人教版2017初中三年级(上册)数学 24.1.1 圆(PPT课件)

合集下载

人教版初三数学上册第24章圆11圆的概念ppt25张

人教版初三数学上册第24章圆11圆的概念ppt25张

•A
••A⌒B ••A⌒C ••BB⌒C •C它们一样么
•B C B A ?
•O•●
•2 .劣弧有: ••A⌒ ••B⌒
•C
•优弧有 ••BAC⌒B ••CBA⌒C
•你知道优弧与:劣弧的区别么?
•判断:半圆是弧,但弧不一定是半圆.( )
•练一练
•13、 你见过树木的年轮吗?从树木的年轮, 可以很清楚的看出树木生长的年龄,如果一棵 20年树龄的红杉树的树干直径是23cm,这棵 红杉树的半径每年增加多少?.
•数学在我们身边
•圆的世界
•祥子
•乐在其中 •一石激起千层浪
•同学们,你会画圆吗?
•想一想,动手画圆! •如果没有圆规,你还会画吗?
•超级链接: 画 圆.swf
•二、圆的概念
• 在一个平面内,线段OP绕它固定的一个端点O旋 转一周,另一个端点P所形成的图形叫做圆.
•固定的端点O叫做圆

•线段OP叫做半
•(5)半圆是最长的弧;( )
•(6)直径是最长的弦;( ) •(7)圆心相同,半径相等的两个圆是同心圆;( )
•(8)半径相等的两个圆是等圆.( )
•9、圆中最长的弦长为12cm,则该
圆的半径为•6cm

•10、下列说法错误的有(•A )个
•①经过P点的圆有无数个。 •②以P为圆心的圆有无数个。 •③半径为3cm且经过P点的圆有无数个。 •④以P为圆心,以3cm为半径的圆有无数个。 • A、1 B、2 C、3 D、4
•A
•B
•· •O2
•D •C
•在同圆或等圆中,能够互相重合的弧叫做 等弧。
• 同心圆 • 同心圆:圆心相同而半径不等的两个圆或多个圆

人教版初三数学上册24.1.1圆的定义.1圆的概念PPT文档共27页

人教版初三数学上册24.1.1圆的定义.1圆的概念PPT文档共27页

39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
人教版初三数学上册ຫໍສະໝຸດ 4.1.1圆的定 义.1圆的概念36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

初中三年级数学上册第24章圆241圆第一课时课件

初中三年级数学上册第24章圆241圆第一课时课件

(有3条弦,即弦AC.
AB.
BC)
当堂训练二 1、判断下列语句是否正确?为什么? ⑴.半圆是弧. ⑵.弧是半圆. ⑶.两个劣弧之和等于半圆. ⑷.两个劣弧之和等于圆周长.
2、 判断题: ⑴.直径是弦; ⑵.弦是直径; ⑶.半圆是弧,但弧不一定是半圆; ⑷.半径相等的两个半圆是等弧; ⑸.长度相等的两条弧是等弧;
1.圆的概念 2.与圆有关的概念 弦,直径,弧(优弧和劣弧)

与圆有关的概念 弦
B O
连接圆上任意两点的线段 (如图AC)叫做弦,
·
C
经过圆心的弦(如图中 的AB)叫做直径.
A

圆上任意两点间的部分叫做圆弧,简称弧.以A、B 为端点的弧记作 AB ,读作“圆弧AB”或“弧AB”。 圆的任意一条直径的两个端点把圆分成两条弧,每一 条弧都叫做半圆。
B O
·
C

自学指导
自学课本P78---P79页中间部分,完成: 第一次先学后教 1.分别用不同的方法作圆,标明圆心、半径, 体会圆的形成过程。 2.圆的两个定义各是什么? 3.怎样用数学符号表示圆? 4、 车轮为什么做成圆形的?

圆的概念
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆. 固定的端点O叫做圆心 线段OA叫做半径 以点O为圆心的圆,记作“⊙O”, 读作“圆O”.
24.1 圆
华阴市 华岳中学 数学组 张红利
一石激起千层浪
乐在其中
奥运五环
学习目标
1、让学生在探索过程中认识圆、理解圆的本 质属性。 2、使学பைடு நூலகம்了解弦、弧、半圆、优弧、劣弧等 与圆有关的概念,理解概念之间的区别与联 系。 3、让学生在动手实践中探索并初步了解圆的 位置由圆心确立,圆的大小由半径长度确定。

初中三年级数学上册第24章 圆24.1 圆第一课时课件

初中三年级数学上册第24章 圆24.1 圆第一课时课件
• 学习目标: 1.了解圆心角的概念; 2.掌握在同圆或等圆中,两个圆心角、 两条弧、两条弦中有一组量相等,就可以 推出它们所对应的其余各组量也相等. • 学习重点: 同圆或等圆中弧、弦、圆心角之间的关 系.
圆是中心对称图形吗?它的对称中心在哪里? 圆是中心对称图形,
·
它的对称中心是圆心.
圆心角:我们把顶点在圆心的角
A
O
B
∴∠AOE=1800-∠COB-∠COD-∠DOE
=750
4、如图6,AD=BC,那么比较AB与CD的大小.
C


A
D
O
B
B
∵ ∠AOB=∠A1OB1 ∴AB=A1B1 ,AB=A1B1 .
⌒ ⌒
α
Oα A1 B1
A
思考:
在同圆或等圆中,如果两条弧相等,你 能得什么结论?
在同圆或等圆中,相等的弧所对的圆心角_____ 相等
相等 ; 所对的弦________
在同圆或等圆中,如果两条弦相等呢?
在同圆或等圆中,相等的弦所对的圆心角
检测:
1.如图,AB、CD 是⊙O 的两条弦: (1)如果 AB=CD,那么________ ______________ AOB=∠COD ; AB= CD ,∠ (2)如果 AB = CD,那么________ ______________ AB=CD ,∠ AOB=∠COD ; (3)如果∠AOB=∠COD,那么________ AB=CD ; AB= CD ,_______ (4)如果 AB=CD,OE⊥AB 于 E,OF⊥CD 于 F,OE 与 OF 相等吗?为什么? 相等. 因为 AB=CD,所以∠AOB=∠COD. B E 又因为 AO=CO,BO=DO, A D 所以 △AOB ≌ △COD. O 又因为 OE 、OF 是 AB 与 CD F 对应边上的高, 所以 OE=OF. C

圆的基本概念和性质PPT课件

圆的基本概念和性质PPT课件
第14页/共19页
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。

初中三年级数学上册第24章圆241圆课件

初中三年级数学上册第24章圆241圆课件

合,B与︵B′重合.︵
∴AB A ' B '. 重合,AB与A′B′重合.
︵︵
AB A' B '.
AB A' B '.
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角 _相__等__, 所对的弦___相_等____;
证明:∵ OE⊥AB OF ⊥CD
A
E
B
∵ AB﹦CD ∴ AE﹦CF

D
∵ OA﹦OC ∴ RT△AOE≌RT △COF
F
C
∴ OE﹦OF
五、例题
例1 如图,在⊙O中, AB = 求证∠AOB=∠BOC=∠AOC
证明:
AC ,∠ACB=60°,
A
∵ AB = AC
∴ AB=AC. 又∠ACB=60°,
二、
探究
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你 能发现哪些等量关系?为什么?
A′ B
B′
A′
B
B′
·
O
A
·
O
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位
置时, ∠AOB=∠A′OB′,射线 OA与OA′重合,OB与OB′重
合.而同圆的半径相等,OA=OA′,OB=OB′,∴点 A与 A′重
在同圆或等圆中,相等的弦所对的圆心角 __相__等__,所对的弧___相__等____.
同圆或等圆中, 两个圆心角、两 条弧、两条弦中 有一组量相等, 它们所对应的其 余各组量也相 等.
四、练习
Байду номын сангаас

人教版2017初中三年级(上册)数学 4.1.1圆(PPT课件)

人教版2017初中三年级(上册)数学 4.1.1圆(PPT课件)

把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的 半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变.因此,当 车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这就是车轮都做成 圆形的数学道理.
2.与圆有关的概念
弦 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
【想一想】
长度相等的两条弧是等弧吗? 提示:在同圆或等圆中能够重合的弧是等弧,长 度相等的两条弧不一定能够重合.
四.归纳小结
(1)通过今天的学习,你有哪些收获?
(2)你是否明确圆的两种定义、弦、 弧等 概念?
五.布置作业
教科书第 89 页
第 1,2 题.
B O A C
等弧 在同圆或等圆中,能重合的弧叫等弧.
三.应用新知
1.判断下列说法的正误: × (1)弦是直径; √ (2)半圆是弧; × (3)过圆心的线段是直径; (4)半圆是最长的弧; × (5)圆心相同,半径相等的两个圆是同心圆;× (6)半径相等的两个半圆是等弧. √
2.写出图中的弧、弦.
24.1 圆
一、引入新课
圆是生活中常见的图形,许多物体都给我们以圆的形象
二.学习新知
观察画圆的过程,你能由此说出圆 的形成过程吗?
1. 圆的概念
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
A
固定的端点O叫做圆心
r
O
·
我国古人很早对圆就 有这样的认识了,战 国时的《墨经》就有 “圆,一中同长也” 的记载.它的意思是 圆上各点到圆心的距 离都意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作 AB,读作“圆弧 AB”或“弧 AB”. 圆的任意一条直径的两个端点把圆分成两条弧,每 一条弧都叫做半圆.

圆 初三 ppt课件ppt课件

圆 初三 ppt课件ppt课件

CHAPTER
06
圆的综合题解题思路
圆的综合题解题方法
利用圆的性质
根据圆的性质,如圆周 角定理、垂径定理等, 推导出其他相关条件或
结论。
数形结合
将圆的性质与代数方程 相结合,通过代数运算
解决问题。
构造辅助线
在解题过程中,根据需 要构造辅助线,以连接 圆上的点或与其他图形
建立联系。
运用相似三角形
在解题过程中,通过构 造相似三角形,利用相 似三角形的性质解决问
THANKS
感谢观看
详细描述
圆的一般方程是$x^{2} + y^{2} + Dx + Ey + F = 0$,其中$D, E, F$是三个系数 。这个方程表示所有满足这个方程的点都在圆上。通过解这个方程,可以得到圆 上三个点的坐标。
圆的参数方程
总结词
圆的参数方程是一种基于三角函数的描述圆的方式,它通过 角度和半径来描述圆上的点。
题。
圆的综合题解题技巧
寻找隐含条件
在题目中寻找隐含条件,这些条件可 能对解题起到关键作用。
化复杂为简单
将复杂的问题分解为多个简单的问题 ,逐一解决,最后再综合起来。
利用特殊到一般的思路
先考虑特殊情况,再推广到一般情况 ,这样有助于找到解题思路。
注意图形的变化
在解题过程中,注意图形的变化,如 角度、长度等的变化,并利用这些变 化解决问题。
VS
详细描述
根据圆的对称性质,我们可以利用已知圆 上的任意一点或直径两端点来作出一个与 已知圆相切或重合的新圆。具体操作包括 通过圆心和已知圆上一点作圆,以及通过 两个已知圆的中心和它们之间的距离作圆 。
利用已知点作圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档