电力系统继电保护新技术

合集下载

人工智能技术在电力系统继电保护中的应用

人工智能技术在电力系统继电保护中的应用

人工智能技术在电力系统继电保护中的应用随着科技的不断进步和人工智能技术的日益成熟,人工智能技术在电力系统继电保护中的应用也日益广泛。

人工智能技术在电力系统继电保护中的应用,不仅提升了电力系统的安全可靠性,还提高了电力系统的运行效率,为电力系统的发展注入了新的活力。

1、智能保护装置智能保护装置是人工智能技术在电力系统继电保护中的一大应用。

智能保护装置能够根据电力系统的运行状态和负荷情况进行自动调整,保护装置能够自动诊断故障,并作出相应的保护措施。

智能保护装置还可以通过学习电力系统的运行特点,不断完善自身的保护方案,提高保护的准确性和及时性。

2、智能分析系统智能分析系统是人工智能技术在电力系统继电保护中的另一大应用。

智能分析系统能够通过对大量实时数据的分析和处理,快速准确地识别电力系统中的故障信号,并及时采取相应措施。

与传统的继电保护系统相比,智能分析系统能够更加准确快速地响应故障,提高了电力系统的抗干扰能力和稳定性。

3、智能决策支持系统1、提高保护的准确性和及时性2、提高电力系统的稳定性和可靠性3、提高电力系统的运行效率1、深度学习技术在电力系统继电保护中的应用深度学习技术是人工智能技术的一个重要分支,能够通过对大量电力系统数据的学习和分析,提高电力系统故障诊断和保护决策的准确性和可靠性。

未来,深度学习技术将在电力系统继电保护中得到广泛应用,提升电力系统的安全可靠性。

2、智能化继电保护装置的研发和应用智能化继电保护装置能够通过对电力系统运行状态的自动识别和调整,提高保护的准确性和及时性。

未来,智能化继电保护装置将成为电力系统继电保护的发展方向,为电力系统的安全可靠运行注入新的活力。

智能决策支持系统能够帮助运维人员做出更加科学合理的决策,提高了电力系统的运行效率。

未来,智能决策支持系统将在电力系统继电保护中得到广泛应用,为电力系统的发展提供更加有力的支持。

电力系统继电保护原理及新技术第二版教学设计

电力系统继电保护原理及新技术第二版教学设计

电力系统继电保护原理及新技术第二版教学设计介绍本教学设计旨在针对电力系统继电保护原理及新技术进行有效的教学和学习。

继电保护在电力系统中起着至关重要的作用,保护电力系统免受过载和设备故障等问题,保证电力系统的可靠性、安全性和稳定性。

随着电力系统技术的不断发展,新技术也不断涌现,为电力系统的继电保护提供了更多的可能性。

在本教学设计中,将介绍电力系统继电保护的基本原理和常见技术,同时介绍一些最新的电力系统继电保护技术。

学习目标学生将会掌握以下内容:1.电力系统继电保护的基本原理。

2.常见的电力系统继电保护技术及其应用。

3.最新的电力系统继电保护技术及其应用。

教学方法本教学设计采用如下教学方法。

讲授通过讲授电力系统继电保护的基本原理和常见技术,使学生了解电力系统继电保护的基本知识和技能。

实验通过实验,使学生掌握电力系统继电保护技术的应用,提高学生的实践能力和动手能力。

教学内容第一章电力系统继电保护概述1.1 电力系统继电保护的基本概念和作用1.2 常见的电力系统故障类型1.3 电力系统的保护原理第二章电力系统继电保护技术2.1 電流保护2.2 均流保护2.3 电压保护2.4 动作特征和动作条件第三章最新的电力系统继电保护技术3.1 智能继电保护3.2 基于信号处理与人工智能的继电保护3.3 基于GPS同步测量的继电保护实践通过实践活动,让学生了解最新电力系统继电保护技术,并掌握其应用方法。

教学评估为了确保学生能够达到预设的学习目标,进行如下评估措施。

作业布置相关作业,如阅读相关材料或完成相关练习。

测验在学习过程中的特定时期,对学生进行测验,测试学生对教学内容的掌握程度。

实验通过实验活动,测试学生的实践能力和动手能力。

总结通过本教学设计,学生将掌握电力系统继电保护的基本原理和常见技术,同时了解最新的电力系统继电保护技术。

通过实践和测验,学生的掌握程度将会得到有效的评估。

本教学设计旨在提高学生的电力系统继电保护专业知识和技能,为其未来的职业发展打下坚实的基础。

电力系统继电保护技术的现状与发展

电力系统继电保护技术的现状与发展

电力系统继电保护技术的现状与发展
电力系统继电保护技术是电力系统的重要组成部分,它对于保障电力系统的安全运行具有至关重要的作用。

目前,随着电力系统的发展和技术的不断进步,继电保护技术也不断发展。

以下是电力系统继电保护技术的现状与发展的相关内容。

目前,电力系统继电保护技术已经出现了许多新的技术和设备,并且不断针对实际应用情况进行改进和完善。

一些新技术包括:数字化与智能化技术的应用、红外线、超声波等无损检测技术、红外热成像技术等,这些技术都大大提高了电力系统继电保护技术的精度和可靠性。

在发展方面,随着电力系统的规模不断扩大,对继电保护技术的要求也越来越高。

传统的继电保护技术已经无法满足现代电力系统的要求,因此需要不断发展先进的继电保护技术。

目前,电力系统继电保护技术的发展主要有以下几个方向:
1.智能化:随着数字化、智能化技术的发展,智能继电保护技术已经成为电力系统继电保护技术发展的一个重要方向。

智能化继电保护技术可以实现更加准确的保护和故障定位,提高电力系统的可靠性和稳定性。

2.多功能化:现代电力系统对继电保护技术的要求不仅是准确、可靠,还需要能够满足多种保护要求。

因此,多功能化继电保护技术成为未来继电保护技术发展的一个重要方向。

3.模块化:模块化继电保护技术可以实现根据实际需求组合不同
的保护模块,从而实现最佳的保护方案。

这种技术可以提高继电保护
系统的灵活性和可维护性。

总之,电力系统继电保护技术的发展与电力系统的发展密切相关,需要不断针对实际应用情况进行改进和完善。

电力系统继电保护新技术的发展与分析

电力系统继电保护新技术的发展与分析

电力系统继电保护新技术的发展与分析近年来,信息技术快速发展,电力系统继电保护技术也随之不断进步,新的技术不断推出,很大程度上改善了电力系统,让其更加全面与完善,给我国电力事业的发展提供了大力的支持。

在继电保护范围中广泛的普及使用新的技术,不光能够提升继电保护的效果,同时,还能够让电力系统运行的更为安全、稳定,进而促进社会经济的发展。

本文就对当前电力系统继电保护新技术的应用进行分析,了解其发展情况。

标签:电力系统;继电保护;新技术;发展一、电力系统继电保护新技术的应用(一)数字化技术的应用由于社会经济的快速发展以及科技的创新,数字化技术在电力系统继电保护的应用已经得到了普及,数字化变电站的建立,已经是当前电网建设的主流。

数字化技术的应用主要体现在两个方面:第一,智能化继电保护测试仪。

由于智能化变电站的开发以及使用,数字化测量仪器在电力用户与厂家中的需要不断增加。

第二,是全数字化变电站的实时仿真系统。

只能电话推广的主要方式就是建立具备数字化、信息化、自动化、互动化几个特点的数字化边带暗战。

但是当前很多的变电站还是不能检查出继电保护二次设备的功能,只有全数字化变电站站才能够进行此项工作。

(二)超高压输电技术的应用目前的电力系统不断升级,电网的电压等级也持续提升,对于高电压技术以及绝缘技术也有了更进一步的需求。

因为计算机继电保护和通讯技术的发展与普及,超高压继电保护系统的运转情况也不断提升。

当前,世界当中的许多国家,都已经建设超高压输电线路,它是指利用超高压等级来进行电能的输送。

超高压直流输电包扩以下几个特点:输送容量大;送电距离远;输送功率能够调控;不受系统稳定极限的影响;能够充分使用线路走廊资源;能维持输送功率或者降低输送功率的损害;能够按照系统的需要来做出表现,提升电力系统暂态稳固情况;进行系统的交流电压调控;能够快速进行功率改变。

当前超高压输电技术广泛的使用,在美国、俄罗斯、加拿大、日本等国家都已经首先对其进行研究与使用。

继电保护继电保护在电力系统中的应用和技术要点

继电保护继电保护在电力系统中的应用和技术要点

继电保护继电保护在电力系统中的应用和技术要点继电保护在电力系统中的应用和技术要点继电保护在电力系统中扮演着至关重要的角色,它是通过检测异常电流、电压或其他可能导致设备损坏或电网故障的条件来保护电力系统的安全运行。

本文将详细介绍继电保护的应用领域和技术要点,旨在帮助读者更好地理解继电保护在电力系统中的作用以及其实施的关键技术。

一、继电保护的应用领域继电保护广泛应用于电力系统的各个环节,以下是其中几个主要领域的介绍:1. 发电厂保护发电厂保护的主要目标是检测和防止传输线路和发电设备可能导致的电力系统事故。

主要保护设备包括发电机差动保护、变压器保护、输电线路保护等。

2. 输电线路保护输电线路保护旨在快速准确地检测故障并隔离故障区域,以阻止故障扩大并保证电力系统的可靠供电。

常见的保护装置包括差动保护、过流保护和接地保护等。

3. 变电站保护变电站作为电力系统的重要枢纽,其保护非常关键。

变电站保护的任务是侦测和隔离系统故障,保护重要设备如变压器、断路器以及电容器等。

常见的保护措施包括差动保护、线路保护、短路保护等。

4. 配电系统保护配电系统保护主要针对低压和中压电网,确保电力能够稳定、安全地分配给终端用户。

主要的保护装置包括熔断器、避雷器、过电压保护以及短路保护等。

二、继电保护的技术要点为了能够有效地实施继电保护措施,以下是继电保护的一些关键技术要点:1. 故障识别与定位继电保护系统需要具备准确的故障识别和定位能力,以快速判断故障的类型和发生位置,然后采取相应的保护措施。

常用的故障识别技术包括差动保护、过电流保护、短路电流定位等。

2. 保护灵敏度与选择性保护装置需要具备高灵敏度,能够及时检测到异常电流或电压,并做出反应。

同时,保护装置还需要具备选择性,能够区分故障信号和正常信号,以确保只对故障信号做出保护动作。

3. 快速动作与可靠性继电保护系统需要在故障发生时迅速做出反应,以减少对电力系统的损害。

同时,保护装置本身应具备高可靠性,能够在任何条件下正常运行,确保在关键时刻保障电力系统的稳定性。

电力系统继电保护发展趋势

电力系统继电保护发展趋势

电力系统继电保护发展趋势
1.数字化:随着数字技术的普及,电力系统继电保护的数字化将成为发展趋势。

数字化技术可以提高系统的工作效率、可靠性和安全性,减少故障率。

2.智能化:智能化是电力系统继电保护的另一个重要趋势。

智能化技术可以使继电保护更加灵活和适应性更强,能够更好地应对不同的故障和条件。

3.集成化:电力系统继电保护集成化趋势在今后的发展中将越来越明显。

这将实现各种保护和监测功能的整合,从而提高系统的安全性和可靠性。

4.网络化:电力系统继电保护的网络化趋势将不断增强。

网络化技术可以实现远程监测和控制,提高系统的智能化和可靠性。

5.绿色化:保护环境将作为电力系统继电保护的一个发展方向。

使用环保型设备和技术将成为未来必不可少的发展趋势。

电力系统继电保护技术创新

电力系统继电保护技术创新

电力系统继电保护技术创新摘要:目前还有不少其他新的技术在继电保护中得到了长足的发展。

目前随着科学技术的进步,更多的新技术和科技被开发出来用于继电保护,从而确定整个电力系统安全高效稳定的运行。

我国在该领域虽然起步较晚,但是随着技术的进步也取得了飞跃性的研究成果。

随着现代自动化技术的不断发展,针对现代网络继电保护技术应用的需求分析,电力系统继电保护技术的应用也加入计算机网络技术和综合自动化技术,通过一系列技术的引入和应用程序,实现了现代电力系统继电保护设备的需求,如智能网络监测、实时在线诊断等保护技术。

关键词:电力系统;继电保护;新技术在现代电力系统继电保护装置的应用程序中,使用线路保护继电保护装置的主应用程序功能,主变压器保护功能和电容器保护等,能够实现电力系统继电保护装置的保护变电站设备的系统功能,且在电力传输和转换过程中减少由变电站故障造成的经济损失。

线路及电容器继电保护装置主保护与后备保护共同作用,有效防止短路等损害线路及电容器设备情况的出现,主变电量和非电量保护共同作用保护主变设备,防止近区及内部故障损坏主变设备。

首先是在微机继电保护的应用程序中,通过单片微机继电保护设备技术的引入,单片机技术使继电保护装置的正确动作率提升,电力系统继电保护装置在变电站设备的计算机系统的应用和发展也需要相应的保护功能,因此,通过继电保护装置和继电保护装置在现代微机处理技术的应用,实现快速保护断开功能,可以自动监测,有效地确保电力系统的电力传输和设备转换的安全。

1电力系统中继电保护的配置与应用1.1继电保护装置的任务继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。

继电保护装置的任务在于:在供电系统运行正常时,安全地。

完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。

电力系统继电保护新技术的发展与分析

电力系统继电保护新技术的发展与分析

电力系统继电保护新技术的发展与分析随着电力系统规模的不断扩大和电力设备的不断更新,电力系统保护技术也得到了快速发展。

在电力系统的保护中,继电保护被认为是最为重要的一项技术,其作用是在电力系统发生故障时通过准确地检测故障并及时采取保护措施,保证电力系统的安全稳定运行。

在这篇文章中,将会探讨电力系统继电保护新技术的发展与分析。

一、继电保护的分类电力系统中的继电保护,根据它的作用和安装位置的不同,可以分为主保护和备用保护。

主保护是指对电力系统中硬件相关的组件进行保护,这些组件通常包括变压器、发电机、变流器、线路等。

而备用保护则是对主保护的补充,通常是保证电力系统容错能力和备份能力的重要组成部分。

主保护中的继电保护又可以分为线路保护、变压器保护、发电机保护和母线保护等多种类型。

其中,线路保护作为电力系统中最重要的保护之一,是指对输电线路进行保护,避免出现短路、接地等故障。

变压器保护则是指对变压器设备进行保护,避免因电路故障或操作错误等原因引起的损坏。

发电机保护则是指对发电机设备进行保护,一旦出现故障,及时采取保护措施,保证电力系统的安全运行。

而母线保护则是指对电力系统的母线设备进行保护,避免因故障引起电力系统的不稳定运行。

在近年来,随着电力设备的不断升级和电力系统规模的扩大,继电保护技术也在不断地发展和更新。

现代电力系统继电保护新技术主要包括以下几个方面:1、新型继电保护装置:新型继电保护装置引入了人工智能、数字信号处理等先进技术,以更加准确和可靠地检测电力系统故障。

同时,新型继电保护装置的自诊断功能也能够有效地提高系统的容错能力。

2、通信技术在继电保护中的应用:通信技术在电力系统继电保护中的应用越来越广泛,它可以实现设备之间的信息交换,可以准确地控制电力系统故障并迅速提供故障信息,有效地减少了维护时间和费用。

3、局部放电检测技术:局部放电检测技术是用来检测电力设备内部故障的先进技术,它可以高精度地检测出电力设备存在的故障,并在早期采取措施,保证设备的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统继电保护技术现状与发展1、电力系统继电保护技术现状电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。

50 年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。

阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。

因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。

这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

自50年代末,晶体管继电保护已在开始研究。

60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。

其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500 kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。

到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。

到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。

在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。

我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。

华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。

1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。

在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。

南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。

天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。

至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。

随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

2、继电保护的未来发展继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

2.1计算机化随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。

原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。

华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。

东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。

天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。

采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。

CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。

这就要求微机保护装置具有相当于一台PC机的功能。

在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。

由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。

现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。

天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。

这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。

(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。

(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。

但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

2.2网络化计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。

它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。

到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。

继电保护的作用也只限于切除故障元件,缩小事故影响范围。

这主要是由于缺乏强有力的数据通信手段。

国外早已提出过系统保护的概念,这在当时主要指安全自动装置。

因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。

这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。

显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。

这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。

继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。

对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。

天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。

其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。

在母线区外故障时,各保护单元都计算为外部故障均不动作。

这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。

因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

2.3保护、控制、测量、数据通信一体化在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。

它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。

因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。

所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。

但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

如果用光纤作为网络的传输介质,还可免除电磁干扰。

现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。

在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。

OTA 和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。

从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。

1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

2.4智能化近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。

神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。

例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

相关文档
最新文档