(高二上学期)2016~2017学年四川省成都市树德中学(高二上学期)期末数学试卷(文科)(精校版)

合集下载

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)试题 Word版含答案

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)试题 Word版含答案

树德中学高2015级第三期期末考试数学试题(文科)一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x -85.71,则下列结论中不正确...的是( ) A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B.1311C.138D.21136、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y=-的取值范围是 ( ) A.3[,6]2-B.3[,1]2-- C.[1,6]- D.3[6,]2-7、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9 cm 2的概率为( ) A .910 B .45 C .23 D .128、直线y=kx+3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN|≥2,则直线倾斜角的取值范围是( )A .566ππ⎡⎤⎢⎥⎣⎦, B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U , C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U , D .233ππ⎡⎤⎢⎥⎣⎦,9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316π B .16π C .32πD .332π10、点M 是抛物线y 2= x 上的点,点N 是圆C :()2231x y -+=上的点,则|MN|的最小值是( ) A . B . C .2D .11、已知椭圆的左焦点为F ,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形PMFN 面积的最大值为( ) A .2 B .C .D .512、某算法的程序框图如图所示,则执行该程序后输出的S 等于 ( ) A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”)14、已知圆O 1:x 2+y 2=1与圆O 2: (x +4)2+(y -a )2=25内切,则常数a =______15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x(a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x+3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题 ADDDCA BCDAAD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分 ∴P (A )=815………12分19、解:(1)椭圆22:14x y C n'+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去). 所以2222(6),(,6)3333A B ,则双曲线的渐近线方程为6y x =……………………8分 60x y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为: 22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分(3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP ⊥AP ,CP AP=0•u u u r u u u r ∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆内,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠)………10分30k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S △FMN =12|FM |·|FN |=1222=1△FMN 的面积为1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭ (7)分k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x k k =+-+,……....10分 又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(1)由已知,得()221222x y x ++=+. 两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x 2=,|PQ |22224=222m x y m ++=+....7分 方法一:设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.…....10分 故四边形APBQ 的面积S =12|PQ |·2d =2222221422112222224m m m m m m +++••=+++=2≥2即0m =时,min 2S =.…....12分 方法二:P (,),Q (,),P 到直线AB 的距离d 1=,Q 到直线AB 的距离d 2=,∵P ,Q 在直线AB 的两侧,且关于原点对称,∴S APBQ =丨AB 丨(d 1+d 2)=••( +)=,.…....10分∴S APBQ ==2≥2,即0m =时,min 2S =.…....12分。

学年秋学期(上学期)四川省成都市树德中学高二期末考试试卷 文科数学 Word版 含答案

学年秋学期(上学期)四川省成都市树德中学高二期末考试试卷 文科数学 Word版 含答案

2016-2017学年上学期四川省成都市树德中学高二期末考试试卷文科数学第I 卷一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y =±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该高中某学生身高增加1cm ,则其体重约增加0.85kgD .若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是( )A .命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B .命题“若200,1x R x ∃∈>”的否定是“2,1x R x ∀∈<”C .命题“若x y =,则y x cos cos =”的逆否命题为假命题D .命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( )A .85B .1311C .138D .21136、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2-- C .[1,6]- D .3[6,]2-7、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不小于...9 cm 2的概率为( )A .910B .45C .23D .128、直线y =kx +3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN |≥2,则直线倾斜角的取值范围是( ) A .566ππ⎡⎤⎢⎥⎣⎦,B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ ,C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,D .233ππ⎡⎤⎢⎥⎣⎦, 9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316π B .16π C .32π D .332π 10、点M 是抛物线y 2= x 上的点,点N 是圆C :()2231x y -+=上的点,则|MN|的最小值是( )A .B .C .2D .11、已知椭圆的左焦点为F ,点P 为椭圆上一动点,过点P向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形PMFN 面积的最大值为( ) A .2 B .C .D .512、某算法的程序框图如图所示,则执行该程序后输出的S 等于( ) A .24B .26C .30D .32第II 卷二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”).14、已知圆O 1:x 2+y 2=1与圆O 2:(x +4)2+(y -a )2=25内切,则常数a =______. 15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____. 16、已知y =a x (a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B .若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____. 三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x +3=0,(1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.。

四川省成都市树德中学-学年高二数学上学期期末考试试题文科

四川省成都市树德中学-学年高二数学上学期期末考试试题文科

四川省成都市树德中学2016-2017学年高二数学上学期期末考试试题文一、选择题(每小题5分,共60分)1、设a∈R ,则“a=1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 ﻩ ﻩB.必要不充分条件 C.充分必要条件 ﻩﻩD.既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y =±2x ,则其离心率为( )A.5 ﻩﻩﻩB.ﻩﻩC .ﻩﻩ D.3、设某高中的学生体重y(单位:kg)与身高x (单位:c m)具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确...的是( ) A.y 与x具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A .命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B .1311 C.错误! D.错误!6、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y=-的取值范围是 ( )A .3[,6]2-B .3[,1]2-- C.[1,6]- D.3[6,]2- 7、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9 cm 2的概率为( ) A .910ﻩ B .45ﻩ C.23ﻩ D .128、直线y=kx+3与圆(x﹣2)2+(y ﹣3)2=4相交于M、N 两点,若|M N|≥2,则直线倾斜角的取值范围是( ) A.566ππ⎡⎤⎢⎥⎣⎦,ﻩB .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,ﻩ D.233ππ⎡⎤⎢⎥⎣⎦, 9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P 的坐标满足不等式222x y +≤的概率为( ) A.316πﻩ B.16π C.32πﻩ D .332π10、点M 是抛物线y 2= x上的点,点N 是圆C:()2231x y -+=上的点,则|MN|的最小值是( )A.ﻩB.ﻩC.2ﻩ ﻩﻩ D .11、已知椭圆的左焦点为F,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形P MFN 面积的最大值为( ) A .2ﻩ B .ﻩC .D.512、某算法的程序框图如图所示,则执行该程序后输出的S 等于 ( )A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”)14、已知圆O1:x 2+y 2=1与圆O 2: (x+4)2+(y -a )2=25内切,则常数a =______ 15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x(a>0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A;椭圆22=163x y +上存在关于直线y=x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx-y +1+2m =0(k ∈R )不经过第四象限,如果p∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率; (2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C:x 2+y 2﹣4x +3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p>0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD,且M ,N 分别是AB ,CD 的中点.设直线AB 、C D的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题 ADDDCA BCDA AD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p真q假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥ 018、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a,b ),(a,c ),(a,d ),(a,e ),(a ,f ),(b ,c ),(b,d),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d,f ),(e ,f ),共15个…………8分其中事件A包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b,e ),(b ,f ),共8个.……10分∴P (A )=\f (8,15)………12分19、解:(1)椭圆22:14x y C n'+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去). 所以2222(6),(,6)3333A B ,则双曲线的渐近线方程为6y x =……………………8分 60x y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为: 22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分(3)设点P(x ,y ),∵点P为线段A B的中点,曲线C 是圆心为C(2,0),半径r=1的圆,∴CP⊥A P,CP AP=0•∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆内,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠) 030k =………12分21、解:(1)抛物线的方程为x2=2y,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S△FMN =错误!|FM |·|F N|=错误22=1 △FMN 的面积为1. ……....5分(2)设A(x 1,y 1),B(x 2,y 2),C (x3,y 3),D (x 4,y 4),设AB的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭ (7)k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x k k =+-+,……....10分 又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+ ∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(1)由已知,得()221222x y x ++=+. 两边平方,化简得\f (x 2,2)+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB的方程为x =my-1,A (x 1,y 1),B (x 2,y 2), 由错误!得(m 2+2)y 2-2my -1=0.y 1+y 2=\f (2m ,m 2+2),y 1y 2=错误!. x 1+x 2=m (y 1+y 2)-2=错误!,于是AB 的中点为M错误!,故直线PQ 的斜率为-\f (m,2),P Q的方程为y =-错误!x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x 2=,|PQ |22224=222m x y m ++=+…....7分 方法一:设点A 到直线P Q的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =错误!.因为点A ,B 在直线mx +2y =0的异侧,所以(m x1+2y 1)(m x2+2y 2)<0,于是|mx 1+2y1|+|mx 2+2y 2|=|mx 1+2y1-m x2-2y 2|,从而2d =错误!.又因为|y 1-y 2|=错误!=错误!,所以2d =错误! (10)故四边形AP BQ 的面积S =\f (1,2)|PQ |·2d=2222221422112222224m m m m m m +++••=+++=2≥2即0m =时,min 2S =.…....12分方法二:P(,),Q (,),P到直线A B的距离d 1=,Q 到直线AB的距离d 2=,∵P,Q 在直线A B的两侧,且关于原点对称,∴S APBQ =丨AB 丨(d 1+d2)=••( +)=, (10)∴S APBQ ==2≥2,即0m =时,min 2S = (12)。

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)精彩试题Word版含问题详解

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)精彩试题Word版含问题详解

树德中学高2015级第三期期末考试数学试题(文科)一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x -85.71,则下列结论中不正确...的是( ) A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B.1311C.138D.21136、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y=-的取值围是 ( ) A.3[,6]2-B.3[,1]2-- C.[1,6]- D.3[6,]2-7、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9 cm 2的概率为( ) A .910 B .45 C .23 D .128、直线y=kx+3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN|≥2,则直线倾斜角的取值围是( )A .566ππ⎡⎤⎢⎥⎣⎦, B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U , C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U , D .233ππ⎡⎤⎢⎥⎣⎦,9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316π B .16π C .32πD .332π10、点M 是抛物线y 2= x 上的点,点N 是圆C :()2231x y -+=上的点,则|MN|的最小值是( ) A . B . C .2D .11、已知椭圆的左焦点为F ,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形PMFN 面积的最大值为( ) A .2 B .C .D .512、某算法的程序框图如图所示,则执行该程序后输出的S 等于 ( ) A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”)14、已知圆O 1:x 2+y 2=1与圆O 2: (x +4)2+(y -a )2=25切,则常数a =______15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x(a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x+3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题 ADDDCA BCDAAD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)的频率为:1-(0.+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段抽取2人,分别记为a ,b ; 在[70,80)分数段抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分 ∴P (A )=815………12分19、解:(1)椭圆22:14x y C n'+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去). 所以2222(6),(,6)3333A B ,则双曲线的渐近线方程为6y x =……………………8分 60x y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为: 22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分(3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP ⊥AP ,CP AP=0•u u u r u u u r ∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠)………10分30k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S △FMN =12|FM |·|FN |=1222=1△FMN 的面积为1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭ (7)分k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x k k =+-+,……....10分 又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(1)由已知,得()221222x y x ++=+. 两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x 2=,|PQ |22224=222m x y m ++=+....7分 方法一:设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.…....10分 故四边形APBQ 的面积S =12|PQ |·2d =2222221422112222224m m m m m m +++••=+++=2≥2即0m =时,min 2S =.…....12分 方法二:P (,),Q (,),P 到直线AB 的距离d 1=,Q 到直线AB 的距离d 2=,∵P ,Q 在直线AB 的两侧,且关于原点对称,∴S APBQ =丨AB 丨(d 1+d 2)=••( +)=,.…....10分∴S APBQ ==2≥2,即0m =时,min 2S =.…....12分。

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)试题 Word版含答案

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)试题 Word版含答案

树德中学高2015级第三期期末考试数学试题(文科)一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确...的是( ) A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B.1311C.138D.21136、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y=-的取值范围是 ( ) A.3[,6]2-B.3[,1]2-- C.[1,6]- D.3[6,]2-7、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9 cm 2的概率为( ) A .910 B .45 C .23 D .128、直线y=kx+3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN|≥2,则直线倾斜角的取值范围是( ) A .566ππ⎡⎤⎢⎥⎣⎦, B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, D .233ππ⎡⎤⎢⎥⎣⎦,9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316π B .16π C .32πD .332π10、点M 是抛物线y 2= x 上的点,点N 是圆C :()2231x y -+=上的点,则|MN|的最小值是( ) A . B . C .2D .11、已知椭圆的左焦点为F ,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形PMFN 面积的最大值为( ) A .2 B .C .D .512、某算法的程序框图如图所示,则执行该程序后输出的S 等于 ( ) A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”)14、已知圆O 1:x 2+y 2=1与圆O 2: (x +4)2+(y -a )2=25内切,则常数a =______15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x(a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x+3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题 ADDDCA BCDAAD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分 ∴P (A )=815………12分19、解:(1)椭圆22:14x y C n'+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去). 所以2222(6),(,6)3333A B ,则双曲线的渐近线方程为6y x =……………………8分 60x y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为: 22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分(3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP ⊥AP ,CP AP=0•∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆内,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠)………10分303k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S △FMN =12|FM |·|FN |=1222=1△FMN 的面积为1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭ (7)分k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x k k =+-+,……....10分 又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(1)由已知,得()221222x y x ++=+. 两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x 2=,|PQ |22224=222m x y m ++=+....7分 方法一:设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.…....10分 故四边形APBQ 的面积S =12|PQ |·2d =2222221422112222224m m m m m m +++••=+++=2≥2即0m =时,min 2S =.…....12分 方法二:P (,),Q (,),P 到直线AB 的距离d 1=,Q 到直线AB 的距离d 2=,∵P ,Q 在直线AB 的两侧,且关于原点对称,∴S APBQ =丨AB 丨(d 1+d 2)=••( +)=,.…....10分∴S APBQ ==2≥2,即0m =时,min 2S =.…....12分。

四川省成都市树德中学2016-2017学年高二上学期期末数学试卷(文科)Word版含解析

四川省成都市树德中学2016-2017学年高二上学期期末数学试卷(文科)Word版含解析

2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分)1.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x ﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg4.下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题5.阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB 的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.8.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.9.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A. B.C.D.10.点M是抛物线y2=x上的点,点N是圆C:(x﹣3)2+y2=1上的点,则|MN|的最小值是()A.﹣1 B.﹣1 C.2 D.﹣111.已知椭圆C1: +=1的左焦点为F,点P为椭圆上一动点,过点P向以F 为圆心,1为半径的圆作切线PM、PN,其中切点为M、N,则四边形PMFN面积的最大值为()A.2 B. C. D.512.某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,运动员的发挥更稳定.(填“甲”或“乙”)14.已知圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,则常数a=.15.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=.16.已知y=a x(a>0且a≠1)是定义在R上的单调递减函数,记a的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的所有可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题17.设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.18.某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19.已知抛物线C:y2=4x的焦点为F,P(1,m)是抛物线C上的一点.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.20.已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l过点且被圆C截得的弦长最短时,求直线l的方程;(3)过点(1,0)的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的值.21.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为k1、k2.(1)若AB⊥CD,且k1=1,求△FMN的面积;(2)若,求证:直线MN过定点,并求此定点.22.在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与曲线C 交于P,Q两点,求四边形APBQ面积的最小值.2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.2.已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x ﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【考点】回归分析的初步应用.【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D 回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.4.下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题【考点】命题的真假判断与应用.【分析】写出原命题的否命题,可判断A;写出原命题的否定命题,可判断B;判断原命题的真假,进而可判断其逆否命题的真假;写出原命题的逆命题,可判断D.【解答】解:命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”,故A错误;命题“若”的否定是“∀x∈R,x2≤1”,故B错误;命题“若x=y,则cosx=cosy”是真命题,故其逆否命题为真命题,故C错误;命题“若x=y,则cosx=cosy”的逆命题为命题“若cosx=cosy,则x=y”为假命题,故D 正确;故选:D5.阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【考点】程序框图.【分析】由上程序框图,当运行程序后,写出每次循环x,y,z的值,当z<20不成立,输出所求结果即可.【解答】解:由上程序框图,当运行程序后,x=1,y=1,z=2<20,满足条件,执行循环;则x=1,y=2,z=3<20,满足条件,执行循环;则x=2,y=3,z=5<20,满足条件,执行循环;则x=3,y=5,z=8<20,满足条件,执行循环;则x=5,y=8,z=13<20,满足条件,执行循环;则x=8,y=13,z=21>20,不满足条件,退出循环,则输出,故选:B.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.【考点】简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选A7.在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB 的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.【考点】几何概型.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x(10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.8.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.【考点】直线的倾斜角.【分析】圆心(2,3)到直线y=kx+3的距离d=.利用|MN|=2,可得k的取值范围,由于k=tanθ,解出即可.【解答】解:圆心(2,3)到直线y=kx+3的距离d==.∴|MN|=2==,解得,∴,设直线的倾斜角为θ,则≤tanθ≤.∴θ∈∪.故选:C.9.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A. B.C.D.【考点】几何概型;简单线性规划.【分析】作出不等式组对应的平面区域,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D10.点M是抛物线y2=x上的点,点N是圆C:(x﹣3)2+y2=1上的点,则|MN|的最小值是()A.﹣1 B.﹣1 C.2 D.﹣1【考点】抛物线的简单性质.【分析】设圆心为C,则|MN|=|CM|﹣|CN|=|CM|﹣1,将|MN|的最小问题,转化为|CM|的最小问题即可.【解答】解:设圆心为C,则|MN|=|CM|﹣|CN|=|CM|﹣1,C点坐标(3,0),由于M在y2=x上,设M的坐标为(y2,y),∴|CM|==≥,∵圆半径为1,所以|MN|最小值为﹣1.故选A.11.已知椭圆C1: +=1的左焦点为F,点P为椭圆上一动点,过点P向以F 为圆心,1为半径的圆作切线PM、PN,其中切点为M、N,则四边形PMFN面积的最大值为()A.2 B. C. D.5【考点】椭圆的简单性质.==|PM|.因此要使四边形【分析】由切线的性质可得S四边形PMFNPMFN面积取得最大值,|PM|必须取得最大值,因此|PF|必须取得最大值,当P 点为椭圆的右顶点时,|PF|取得最大值a+c.【解答】解:如图所示,由椭圆C1: +=1可得a=4,c==1,∴F(﹣1,0).由切线PM、PN,可得PM⊥MF,PN⊥FN.S四边形PMFN==|PM|.因此要使四边形PMFN面积取得最大值,则|PM|必须取得最大值,因此|PF|必须取得最大值,当P点为椭圆的右顶点时,|PF|取得最大值a+c=4+1=5.∴|PM|=2,∴四边形PMFN面积最大值为=2××|PM|×|MF|=2.故选:A.12.某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24 B.26 C.30 D.32【考点】椭圆的简单性质;循环结构.【分析】首先分析程序框图,循环体为“直到“循环结构,按照循环结构进行运算,求出满足题意时的S.【解答】解:根据题意,本程序框图为求S的值循环体为“直到“循环结构,其功能是计算椭圆上横坐标分别为:﹣3,﹣2,﹣1,0,1,2,3的点到焦点的距离,如图所示.根据椭圆的定义及对称性,得即S=2a+2a+2a+(a﹣c)=7a﹣c,又椭圆的a=5,b=4,c=3,则执行该程序后输出的S等于S=32.故选D.二、填空题(每小题5分,共20分)13.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,乙运动员的发挥更稳定.(填“甲”或“乙”)【考点】茎叶图;极差、方差与标准差.【分析】由茎叶图知甲的得分相对分散,乙的得分相对集中,由此能求出结果.【解答】解:由某赛季甲、乙两名篮球运动员每场比赛得分记录的茎叶图表知:甲的得分相对分散,乙的得分相对集中,∴从茎叶图的分布情况看,乙运动员的发挥更稳定.故答案为:乙.14.已知圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,则常数a=0.【考点】圆与圆的位置关系及其判定.【分析】求出两个圆的圆心坐标与半径,利用圆O1:x2+y2=1与圆O2:(x+4)2+(y ﹣a)2=25内切,求出圆心距等于半径差,即可得出结论.【解答】解:∵圆O1:x2+y2=1的圆心(0,0),半径为1;圆O2:(x+4)2+(y﹣a)2=25,圆心坐标(﹣4,a),半径为:5,∵圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,∴两个圆的圆心距d==4,∴a=0.故答案为0.15.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=2.【考点】椭圆的简单性质.【分析】先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|并且,,在△F1PF2中根据勾股定理可得到:,该式可变成:=2.【解答】解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:得|PF1|+|PF2|=2a1+a2,∴|PF1|﹣||PF2|=2a2∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,在△PF1F2中由勾股定理得,4c2=(a1+a2)2+(a1﹣a2)2∴化简得:该式可变成:=2.故答案为:216.已知y=a x(a>0且a≠1)是定义在R上的单调递减函数,记a的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的所有可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.【考点】几何概型.【分析】根据指数函数的性质以及直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.【解答】解:∵y=a x(a>0且a≠1)是定义在R上的单调递减函数,∴0<a<1,∴A={a|0<a<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:三、解答题17.设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.【考点】复合命题的真假.【分析】分别求出p,q为真时的m的范围,通过讨论p,q的真假,得到关于m 的不等式,取并集即可.【解答】解:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部,故1+1﹣2m+2m+2m2﹣4<0,解得:﹣1<m<1,故命题p⇔﹣1<m<1,直线mx﹣y+1+2m=0(k∈R)不经过第四象限,故,解得:m≥0,故命题q⇔m≥0;如果p∨q为真命题,p∧q为假命题,则p,q一真一假,①p真q假时,﹣1<m<0;②p假q真时,m≥1.故m的取值范围为﹣1<m<0或m≥1.18.某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)利用频率分布直方图中小矩形的面积之和为1,能求出分数在[70,80)内的频率.(2)利用频率分布直方图能求出中位数.(3)[60,70)分数段的人数为9人,[70,80)分数段的人数为18人.需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.由此利用列举法能求出从中任取2人,恰有1人在分数段[70,80)的概率.【解答】解:(1)分数在[70,80)内的频率为:1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3…(2)∵数学成绩在[40,70)内的频率为(0.010+0.015+0.015)×10=0.4,数学成绩在[70,80)内的频率为0.3,∴中位数为70+=.…(3)由题意,[60,70)分数段的人数为:0.15×60=9(人),[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A,所有基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个…其中事件A包含(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共8个.…∴P(A)=.…19.已知抛物线C:y2=4x的焦点为F,P(1,m)是抛物线C上的一点.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.【考点】双曲线的简单性质.【分析】(1)根据题意,由抛物线的方程可得其焦点坐标,即可得椭圆C的焦点坐标,结合椭圆的几何性质可得4﹣n=1,解可得n的值,代入椭圆的方程,即可得答案;(2)联立抛物线与椭圆的方程,消去y得到3x2+16x﹣12=0,解可得x的值,即可得A、B的坐标,进而可得双曲线的渐近线方程,由此设双曲线方程为6x2﹣y2=λ(λ≠0),结合抛物线的几何性质可得λ的值,即可得答案.【解答】解:(1)根据题意,抛物线C:y2=4x,其焦点坐标为(1,0),椭圆的焦点为(1,0),则有c=1,对于椭圆,可知4﹣n=1,∴n=3,故所求椭圆的方程为;(2)由,消去y得到3x2+16x﹣12=0,解得(舍去).所以,则双曲线的渐近线方程为,由渐近线,可设双曲线方程为6x2﹣y2=λ(λ≠0).由点P(1,m)在抛物线C:y2=4x上,解得m2=4,P(1,±2),因为点P在双曲线上,∴6﹣4=λ=2,故所求双曲线方程为:.20.已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l过点且被圆C截得的弦长最短时,求直线l的方程;(3)过点(1,0)的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的值.【考点】直线与圆的位置关系.【分析】(1)由圆的方程求出圆心和半径,易得点A在圆外,当切线的斜率不存在时,切线方程为x=3.当切线的斜率存在时,设切线的斜率为k,写出切线方程,利用圆心到直线的距离等于半径,解出k,可得切线方程;(2)当直线l⊥CN时,弦长最短,可求直线l的方程;(3)求出轨迹C1,直利用线与曲线C1只有一个交点,求k的值.【解答】解:(1)圆C:x2+y2﹣4x+3=0,即(x﹣2)2+y2=1,表示以(2,0)为圆心,半径等于1的圆.当切线的斜率不存在时,切线方程为x=3符合题意.当切线的斜率存在时,设切线斜率为k,则切线方程为y﹣2=k(x﹣3),即kx﹣y ﹣3k+2=0,所以,圆心到切线的距离等于半径,即=1,解得k=,此时,切线为3x﹣4y﹣1=0.综上可得,圆的切线方程为x=3或3x﹣4y﹣1=0…(2)当直线l⊥CN时,弦长最短,此时直线的方程为x﹣y﹣1=0…(3)设点P(x,y),∵点P为线段AB的中点,曲线C是圆心为C(2,0),半径r=1的圆,∴CP⊥AP,,∴化简得…由于点P在圆内,去除点(1,0),所以C1:(x≠1)…因为直线与曲线C1只有一个交点,所以圆心到直线的距离d==或k=0,所以…21.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为k1、k2.(1)若AB⊥CD,且k1=1,求△FMN的面积;(2)若,求证:直线MN过定点,并求此定点.【考点】抛物线的简单性质.【分析】(1)设AB的方程为,联立,求出M,N的坐标,即可求△FMN的面积;(2)求出直线MN的方程,即可证明直线MN过定点,并求此定点.【解答】解:(1)抛物线的方程为x2=2y,设AB的方程为联立,得x2﹣2x﹣1=0,,同理=|FM|•|FN|==1∴S△FMN△FMN的面积为1.…(2)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AB的方程为联立,得x2﹣2k1x﹣1=0,,同理…k MN=∴MN的方程为,即,…又因为,所以k1+k2=k1k2,∴MN的方程为即∴直线MN恒过定点.…22.在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与曲线C 交于P,Q两点,求四边形APBQ面积的最小值.【考点】直线与椭圆的位置关系;轨迹方程.【分析】(1)由题意列关于P的坐标的函数关系式,整理可得动点P的轨迹C的方程;(2)设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),联立直线系方程和椭圆方程,得到关于y的一元二次方程,利用根与系数的关系求得A、B中点的坐标,得到直线PQ的方程,求出|PQ|.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,可得2d=.结合题意化简可得2d=.代入得2d=.代入四边形面积公式,换元后利用配方法求得四边形APBQ面积的最大值.【解答】解:(1)由已知,得.两边平方,化简得.故轨迹C的方程是;(2)∵AB不垂直于y轴,设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),由,得(m2+2)y2﹣2my﹣1=0.y1+y2=,y1y2=.x1+x2=m(y1+y2)﹣2=,于是AB的中点为M(),故直线PQ的斜率为﹣,PQ的方程为y=﹣x,即mx+2y=0,联立,整理得:x2=,|PQ|=.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,∴2d=.∵点A,B在直线mx+2y=0的异侧,∴(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1﹣mx2﹣2y2|,从而2d=.∵|y1﹣y2|==,∴2d=.故四边形APBQ的面积S=|PQ|•2d==2≥2.即m=0时,S min=2.2017年3月9日。

四川省成都市树德中学2016-2017学年高二上学期期末数学试卷(理科) Word版含解析

2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)一、选择题(每小题5分,共60分)1.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x ﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg4.下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题5.阅读如图的程序框图,运行相应的程序,输出的结果为()A .B .C .D .6.在长为10cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不小于9cm 2的概率为( )A .B .C .D .7.直线y=kx +3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN |≥2,则直线倾斜角的取值范围是( )A .B .C .D .8.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .9.已知实数x ,y 满足如果目标函数z=x ﹣y 的最小值为﹣1,则实数m等于( ) A .7B .5C .4D .310.点M 是抛物线y 2=x 上的动点,点N 是圆C 1:(x +1)2+(y ﹣4)2=1关于直线x ﹣y +1=0对称的曲线C 上的一点,则|MN |的最小值是( )A. B . C .2 D .11.某算法的程序框图如图所示,则执行该程序后输出的S 等于( )A .24B .26C .30D .3212.已知圆C 的方程为(x ﹣1)2+y 2=1,P 是椭圆=1上一点,过P 作圆的两条切线,切点为A 、B ,求•的范围为( )A .[0,]B .[2﹣3,+∞]C .[2﹣3,]D .[,]二、填空题(每小题5分,共20分)13.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看, 运动员的发挥更稳定.(填“甲”或“乙”)14.已知圆O1:x2+y2=1,圆O2:(x+4)2+(y﹣a)2=25,如果这两个圆有且只有一个公共点,则常数a=.15.已知知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=.16.已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题17.设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.18.某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19.已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C上的一点,且|PF|=2.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.20.已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l:2mx+2y﹣1﹣3m=0被圆C截得的弦长最短时,求直线l的方程;(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的取值范围.21.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD(点A、C在第一象限),且M,N分别是AB,CD的中点.(1)若AB⊥CD,求△FMN面积的最小值;(2)设直线AC的斜率为k AC,直线BD的斜率为k BD,且k AC+4k BD=0,求证:直线AC过定点,并求此定点.22.在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与交于P,Q两点,求四边形APBQ面积的最大值.2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.2.已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x ﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【考点】回归分析的初步应用.【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D 回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.4.下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题【考点】命题的真假判断与应用.【分析】写出原命题的否命题,可判断A;写出原命题的否定命题,可判断B;判断原命题的真假,进而可判断其逆否命题的真假;写出原命题的逆命题,可判断D.【解答】解:命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”,故A错误;命题“若”的否定是“∀x∈R,x2≤1”,故B错误;命题“若x=y,则cosx=cosy”是真命题,故其逆否命题为真命题,故C错误;命题“若x=y,则cosx=cosy”的逆命题为命题“若cosx=cosy,则x=y”为假命题,故D 正确;故选:D5.阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【考点】程序框图.【分析】由上程序框图,当运行程序后,写出每次循环x,y,z的值,当z<20不成立,输出所求结果即可.【解答】解:由上程序框图,当运行程序后,x=1,y=1,z=2<20,满足条件,执行循环;则x=1,y=2,z=3<20,满足条件,执行循环;则x=2,y=3,z=5<20,满足条件,执行循环;则x=3,y=5,z=8<20,满足条件,执行循环;则x=5,y=8,z=13<20,满足条件,执行循环;则x=8,y=13,z=21>20,不满足条件,退出循环,则输出,故选:B.6.在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB 的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.【考点】几何概型.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x(10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.7.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.【考点】直线的倾斜角.【分析】圆心(2,3)到直线y=kx+3的距离d=.利用|MN|=2,可得k的取值范围,由于k=tanθ,解出即可.【解答】解:圆心(2,3)到直线y=kx+3的距离d==.∴|MN|=2==,解得,∴,设直线的倾斜角为θ,则≤tanθ≤.∴θ∈∪.故选:C.8.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A. B.C.D.【考点】几何概型;简单线性规划.【分析】作出不等式组对应的平面区域,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D9.已知实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m等于()A.7 B.5 C.4 D.3【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数z=x﹣y的最小值是﹣1,确定m的取值.【解答】解:作出不等式组对应的平面区域如图:由目标函数z=x﹣y的最小值是﹣1,得y=x﹣z,即当z=﹣1时,函数为y=x+1,此时对应的平面区域在直线y=x+1的下方,由,解得,即A(2,3),同时A也在直线x+y=m上,即m=2+3=5,故选:B10.点M是抛物线y2=x上的动点,点N是圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的曲线C上的一点,则|MN|的最小值是()A.B.C.2 D.【考点】关于点、直线对称的圆的方程;两点间的距离公式.【分析】由题意求出圆的对称圆的圆心坐标,求出对称圆的圆心坐标到抛物线上的坐标的距离的最小值,减去半径即可得到|MN|的最小值.【解答】解:圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的圆的圆心坐标(3,0),半径是1;设M的坐标为(y2,y),所以圆心到M的距离:,当y2=时,它的最小值为,则|MN|的最小值是:.故选A.11.某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24 B.26 C.30 D.32【考点】椭圆的简单性质;循环结构.【分析】首先分析程序框图,循环体为“直到“循环结构,按照循环结构进行运算,求出满足题意时的S.【解答】解:根据题意,本程序框图为求S的值循环体为“直到“循环结构,其功能是计算椭圆上横坐标分别为:﹣3,﹣2,﹣1,0,1,2,3的点到焦点的距离,如图所示.根据椭圆的定义及对称性,得即S=2a+2a+2a+(a﹣c)=7a﹣c,又椭圆的a=5,b=4,c=3,则执行该程序后输出的S等于S=32.故选D.12.已知圆C的方程为(x﹣1)2+y2=1,P是椭圆=1上一点,过P作圆的两条切线,切点为A、B,求•的范围为()A.[0,]B.[2﹣3,+∞]C.[2﹣3,]D.[,]【考点】椭圆的简单性质;平面向量数量积的运算.【分析】利用圆切线的性质:与圆心切点连线垂直;设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出•,利用三角函数的二倍角公式化简函数,通过换元,再利用基本不等式求出最值.【解答】解:设PA与PB的夹角为2α,则|PA|=PB|=,∴y=•=|PA||PB|cos2α=•cos2α=•cos2α.记cos2α=u,则y==﹣3+(1﹣u)+≥2﹣3,∵P在椭圆的左顶点时,sinα=,∴cos2α=,∴•的最大值为=,∴•的范围为[2﹣3,].故选:C.二、填空题(每小题5分,共20分)13.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,乙运动员的发挥更稳定.(填“甲”或“乙”)【考点】茎叶图;极差、方差与标准差.【分析】由茎叶图知甲的得分相对分散,乙的得分相对集中,由此能求出结果.【解答】解:由某赛季甲、乙两名篮球运动员每场比赛得分记录的茎叶图表知:甲的得分相对分散,乙的得分相对集中,∴从茎叶图的分布情况看,乙运动员的发挥更稳定.故答案为:乙.14.已知圆O1:x2+y2=1,圆O2:(x+4)2+(y﹣a)2=25,如果这两个圆有且只有一个公共点,则常数a=±2或0.【考点】圆与圆的位置关系及其判定.【分析】两个圆有且只有一个公共点,两个圆内切或外切,分别求出a,即可得出结论.【解答】解:∵两个圆有且只有一个公共点,∴两个圆内切或外切,内切时,=4,外切时,=6,∴a=±2或0,故答案为±2或015.已知知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=4.【考点】双曲线的简单性质.【分析】如图所示,设椭圆与双曲线的标准方程分别为: +=1,﹣=1(a i,b i>0,a1>b1,i=1,2),a12﹣b12=a22+b22=c2,c>0.设|PF1|=m,|PF2|=n.可得m+n=2a1,n﹣m=2a2,∠F1PF2=,在△PF1F2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos,化简整理由离心率公式即可得出.【解答】解:如图所示,设椭圆与双曲线的标准方程分别为:+=1,﹣=1(a i,b i>0,a1>b1,i=1,2),a12﹣b12=a22+b22=c2,c>0.设|PF1|=m,|PF2|=n.则m+n=2a1,n﹣m=2a2,解得m=a1﹣a2,n=a1+a2,由∠F1PF2=,在△PF1F2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos,∴4c2=(a1﹣a2)2+(a1+a2)2﹣(a1﹣a2)(a1+a2),化为4c2=a12+3a22,化为=4.故答案为:4.16.已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.【考点】几何概型.【分析】根据直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.【解答】解:∵y=,∴x=y2,代入y=k(x+)得y=k(y2+),整理得ky2﹣y+=0,直线y=k(x+)与曲线y=恰有两个不同交点,等价为ky2﹣y+=0有两个不同的非负根,即△=1﹣k2>0,且>0,解得0<k<1,∴A={k|0<k<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:.三、解答题17.设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.【考点】复合命题的真假.【分析】分别求出p,q为真时的m的范围,通过讨论p,q的真假,得到关于m 的不等式,取并集即可.【解答】解:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部,故1+1﹣2m+2m+2m2﹣4<0,解得:﹣1<m<1,故命题p⇔﹣1<m<1,直线mx﹣y+1+2m=0(k∈R)不经过第四象限,故,解得:m≥0,故命题q⇔m≥0;如果p∨q为真命题,p∧q为假命题,则p,q一真一假,①p真q假时,﹣1<m<0;②p假q真时,m≥1.故m的取值范围为﹣1<m<0或m≥1.18.某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)利用频率分布直方图中小矩形的面积之和为1,能求出分数在[70,80)内的频率.(2)利用频率分布直方图能求出中位数.(3)[60,70)分数段的人数为9人,[70,80)分数段的人数为18人.需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.由此利用列举法能求出从中任取2人,恰有1人在分数段[70,80)的概率.【解答】解:(1)分数在[70,80)内的频率为:1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3…(2)∵数学成绩在[40,70)内的频率为(0.010+0.015+0.015)×10=0.4,数学成绩在[70,80)内的频率为0.3,∴中位数为70+=.…(3)由题意,[60,70)分数段的人数为:0.15×60=9(人),[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A,所有基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个…其中事件A包含(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共8个.…∴P(A)=.…19.已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C上的一点,且|PF|=2.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.【考点】椭圆的简单性质;双曲线的简单性质;圆锥曲线的综合.【分析】(1)根据题意,由抛物线的定义可得,即p=2,可得抛物线的方程,结合题意可得椭圆中有4﹣n=1,解可得n的值,代入椭圆的标准方程即可得答案;(2)联立抛物线、椭圆的方程,消去y得到3x2+16x﹣12=0,解可得x的值,即可得A、B的坐标,进而可得双曲线的渐近线方程,由此设双曲线方程为6x2﹣y2=λ(λ≠0),结合抛物线的几何性质可得λ的值,即可得答案.【解答】解:(1)根据题意,抛物线C:y2=2px中,P到焦点距离等于P到准线距离,所以,p=2故抛物线的方程为C:y2=4x;又由椭圆,可知4﹣n=1,即n=3,故所求椭圆的方程为;(2)由,消去y得到3x2+16x﹣12=0,解得(舍去).所以,则双曲线的渐近线方程为y=±x,由渐近线,可设双曲线方程为6x2﹣y2=λ(λ≠0).由点P(1,m)在抛物线C:y2=4x上,解得m2=4,P(1,±2),因为点P在双曲线上,∴6﹣4=λ=2,故所求双曲线方程为:.20.已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l:2mx+2y﹣1﹣3m=0被圆C截得的弦长最短时,求直线l的方程;(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的取值范围.【考点】直线与圆的位置关系.【分析】(1)由圆的方程求出圆心和半径,易得点A在圆外,当切线的斜率不存在时,切线方程为x=3.当切线的斜率存在时,设切线的斜率为k,写出切线方程,利用圆心到直线的距离等于半径,解出k,可得切线方程;(2)当直线l⊥CN时,弦长最短,可求直线l的方程;(3)求出轨迹C1,利用直线与曲线C1只有一个交点,求k的值.【解答】解:(1)圆C:x2+y2﹣4x+3=0,即(x﹣2)2+y2=1,表示以(2,0)为圆心,半径等于1的圆.当切线的斜率不存在时,切线方程为x=3符合题意.当切线的斜率存在时,设切线斜率为k,则切线方程为y﹣2=k(x﹣3),即kx﹣y ﹣3k+2=0,所以,圆心到切线的距离等于半径,即=1,解得k=,此时,切线为3x﹣4y﹣1=0.综上可得,圆的切线方程为x=3或3x﹣4y﹣1=0…(2)直线l:2mx+2y﹣1﹣3m=0恒过定点当直线l⊥CN时,弦长最短,此时直线的方程为x﹣y﹣1=0…(3)设点P(x,y),∵点P为线段AB的中点,曲线C是圆心为C(2,0),半径r=1的圆,∴CP⊥OP,∴化简得(x﹣1)2+y2=1…由于点P在圆内,由得x=所以C1:(注:范围也可写成)…圆心到直线的距离d==1,∴,过(,)时,k=因为直线与曲线C 1只有一个交点,所以或…21.已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD (点A 、C 在第一象限),且M ,N 分别是AB ,CD 的中点. (1)若AB ⊥CD ,求△FMN 面积的最小值;(2)设直线AC 的斜率为k AC ,直线BD 的斜率为k BD ,且k AC +4k BD =0,求证:直线AC 过定点,并求此定点. 【考点】抛物线的简单性质. 【分析】(1)求出M ,N 的坐标,可得S△FMN =|FM |•|FN |==,利用基本不等式求△FMN 面积的最小值;(2)利用k AC +4k BD =0,得出x 1x 3=4,可得直线AC 的方程,即可得出结论.【解答】(1)解:(1)抛物线的方程为x 2=2y ,设AB 的方程为y=kx +联立抛物线方程,得x 2﹣2kx ﹣1=0,,同理∴S △FMN =|FM |•|FN |==≥1当且仅当k=±1时,△FMN 的面积取最小值1.…(2)证明:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为y=kx +,联立抛物线方程,得x 2﹣2kx ﹣1=0,∴x 1x 2=﹣1, 同理,x 3x 4=﹣1 …故k AC +4k BD ===注意到点A 、C 在第一象限,x 1+x 3≠0,故得x 1x 3=4,…直线AC 的方程为,化简得即所以,直线AC恒经过点(0,﹣2)…22.在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与交于P,Q两点,求四边形APBQ面积的最大值.【考点】直线与椭圆的位置关系;轨迹方程.【分析】(1)由题意列关于P的坐标的函数关系式,整理可得动点P的轨迹C的方程;(2)设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),联立直线系方程和椭圆方程,得到关于y的一元二次方程,利用根与系数的关系求得A、B中点的坐标,得到直线PQ的,求出圆心与直线mx+2y=0的距离为,得到|PQ|.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,可得2d=.结合题意化简可得2d=.代入得2d=.代入四边形面积公式,换元后利用配方法求得四边形APBQ面积的最大值.【解答】解:(1)由已知,得.两边平方,化简得.故轨迹C的方程是;(2)∵AB不垂直于y轴,设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),由,得(m2+2)y2﹣2my﹣1=0.y1+y2=,y1y2=.x1+x2=m(y1+y2)﹣2=,于是AB的中点为M(),故直线PQ的斜率为﹣,PQ的方程为y=﹣x,即mx+2y=0,圆心与直线mx+2y=0的距离为,|PQ|=.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,∴2d=.∵点A,B在直线mx+2y=0的异侧,∴(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1﹣mx2﹣2y2|,从而2d=.∵|y1﹣y2|==,∴2d=.故四边形APBQ的面积S=|PQ|•2d=.令m2+4=t(t≥4),则S=().当,即时,.2017年3月13日。

精选四川省成都市树德中学2016_2017学年高二数学上学期期末考试试题文

四川省成都市树德中学2016-2017学年高二数学上学期期末考试试题 文一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确...的是() A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B.1311C.138D.21136、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y=-的取值范围是 ( ) A.3[,6]2-B.3[,1]2-- C.[1,6]- D.3[6,]2-7、在长为10cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9cm 2的概率为( ) A .910B .45C .23D .128、直线y=kx+3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN |≥2,则直线倾斜角的取值范围是( ) A .566ππ⎡⎤⎢⎥⎣⎦, B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,D .233ππ⎡⎤⎢⎥⎣⎦, 9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316πB .16πC .32πD .332π 10、点M 是抛物线y 2=x 上的点,点N 是圆C :()2231x y -+=上的点,则|MN|的最小值是( )A .B .C .2D .11、已知椭圆的左焦点为F ,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形PMFN 面积的最大值为( ) A .2B .C .D .512、某算法的程序框图如图所示,则执行该程序后输出的S 等于( ) A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”) 14、已知圆O 1:x 2+y 2=1与圆O 2: (x +4)2+(y -a )2=25内切,则常数a =______ 15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x(a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x+3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题 ADDDCA BCDAAD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人). ∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分∴P (A )=815………12分19、解:(1)椭圆22:14x y C n '+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去).所以22((,33A B ,则双曲线的渐近线方程为y =……………………8分0y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上,642λ∴-==,故所求双曲线方程为:22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分(3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP⊥AP ,CP AP=0∙∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆内,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠)………10分0k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S △FMN =12|FM |·|FN |=1△FMN 的面积为1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭……....7分k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x k k =+-+,……....10分 又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+ ∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(12=. 两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x2=,|PQ|=....7分 方法一:设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.…....10分 故四边形APBQ 的面积S =12|PQ |·2d =12∙==2≥2即0m =时,min 2S =.…....12分 方法二:P (,),Q (,),P 到直线AB 的距离d 1=,Q 到直线AB 的距离d 2=,∵P ,Q 在直线AB 的两侧,且关于原点对称,∴S APBQ =丨AB 丨(d 1+d 2)=••( +)=,.…....10分∴S APBQ ==2≥2,即0m =时,min 2S =.…....12分。

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(文)试题 Word版含答案

树德中学高2015级第三期期末考试数学试题(文科)一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确...的是( ) A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x ∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B.1311C.138D.21136、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y=-的取值范围是 ( ) A.3[,6]2-B.3[,1]2-- C.[1,6]- D.3[6,]2-7、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9 cm 2的概率为( ) A .910 B .45 C .23 D .128、直线y=kx+3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN|≥2,则直线倾斜角的取值范围是( ) A .566ππ⎡⎤⎢⎥⎣⎦, B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, D .233ππ⎡⎤⎢⎥⎣⎦,9、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316π B .16π C .32πD .332π10、点M 是抛物线y 2= x 上的点,点N 是圆C :()2231x y -+=上的点,则|MN|的最小值是( ) A . B . C .2D .11、已知椭圆的左焦点为F ,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,其中切点为M 、N ,则四边形PMFN 面积的最大值为( ) A .2 B .C .D .512、某算法的程序框图如图所示,则执行该程序后输出的S 等于() A.24 B.26 C.30 D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”) 14、已知圆O 1:x 2+y 2=1与圆O 2: (x +4)2+(y -a )2=25内切,则常数a =______ 15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x(a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x+3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫ ⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k . (1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题 ADDDCA BCDAAD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分 ∴P (A )=815………12分19、解:(1)椭圆22:14x y C n'+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去).所以22((,33A B ,则双曲线的渐近线方程为y =……………………8分0y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为: 22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分(3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP ⊥AP ,CP AP=0∙∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆内,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠)………10分0k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S △FMN =12|FM |·|FN |=1△FMN 的面积为1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭ (7)分k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x k k =+-+,……....10分 又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(1=两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x 2=,|PQ|=....7分 方法一:设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.…....10分 故四边形APBQ 的面积S =12|PQ |·2d =12∙=≥2即0m =时,min 2S =.…....12分 方法二:P (,),Q (,),P 到直线AB 的距离d 1=,Q 到直线AB 的距离d 2=,∵P ,Q 在直线AB 的两侧,且关于原点对称,∴S APBQ =丨AB 丨(d 1+d 2)=••( +)=,.…....10分∴S APBQ ==2≥2,即0m =时,min 2S =.…....12分。

四川省成都树德中学2016-2017学年高二上学期期末考试试卷 数末(文) Word版含答案

树德中学高2015级第三期期末考试数学试题(文科)一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( ) A .5B.C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x -85.71,则下列结论中不正确...的是( ) A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x ∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( )A.85B.1311C.138D.2113 6、已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( )A.3[,6]2- B.3[,1]2-- C.[1,6]- D.3[6,]2-7、在长为10 cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不.小于..9 cm2的概率为()A.910B.45C.23D.128、直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.566ππ⎡⎤⎢⎥⎣⎦,B.20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,C.50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,D.2 33ππ⎡⎤⎢⎥⎣⎦,9、已知集合240(,)0x yx y x yx y⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式222x y+≤的概率为()A.316πB.16πC.32πD.332π10、点M是抛物线y2= x上的点,点N是圆C:()2231x y-+=上的点,则|MN|的最小值是()A .B.C.2 D .11、已知椭圆的左焦点为F,点P为椭圆上一动点,过点P向以F为圆心,1为半径的圆作切线PM、PN,其中切点为M、N,则四边形PMFN面积的最大值为()A.2B.C .D.512、某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24B.26C.30D.32二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,___运动员的发挥更稳定.(填“甲”或“乙”) 14、已知圆O 1:x 2+y 2=1与圆O 2: (x +4)2+(y -a )2=25内切,则常数a =______15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且122F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221211e e +=_____16、已知y =a x (a >0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_____三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围. 18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)内的频率; (2)估计本次考试的中位数;(精确到0.1) (3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:4C y x =的焦点为F ,(1,)P m 是抛物线C 上的一点.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程. 20、(12分)已知圆C :x 2+y 2﹣4x +3=0,(1)求过()3,2M 点的圆的切线方程;(2)直线l 过点3122N ⎛⎫⎪⎝⎭,且被圆C 截得的弦长最短时,求直线l 的方程;(3)过点()10,的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的值.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD ,且M ,N 分别是AB ,CD 的中点.设直线AB 、CD 的斜率分别为1k 、2k .(1)若AB CD ⊥,且11k =,求△FMN 的面积; (2)若12111k k +=,求证:直线MN 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程; (2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于,P Q 两点,求四边形APBQ 面积的最小值.树德中学高2015级第三期期末考试数学试题(文科)参考答案一、选择题ADDDCA BCDAAD二、填空题13、乙 14、0 15、2 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分(2)中位数17373.33≈…………6分(3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分∴P (A )=815………12分19、解:(1)椭圆22:14x y C n '+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去).所以22((,33A B ,则双曲线的渐近线方程为y =……………………8分0y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为:22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………6分 (3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP ⊥AP ,CP AP=0∙ ∴化简得223124x y ⎛⎫-+= ⎪⎝⎭………9分由于点P 在圆内,去除点(1,0),所以1C :223124x y ⎛⎫-+= ⎪⎝⎭(1x ≠) (10)分0k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为12y x =+联立2122y x x y⎧=+⎪⎨⎪=⎩,得x 2﹣2x ﹣1=0,31,2M ⎛⎫ ⎪⎝⎭,同理31,2N ⎛⎫- ⎪⎝⎭∴S △FMN =12|FM |·|FN |1 △FMN 的面积为1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为112y k x =+联立12122y k x x y⎧=+⎪⎨⎪=⎩,得21210x k x --=,2111,2M k k ⎛⎫+ ⎪⎝⎭,同理2221,2N k k ⎛⎫+ ⎪⎝⎭ (7)分k MN =221212121122k k k k k k ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭=+-∴MN 的方程为()()2112112y k k k x k ⎛⎫-+=+- ⎪⎝⎭,即()121212y k k x kk =+-+, (10)分又因为12111k k +=所以1212k k k k +=,∴MN 的方程为121212y k k x k k =-+即()12112y k k x =-+∴直线MN 恒过定点112⎛⎫⎪⎝⎭,.……....12分22、解:(1=. 两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0.y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2, 故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分22212m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得:x 2=,|PQ|=....7分 方法一:设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d=22·1+m 2m 2+4.…....10分故四边形APBQ 的面积S =12|PQ |·2d =12∙=≥2即0m =时,min 2S =.…....12分 方法二:P (,),Q (,),P 到直线AB 的距离d 1=,Q 到直线AB 的距离d 2=,∵P ,Q 在直线AB 的两侧,且关于原点对称, ∴S APBQ =丨AB 丨(d 1+d 2)=••(+)=,.…....10分∴S APBQ ==2≥2,即0m =时,min 2S =.…....12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016~2017学年四川省成都市树德中学高二(上)期末数学试卷(文科)
一、 选择题(每小题5分,共60分)
1. 设R a ∈,则“1=a ”是“直线1l :012=-+y ax 与直线2l :04)1(=+++y a x 平行”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
2. 已知双曲线122
22=-b
y a x (0>a ,0>b )的渐近线方程为x y 2±=,则其离心率为( )
A .5
B .
2
5
C .3
D .5
3. 设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本
数据(i x ,i y )(n i ,,2,1 =),用最小二乘法建立的回归方程为71.8585.0^
-=x y ,则下列结论中不.
正确的是
( )
A .y 与x 具有正的线性相关关系
B .回归直线过样本点的中心(y x ,)
C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg
D .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 4. 下列说法正确的是
( )
A .命题“若12>x ,则1>x ”的否命题为“若12>x ,则1≤x ”
B .命题“若R x ∈∃0,12
0>x ”的否定是“R x ∈∀,12<x ”
C .命题“若y x =,则y x cos cos =”的逆否命题为假命题
D .命题“若y x =,则y x cos cos =”的逆命题为假命题 5. 阅读如图的程序框图,运行相应的程序,输出的结果为
( )
A .1113
B .813
C .138
D .13
21
6. 设x ,y 满足约束条件⎪⎩

⎨⎧-≥-≤+≥+144222y x y x y x ,则目标函数y x z -=3取值范围是
( )
A .]6,2
3
[-
B .]1,2
3
[--
C .]6,1[-
D .]2
3,
6[- 7. 在长为10 cm 的线段AB 上任取一点C ,现作一个矩形,邻边长分别等于AC ,CB 的长,则该矩形
面积不小于9 cm 2
的概率为
( )
A .
5
4 B .
32
C .
21
D .
5
3 8. 直线3+=kx y 与圆4)3()2(22=-+-y x 相交于M 、N 两点,若32||≥MN ,则直线倾斜角
的取值范围是
( )
A .]65,
6
[
ππ
B .),3
2[]3,0[ππ
π
⋃ C .),6
5[
]6,
0[ππ
π

D .]3
2,
3
[
ππ
9. 已知集合}00042|),{(⎪⎩

⎨⎧≥-≥+≤-+y x y x y x y x 表示的平面区域为Ω,若在区域Ω内任取一点),(y x P ,则点
P 的坐标满足不等式222≤+y x 的概率为
( )
A .
16
3π B .
16
π C .
32π
D .
32
3π 10. 已知点M 是抛物线x y =2上的一动点,点N 是圆1C :1)4()1(22=-++y x 关于直线
01=+-y x 对称线C 上的一点,则||MN 最小值是
( )
A .
12
11
- B .
12
10
- C .2
D .13-
11. 椭圆1C :
115
162
2=+y x 的左焦点为F ,点P 为椭圆上一动点,过点P 向以F 为圆心,1为半径的圆作切线PM 、PN ,切点为M 、N ,则四边形PMFN 面积最大值为
( )
A .62
B .14
C .15
D .5
12. 某算法的程序框图如图所示,则执行该程序后输出的S 等于
( )
A .24
B .26
C .30
D .32
二、 填空题(每小题5分,共20分)
13. 某个赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示
(如右上图),从茎叶图的分布情况看,____________运动员的发挥更稳定.(填“甲”或“乙”)
14. 若圆1O :122=+y x 与圆2O :25)()4(22=-++a y x 内切,则常数=a __________ 15. 已知知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且2
21π
=
∠PF F ,椭圆和双
曲线的离心率分别为1e 、2e ,则
=+
2
2
2
1
11e e _____________
16. 已知x a y =(0>a 且1≠a )是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;
),(y x P 是椭圆19
1622=+y x 上一动点,点),(1
11y x P 与点P 关于直线1+=x y 对称,记411-y 的所有可能取值构成集合B ,若随机从集合A 、B 中分别抽出一个元素1λ、2λ,则21λλ>的概率是___________
三、 解答题(17题10分,18~22题每小题12分,共70分)
17. 命题p :点(1,1)在圆4)()(22=++-m y m x 内部;命题q :直线021=++-m y mx (R k ∈)
不经过第四象限,如果q p ∨为真命题,q p ∧为假命题,求m 的取值范围.
18. 某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部
分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)内的频率; (2)估计本次考试的中位数;(精确到0.1)
(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中
抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.
19. 已知抛物线C :px y 22=(0>p )的焦点为F ,),1(m P P 是抛物线C 上的一点,且2||=PF .
(1)若椭圆C ':142
2=+n
y x 与抛物线C 有共同的焦点,求椭圆C '的方程;
(2)设抛物线C 与(1)中所求椭圆C '的交点为A 、B ,求以OA 和OB 所在的直线为渐近线,
且经过点P 的双曲线方程.
20. 已知圆C :03422=+-+x y x .
(1)求过)2,3(M 点的圆的切线方程;
(2)直线l :03122=--+m y mx 被圆C 截得的弦长最短时,求直线l 的方程;
(3)过原点的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线
)2
5
(-=x k y 与曲线1C 只有一个交点,求k 的取值范围.
21. 已知抛物线py x 22=(0>p ),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD
(点A 、C 在第一象限),且M ,N 分别是AB ,CD 的中点,设直线AC 的斜率为1k ,直线BD 的斜率为2k .
(1)若CD AB ⊥,且11=k ,求FMN ∆面积的最小值; (2)若11
12
1=+k k ,求证:直线MN 过定点,并求此定点.
22. 在平面直角坐标系中,点O 为坐标原点,动点),(y x W 与定点)0,1(-F 的距离和它到定直线
2-=x 的距离之比是
2
2. (1)求动点W 的轨迹C 的方程;
(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与曲线C 交于P 、Q
两点,求四边形APBQ 面积的最小值.。

相关文档
最新文档