是波导窄边尺寸;50Ω 微带线宽;是距离起点的长度;鳍线过渡的长度。
由经验可知,过渡结构长度越长,反射越小,但是工程需要整个过渡结构尽可能短,方便使用,因此需要选择一个合理的长度,一般取1.5按照上述设计思路,我完成W波段(75.87-87.5)GHZ的过渡设计,介质基片采用RT-duroid 5880 材料(相对介电常数εr= 2 . 2),基片厚度为h = 0 .127mm ,金属条带厚度t=0.017 mm,标准矩形波导,宽a = 1.5494mm,高b =3.0988mm,50Ω微带线金属条带的宽度W = 0.358mm。
W波段波导—微带对脊鳍线过渡结构设计

Science &Technology Vision 科技视界0引言,。
,,。
:[1,2]、[3~4]。
,,,,。
,。
W 。
,80~95GHz 20dB,0.4dB。
1理论分析。
TE10,TEM 。
,,。
,WR10(2.54mm×1.27mm)。
50Ω[5]。
1。
,TE1090°,TEM [6]。
,,50Ω。
图1矩形波导—微带对脊鳍线过渡结构W 波段波导—微带对脊鳍线过渡结构设计单伟包超高志宇郑晓秦越(中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都610213)【摘要】文章基于对脊鳍线过渡结构设计并仿真了一种W 波段的矩形波导—微带线的转换器。
该转换器具有平面电路的几何结构优点,且空间体积小、质量轻,可广泛应用于毫米波平面传输线组成的电路中。
通过仿真结果表明:在W 波段(80~95GHz )的频带范围内,该过渡结构的回波损耗小于20dB ,插入损耗小于0.4dB 。
【关键词】W 波段;波导—微带转换;毫米波;对脊鳍线中图分类号:TN02文献标识码:ADOI :10.19694/ki.issn2095-2457.2021.12.45【Abstract 】This paper designs and simulates a W-band rectangular waveguide —microstrip line converter basedon the transition structure of the ridge—fin line.The converter has the advantages of planar circuit geometry structure,small space and light weight,and can be widely used in circuits composed of millimeter wave planartransmission lines.The simulation results show that:in the W band (80-95GHz)frequency band,the return loss ofthe transition structure is less than 20dB,and the insertion loss is less than 0.4dB.【Key words 】W band ;Waveguide to microstrip ;Millimeter wave ;Antipodal finline作者简介:单伟(1993—),男,汉族,硕士研究生,助理工程师,现主要从事核仪表系统技术研究。
基于LGA工艺的D波段微带线-波导过渡结构

第17卷第5期太赫兹科学与电子信息学报Vol.17,No.5 2019年10月Journal of Terahertz Science and Electronic Information Technology Oct.,2019文章编号:2095-4980(2019)05-0735-04基于LGA工艺的D波段微带线一波导过渡结构陈柏燊a,b,唐杨a,b,岳海昆a,b,朱华兵a,b,闻彰a,b,邓贤进a,b (中国工程物理研究院a.微系统与太赫兹研究中心,四川成都610200; b.电子工程研究所,四川绵阳621999)摘要:设计了一个工作于D波段的微带转波导结构。
过渡结构由2部分组成,分别为微带—带状线过渡结构和带状线一波导过渡结构。
相比传统的微带至波导结构,该结构无需额外的金属波导短路结构,减少了加工流程,直接和标准波导相连即可。
仿真结果表明,在122~140GHz范围内,反射系数小于-10dB,最小插入损耗为1.85dB。
该过渡结构基于栅格阵列(LGA)封装工艺,能够直接与其他的芯片和无源器件进行集成和封装,对射频微系统的集成具有重要意义。
关键词:过渡结构;微带线;带状线;波导;D波段,系统集成中图分类号:TN817文献标志码:A doi:10.11805/TKYDA201905.0735A D-band transition from microstrip to waveguide based on LGA technologyCHEN Boshen a-b,TANG Yang a,b,YUE Haikun",ZHU Huabing",WEN Zhang",DENG Xianjin"(a.Microsystem and Terahertz Research Center,China Academy of Engineering Physics,Chengdu Sichuan610200,China;b.Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan621999,China)Abstract:A transition structure from microstrip to waveguide,based on Land Grid Array(LGA) package technology,is designed in this paper.The structure consists of microstrip to stripline transitionand stripline to waveguide transition.The metal waveguide shorter is no needed in the transition,thus themanufacturing process is simplified and the standard waveguide can connect with this transition directly.Simulation result shows that the minimal insertion loss is 1.85dB and the return loss is less than-10dBin122-140GHz.In addition,this transition can be integrated with other chips and passive devices.Therefore,the transition is useful for the improvement of property of RF microsystem.Keywords:transition;microstrip;stripline;waveguide;D-band;system integration微带线作为一种平面传输结构,容易与其他无源和有源微波器件集成,因此广泛用于微波单片集成电路和混合集成电路中。
波导带通滤波器与微带转换装置的设计

波导带通滤波器与微带转换装置的设计陈宪龙;罗勇【摘要】A K-band E-plane bandpass waveguide filter with seven-order inductance and a waveguide-tcrmicrostrip transition are designed using HFSS, a three-dimensional simulation software. The bandpass waveguide filter has 19 GHz center frequency, 3 GHz bandwidth, 0. 1 dB inband transmission loss, and less than-20 dB reflection coefficient. And the port reflection coefficient contributed by the waveguide-to-microstrip transition is less than-20 dB from 16 GHz to 20. 8 GHz bandwidth, and inband transmission loss is less than 0. 1 dB. Then the combination of the filter and the transition covers bandwidth from 17. 5 GHz to 20. 5 GHz in which in'uand transmission loss is less than 0. 3 dB, port reflection coefficient is less than-15 dB, out-of-band rejection is less than-30 dB, which meets the demands of the real system.%利用三维仿真软件HFSS首先设计了K波段7阶电感E面带通波导滤波器,以及波导-微带转换器.其中波导滤波器的中心频率为19 GHz,带宽为3 GHz,带内损耗小于0.1 dB,端口反射小于-20 dB;而波导-微带的转换器在16~20.8 GHz的带宽内端口反射小于-20 dB,带内损耗小于0.1 dB.然后将两者有效结合为一体,其工作带宽为17.5~20.5 GHz,带内损耗为0.3 dB,端口反射小于-15 dB,带外抑制小于-30 dB,可以满足实际系统应用的需求.【期刊名称】《现代电子技术》【年(卷),期】2012(035)021【总页数】3页(P68-70)【关键词】波导;带通滤波器;微带;波导-微带转换器【作者】陈宪龙;罗勇【作者单位】电子科技大学物理电子学院,四川成都 610054;电子科技大学物理电子学院,四川成都 610054【正文语种】中文【中图分类】TN814-340 引言随着毫米波技术在现代无线通信系统中的广泛应用,对各种高性能毫米波集成电路的需求也日益增长。
双脊波导和微带转换

双脊波导和微带转换
双脊波导和微带线(Microstrip Line)是微波和射频领域中用于传输电磁波的两种不同的传输线结构。
微带转换通常是指将信号从微带线传输到双脊波导或从双脊波导转换到微带线的过程。
双脊波导(Double Ridge Waveguide):
* 结构:双脊波导是一种中空的波导结构,具有两个脊(ridge),脊之间有中空区域,通常用于传输高频电磁波。
* 优点:双脊波导能够支持宽带传输,对于高频和毫米波应用具有一定的优势。
* 应用:在毫米波通信、雷达系统和天线设计等领域中常见。
微带线(Microstrip Line):
* 结构:微带线是一种在介质基板上的导电条带,通常在一面是导体,另一面是大地平面。
这种结构可以实现相对低成本、轻质、容易集成的设计。
* 优点:微带线结构适用于集成电路和板上系统设计,易于制造和集成。
* 应用:在微波和射频电路、天线、通信系统中广泛应用。
微带转换:
微带转换通常指的是设计用于在微带线和其他传输线(如双脊波导)之间进行信号转换的元件。
这些元件可以包括:
微带到波导过渡:设计用于将信号从微带线传输到波导的结构,以适应不同传输线的特性阻抗匹配。
波导到微带过渡:与上述相反,将信号从波导传输到微带线的结构,同样需要阻抗匹配。
微带到双脊波导过渡:用于将信号从微带线传输到双脊波导的设计。
这些过渡元件的设计需要考虑阻抗匹配、传输特性、频率响应等因素,以确保信号的有效传输和最小损耗。
在微波和射频系统中,过渡元件的设计是一项复杂而关键的工程任务。
H面波导到微带过渡结构设计

舰 船 电 子 工 程
S h i p El e cg
Vo 1 . 3 3 No . 1 2
1 5 5
2 0 1 3年 第 1 2 期
H 面 波 导 到 微 带 过 渡 结 构 设 计
兰 云鹏 吴景峰 王 抗 旱
LAN Yun p e n g W U J i n g f e ng W ANG Ka ng ha n
( He b e i S e mi c o n d u c t o r R e s e a r c h I n s t i t u t i o n ,S h i j i a z h u a n g 0 5 0 0 5 1 )
插损过渡成为重点关注 的问题。
波导一 微带过渡结 构 多样 , 常见 的过 渡结 构有 : 耦 合探 针过渡口 ] 、 脊 波导过渡_ 4 ] 、 对 脊鳍 线过渡[ 5 ] 等 。其 中耦合探 针过渡分为 : 电场耦合 和磁 场耦合 。电场 耦合 采用 的是 在 波导宽边插入 E面探针的结构方式_ 6 ] 。磁场耦 合过渡 目 前国 内少见报道 , 电子科技大学徐军教 授等人在 2 0 1 0年 提 出了一种磁耦合 的波导一 微带 转换结构 l 8 ] , 该结 构先 利用偏 心同轴线将微带 中传播 的准 T E M 模 转化为 T E M模 , 然后 通过末端接地 的半 圆环金属 条带在 波导 中激起 T E o 模, 完
Abs t r a c t Th e p a p e r d i s c u s s e d a n H— p l a n e wa v e gu i d e - mi c r o s t r i p t r a n s i t i o n . Th e p r o b e wa s pa r a l l e l t o H— p l a n e a n d i n s e r t e d t o t h e wa ve g u i d e f r o m t h e s h or t s i d e o f t h e wa v e g u i d e . HFSS wa s u s e d t O s i mu l a t e a n d o p t i mi z e t h e l o c a t i o n a n d wi d t h o f t h e p r o b e .A b a c k t o ba c k t r a ns i t i o n wa s f a b r i c a t e d a n d me a s u r e d.t h e r e s ul t s h o we d U S t h a t t h e i ns e r t i o n 1 O S S be t we e n 3 0 GH z ~3 6 GHz wa s 1 e s s t h a n 0 . 8d B,a nd t h e r e t ur n l o s s wa s g r e a t e r t ha n 1 6 d B The s t r u c t u r e h a d t h e a d v a nt a g e s o f s i mp l e s t r u c t u r e ,l o w i n s e r t i o n l o s s,wi d e b a nd ,e a s y f a b r i c a t i o n e t c . Ke y W or d s H— Pl a ne ,ma g ne t i c c o u pl i n g,Ka b a n d,wa v e g ui de - mi c r o s t r i p ,t r a n s i t i o n Cl a s s Nu ml  ̄r TN7 1 3
微带-波导转换教材

波导-微带转换电路刘云生201222040512设计目的:设计一只Ka波段波导到微带转换电路。
其技术指标要求如下:工作频率:26.5~40GHz输入/输出驻波比:<1.2插入损耗:<1.0dB一、设计思路微带探针转换是目前应用最为广泛的波导-微带过渡形式并且它有明显的优点。
它的插人损耗低,回波损耗小,具有较大频宽,且其结构紧凑,加工方便,装卸容易。
图1和图2中所示为常用微带探针转换结构图,我们采用H面微带探针转换的结构。
探针从波导宽面插入,并且探针平面与波导窄面垂直。
微带过渡段我们采用渐变结构。
通过优化探针插入深度d,微带变换器的长度1L,探针和微带变换器各自宽度,1s s,波导的微带插入处到波导短路处的距离L,得到满足指标的结果。
图1 H面微带探针转换结构图图2 E面微带探针转换结构图二、设计过程:(1)利用ADS软件里的微带计算工具得出中心频率为33.5GHz处的微带的宽度0.77,如图3所示。
Sx mm图3 50欧姆微带线宽(2)在HFSS中建立仿真模型如图4所示,包括微带金属条,微带基板,以及包围空气腔三部分。
利用对称性以YZ面为对称面切掉一半可以减少计算时间。
图4 仿真模型(3)设置三部分的材料属性,其中微带金属条为PEC,微带基板为Duriod5880(厚度0.254mm=)。
包围空气=,相对介电常数 2.2腔设为真空(默认)。
(4)设置波端口1,2。
都为1个模式,如图5。
图5 波端口1 波端口2(5)设置边界条件如图6。
其中微带被包围空气腔的上面设置辐射边界,对称YZ面设置为Prefect H面。
图6 边界条件(6)设置求解,扫频。
然后设置5个优化变量(优化探针插入深度以及微带变换器的长度,1s s,波导的微带插入处到波d L,宽度,1导短路处的距离L),优化目标即为设计指标。
三、设计结果及存在问题分析:通过优化得到最佳优化值如下图7中所示:图7 优化变量优化结果为:图8 优化结果图驻波比在整个频段内均小于1.2,插入损耗在整个频段内均小于0.3dB,故在全频段内满足设计要求。
毫米波宽带H面波导微带转换结构

毫米波宽带H面波导微带转换结构李钰;翁鹏飞【摘要】微带探针的波导微带的转换结构基于直接插入波导的微带探针激励方法设计,是一种用于毫米波单片微波集成电路(MMIC)芯片封装测试的波导-微带转换结构。
运用微带探针直接插入波导进行场的激励方式,可使得整体结构更加简单、紧凑,并且具有无需焊接和安装方便等优点。
利用三维电磁仿真软件(HFSS)对Ka波段波导的H面探针方式波导-微带转换装置进行了仿真与优化设计,结果表明在26.5-40 GHz的波导全带宽内,端口的反射系数小于-20 dB,带内损耗小于0.3 dB。
%The probe conversion structure of waveguide to microstrip is based on the microstip probe excitation method into the waveguide in the designation. And it is used in the monolithic microwave integrated circuit (MMIC) for the measure of the chip and packaging. Based on the microstrip probe into waveguide to conduct the field mode excitation, it can be more simple, compact and easy installation. Using the three-dimensional electromagnetic simulation software (HFSS) in the Ka band for the simulation and optimization of the waveguide to microstrip structure, the results shows the reflection coefficient of port is less than-20dB, the insertion loss is less than 0.3dB in the 26.5-40 GHz band.【期刊名称】《电子设计工程》【年(卷),期】2015(000)024【总页数】3页(P90-92)【关键词】波导微带转换;宽带;微带探针;H面【作者】李钰;翁鹏飞【作者单位】华东师范大学上海 200062;华东师范大学上海 200062【正文语种】中文【中图分类】TN302随着毫米波技术在现代无线通讯系统中的广泛应用,对各种高性能单片微波集成电路(MMIC)的需求也日益迫切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Narrow Band Ridge Waveguide-to-Microstrip Transition for Low Noise Amplifier at Ku-BandZahid Yaqoob Malik, Abdul Mueed, Muhammad Imran NawazCentre for Wireless CommunicationNational Engineering and Scientific CommisionAbstract- A compact Ku-band waveguide-to-microstrip transition integrated with low noise amplifier is designed. It acts as an interconnect between waveguide antenna and RF receiver modules. The transition design consists of standard waveguide WR62, a cavity for the low noise amplifier and a solid transformer section in the form of a staircase called ridge. The ridge is fixed in the bottom wall of a waveguide with the help of a screw. The centre conductor of a coaxial connector is brought near this transformer but doesn’t touch the transformer; these elements together with the back of the staircase and an adjacent portion of the bottom wall define a magnetic field coupling loop. This design methodology gives us narrow bandwidth of 500MHz at Ku-band and hence eliminates the need for a filter in receiver section for specific applications.I.I NTRODUCTIONLower loss of waveguide at higher frequencies above X band is advantageous as compared to the coaxial line. At higher frequencies, waveguide-to-microstrip transitions replace waveguide to coaxial transitions to act as interconnects between modules and antennas. These transitions can be also be made to operate at Millimeter wave bands. Waveguide is made from a single conductor which usually propagates a dominant TE mode, having a cutoff frequency below which the waveguide is highly attenuative.Most of the transitions are designed to operate within the frequency band of dominant mode propagation only. As compared with coaxial line, waveguide modes have impedance characteristics that tend to make transition design more challenging. The impedance of each of waveguide modes changes with frequency. In addition, the impedances of standard waveguides are much greater than 50 ohms, typically a few hundred ohms. Consequently, the bandwidth for most waveguide-to- microstrip transitions rarely reaches the full dominant mode bandwidth [1].Microstrip-to-waveguide transitions have been widely used in testing and evaluating millimeter-wave hybrid and monolithic integrated circuits and combining integrated circuits with waveguide components [2]. The present transition relates to a ridge waveguide-to-microstrip line transition for an amplifier which uses a field effect transistor (FET) or the like. Generally, a waveguide-to-coaxial line transition or a waveguide-to-microstrip line transition is employed to supply an FET with a microwave signal coming in through antenna [5]. The transition apparatus may off-course utilize the magnetic field associated with the electromagnetic wave energy propagating in the waveguide. If the inner conductor of the coaxial transmission line is utilized as a probe to couple to this magnetic field, then the longitudinal axis of the coaxial line may be aligned with the propagating axis of the waveguide. With such an orientation of axes, the overall structure requires less space than those depending upon electric field coupling [6].This transition provides a simplified and compact structure for waveguide-to-coaxial transmission line. This transition consists of three main subassemblies. The first part is a standard Ku-band waveguide WR62. The second part is impedance transforming section which is mounted in the WR62 waveguide with the help of a screw, the third part is the low noise amplifier cavity having the centre pin of coaxial transmission line. This pin is brought close to the staircase transformer to a side with the waveguide on one end and other end is connected to the alumina substrate used for the low noise amplifier in the cavity. Rest of the paper is organized as follows. The design of the ridge is discussed in section II. Section III discusses simulation work. In section IV, manufacturing details and test results are presented. The work is concluded in section V.II.D ESIGN OF THE R IDGEImpedance Matching Section is designed to match the higher impedance of a waveguide section to a coaxial line, the general practice is to decrease the narrow dimension of the waveguide, that is, the distance between the broadwalls of a rectangular waveguide in a series of steps so as to arrive at an internal dimension that achieves an acceptable impedance match with a satisfactory voltage standing wave ratio (VSWR). The impedance matching transformer (ridge) consists of five quarter wave sections as shown in figure 1. These sections take the form of a staircase of individual steps. The heights of the steps which are generally unequal are chosen in accordance with a set of numerical coefficients referred to as Techbyscheff coefficients [3]. The distance AB between the cavity wall and the end face of the first step is between 0.01λ and 0.1 λLNA cavity is approximately one quarter of a wavelength. The width of each step is generally between one third and onethe first transformer section. This impedance level is dependentFig.1. Ridge Designupon the impedance of the particular coaxial line (50 ohm in this case) and the particular waveguide (WR62 in our case). We have finally adjusted all the above mentioned critical distances using HFSS software.III.S IMULATION OF T RANSITIONWe have simulated the above said transition in the HFSS and after some optimization the transition met the designed specifications, at this stage we freeze the dimensions and generated a physical model. The HFSS model of the transition is shown in figure2 and the final dimensions of the transformer are depicted in figure 3.The results of the simulation are given below:Fig.2. HFSS ModelFig.3. Ridge DesignFig.4. Input Return LossFig.5. Output Return LossFig.6. Insertion loss of the TransitionThe figure 7 shows the model of the complete ridge waveguide-to-microstrip transition with LNA cavity. The details of the LNA design are beyond the scope of this paper and hence will not be discussed.Fig.7. CAD Model of the Ridge Waveguide-to-Microstrip Line Transition with Low Noise amplifier cavityIV. M ANUFACTURING & T EST R ESULTSThe above mentioned Ridge Waveguide-to-Microstrip Line Transition with Low Noise amplifier cavity is manufactured in parts and finally integrated using silver conductive epoxy (aluminum or laser welding can also be used). The pin is connected to the Alumina with 1 mil gold bonding wire in order to connect it with amplifier circuit in the LNA cavity. The pictures of individual three parts and integrated assembly is presented below:Fig.8. Integrated AssemblyFig.9. Ridge TransformerFig.10. Waveguide FlangeFig.11. WaveguideThe manufactured transition Ridge Waveguide-to-Microstrip Line Transition with Low Noise amplifier cavity was tested in two steps. In the first step LNA cavity was filled with transmission line and VSWR and Insertion loss was measured using Vector Network Analyzer. The values of dimensions CD, AB and HT are adjusted real-time for best results. The measured results are given below:Fig.12.Input Return LossFig.13.Output Return LossFig.14.Insertion LossThe input and output return losses are found to be 10dB and 14dB respectively in desired 500MHz bandwidth. Also the insertion loss is found to be 2.2dB. Then low noise amplifier was built inside the cavity and measured with the help of vector network analyzer and noise figure meter the results were satisfactory and are presented below:Fig.15.Input Return Loss Fig.16.Output Return LossFig.17. Gain S21Fig.18. Isolation S12TABLE IP ERFORMANE OF LNA WITH W AVEGUIDE-TO-M ICROSTRIPT RANSITIONV.C ONCLUSIONSA Narrow Band Ridge Waveguide-to-Microstrip Line Transition for Low Noise Amplifier at Ku Band is designedand manufactured. The structure is very compact, and it createsa hermetic seal without any additional piece in a waveguide.The transition is compatible with MMIC technology, because itcan be integrated easily in the bottom of MMIC housing. The transition is ideally suited for future mm-wave applications using alumina for MMIC substrate and circuitry housing. It canbe used without an additional filter needed in front of LNA inthe receivers.A CKNOWLEDGEMENTSWe would like to thank Mr. Zahir Hussain Babar for his technical support. We would also like to thank Mr. Hassan Mansoor of Mechanical Design Realm for manufacturing facilities and suggestions.R EFERENCES[1] Eric Holzman, “Essentials of RF and MicrowaveGrouding” Artech House Boston/London.[2] Hui-wen Yao, Amr Abdelmonem, Ji-Fuh Liang andKawthar A. Zaki, “A Full Wave Analysis of Microstrip-To- Waveguide Transitions”, 1994 IEEE MTT-S Digest. [3] Hui-wen Yao, Amr Abdelmonem, Ji-Fuh Liang andKawthar A. Zaki, “Analysis and Design of Microstrip-To- Waveguide Transitions”, IEEE TRANSACTIONSON MICROWAVE THEORY AND TECHNIQUES,VOL.42,NO.12,DECEMBER 1994.[4] Paul Wade, “Rectangular Waveguide to Coax TransitionDesign”.[5] EUROPEAN Patent Application, Publication number0074613.[6] United States patent, Patent Number 3737812.。