八年级下二次根式与勾股定理综合测试题
2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)

2022-2023学年人教版八年级数学下册阶段性(二次根式+勾股定理)综合练习题(附答案)一、选择题(共36分)1.下列式子不是二次根式的是()A.B.C.D.2.在下列长度的各组线段中,能构成直角三角形的是()A.3,5,9B.4,6,8C.1,,2D.3.的化简结果为()A.25B.5C.﹣5D.﹣254.下列根式中,不是最简二次根式的是()A.B.C.D.5.下列运算正确的是()A.B.C.D.6.下列二次根式中,与可以合并的是()A.B.C.D.7.计算3﹣2的结果是()A.B.2C.3D.68.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.D.﹣19.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是()A.18m B.10m C.14m D.24m10.把中根号外面的因式移到根号内的结果是()A.B.C.D.11.如图,矩形ABCD的对角线AC=10,边BC=8,则图中五个小矩形的周长之和为()A.14B.16C.20D.2812.已知,则的值为()A.B.±2C.±D.二、填空题(共18分)。
13.使有意义的x的取值范围是.14.已知Rt△ABC两直角边长为5,12,则斜边长为.15.计算:5÷×所得的结果是.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为cm2.17.若y=,则x+y=.18.在直线l上依次摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=.三、解答题(共46分)19.计算:(1),(2).20.如图,已知在△ABC中,CD⊥AB于D,AC=12,BC=10,DB=6.(1)求CD的长.(2)求AB的长.21.在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)22.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=13,DC=12,求四边形ABCD 的面积.23.已知a、b、c满足.(1)求a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.24.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1.∴2a2﹣8a+1=2(a2﹣4a)+1=2(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:若a=,求4a2﹣8a﹣3的值.参考答案一、选择题(共36分)1.解:A、是二次根式,故本选项不符合题意;B、是二次根式,故本选项不符合题意;C、是二次根式,故本选项不符合题意;D、不是根式,故本选项符合题意.故选:D.2.解:A、∵3+5=8<9,∴不能组成三角形,故A不符合题意;B、∵42+62=52,82=64,∴42+62≠82,∴不能组成直角三角形,故B不符合题意;C、∵12+()2=4,22=4,∴12+()2=22,∴能组成直角三角形,故C符合题意;D、∵()2+()2=8,()2=6,∴()2+()2≠()2,∴不能组成直角三角形,故D不符合题意;故选:C.3.解:=5.故选:B.4.解:因为==2,因此不是最简二次根式.故选:B.5.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.6.解:A、==2,与不能合并,本选项不符合题意;B、=,与可以合并,本选项符合题意;C、==3,与不能合并,本选项不符合题意;D、==,与不能合并,本选项不符合题意;故选:B.7.解:原式=(3﹣2)=.故选:A.8.解:图中直角三角形的两直角边为1,2,∴斜边长为=,那么﹣1和A之间的距离为,那么a的值是:﹣1,故选:D.9.解:如图:∵BC=8米,AC=6米,∵∠C=90°,∴AB2=AC2+BC2,∴AB=10米,∴这棵树在折断之前的高度是18米.故选:A.10.解:根据被开方数非负数得,﹣>0,解得a<0,﹣a==.故选:A.11.解:∵矩形ABCD的对角线AC=10,BC=8,∴AB===6,由平移的性质可知:五个小长方形的周长和=2×(AB+BC)=2×14=28.故选:D.12.解:∵,∴(x+)2=7∴x2+=5(x﹣)2=x2+﹣2=5﹣2=3,x﹣=±.故选:C.二、填空题(共18分)。
2023—2024年人教版初二数学勾股定理达标测试

2023—2024年人教版初二数学勾股定理达标测试 班级 姓名 得分 一、单选题(本大题共12小题,每题3分,共36分) 1.下列二次根式中,不能与2合并的是( ) A .12 B .8 C .12 D .182.下列计算中,正确的是( )A .233255+=B .333236⨯=C .2733÷=D .2222-=3.估计13介于()A .1与2之间B .2与3之间C .3与4之间D .4与5之间 4.计算2(32)-的值为( )A .32-B .32+C .23-D .32--5.如图,在Rt ABC △中,90ABC ∠=︒,1BC =.将AB 边与数轴重合,点A ,点B 对应的数分别为1-,2.以点A 为圆心,AC 的长为半径画弧,交数轴于点D ,则点D 表示的数为( )A .3B .10C .101-D .101--6.实数a 、b 在数轴上的位置如图所示,那么化简2a b a --的结果是( )A .2a b -B .bC .b -D .2a b -+7.如图,小正方形边长为1,连接小正方形的三个顶点,可得ABC ,则AC 边上的高长度为( )第7题 第8题A .355 B .3510 C .55 D .5108.如图,一根长25m 的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m .如果梯子的顶端下滑4m ,那么梯子的底端将向右滑动( )A .15mB .9mC .7mD .8m9.如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A 、B 、C 的面积依次为2、4、3,则正方形D 的面积为( )第9题 第10题 第11题A .7B .8C .9D .1010.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度为( )A .3尺B .3.2尺C .3.6尺D .4尺11.如图,长方体的长为2,宽为1,高为3,一只蚂蚁从点A 出发,沿长方体的外表面到点B 处觅食,则它爬行的最短路程为( )A 14B 18C 20D 2612222233+333388+=44441515+=55552424+=1010b b a a +则a b +的值为( )A .179B .109C .210D .104二、填空题(本大题共6小题,每题3分,共18分)138=_____.14.点()9,40P 到坐标原点的距离是__________.15.已知a 10b 是它的小数部分,则210a b +______.16.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .17.某会展期间,准备在高5BC =米、长13AC =米,宽2米的楼梯上铺地毯,则所铺地毯的面积为 __________平方米.18.如图,已知直角三角形ABC 的周长为24,且阴影部分的面积为24,则斜边AB 的长为______.三、解答题19.计算(每小题5分,共计25分). (1)32712+-. (2)()21122321+---. (3) 1013220223-⎛⎫-+-- ⎪⎝⎭ (4)()()()232233223223+⨯---.20.(7分)在平面直角坐标系中,ABC 的三个顶点位置如图所示.(1)请画出ABC 关于x 轴对称的A B C '''(其中A ',B ',C '分别是A ,B ,C 的对应点);(2)直接写出A B C '''三点的坐标:A '__________,B '__________,C '__________;(3)求AC '的长为__________.21.(8分)如图,Rt ABC △中,18,12,90AB BC B ==∠=︒,将ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,求线段BN 的长.22.(8分)如图,海中有一小岛P ,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M 处测得小岛P 在北偏东60°方向上,航行16海里到N 处,这时测得小岛P 在北偏东30°方向上.(1)求M 点与小岛P 的距离;(2)如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.23.(8分)如图,某电信公司计划在A ,B 两乡镇间的E 处修建一座5G 信号塔,且使C ,D 两个村庄到E 的距离相等.已知AD AB ⊥于点A ,BC AB ⊥于点B ,80km AB =,50km AD =,30km BC =,求5G 信号塔E 应该建在离A 乡镇多少千米的地方?24.(10分)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理,图1与图2都是由四个全等的直角三角形构成,图3是由两个全等的直角三角形构成(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径向外部作半圆,请写出1S 、2S 和3S 的数量关系:___________.。
(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
八年级下数学质量检测——二次根式与勾股定理综合测试

___中学2017—2018学年下八年级数学质量检测试卷(一)一、选择题(每小题3分,共30分)1、下列计算正确的是()A、x 6 = 3B、J—9 = -3C、Y9 = 3D、3 9 = 32、下列各式是二次根式的是()A、v―7B、<mC、a a 2 +1D、v33、要使式子、.■中3有意义,字母x的取值必须满足()3 23A、%>0B、x>—C、x>—D、x>——2 3 24、下列各组数为勾股数的是()A、6,12,13B、15,17,8C、3,4,7D、8,15,165、三角形的一边长是、:8cm,这边上的高是<12cm,则这个三角形的面积是()A、2P6cm2B、4V6cm2C、<96cm2D、<20cm26、<6F是经过化简的二次根式,且与是同类二次根式,则x为()A、2B、-2C、4D、-47、下列命题中,其逆命题不成立的是().A、同旁内角互补,两直线平行;8、在角的内部,到角的两边距离相等的点在角平分线上;C、如果两个实数相等,那么它们的平方相等;D、如果三角形的三边长a,b,c满足a2 + b2 = c2,那么这个三角形是直角三角形.8、等腰直角三角形的直角边为2,则斜边的长为()A. 22B. 2 x/2C. 1D. 29、观察下组数据,寻找规律:0、百、<6、3、2吞、<15……那么第10个数据是()A. 2 v6B. 3、.;3 C.7 D. \'而13、三角形的三边长分别为v45cm ,<80cm ,、;50cm ,则这个三角形的周长为cm 。
14、已知直角三角形的两条边长为3和4 ,则第三条边长为15、如图,NACB = 90° ,AB=10,分别以AC 、BC 为直径作半圆,面积分别记为S 1, S 2,则 S 1 + S 2 =16、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.第16题10、已知长方形ABCD 中,AB = 3, AD = 9, 为EF 。
二次根式与勾股定理测试题(附答案)

二次根式及勾股定理习题满分: 时间:一、选择题(每题3分,共30分) 1.2x )A .0x ≥ <0 ≠0 ≤0 2.2(3)- )A .-3 3下列运算正确的是( )2323+= B. 3a-a=3 C. 233= D. ()325a a =4.23 )|A 5 B. 32 C.6 D. 35.下列根式中,最简二次根式是( ) A 4 B.12C. 2xD. 26. 2合并的是( ) A 5 B. 32 C. 6 D. 37.下列计算正确的是( )①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个 8. 一直角三角形的两直角边长分别为3和4.则第三边的长为( ) (A 5 B.7 C. 57 D. 59.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4 B. 6 C. 16 D. 55 10. 一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( ) A .10米 B. 15米 米 D. 30米二、填空题(每题4分,共24分) 11.二次根式1x -在实数范围内有意义,则x 的取值范围是 。
12.已知221y x x =-+-+,则y x = 。
13. 把下列二次根式化成最简二次根式 》125= 0.01=14. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 。
15. 能够成为直角三角形三条边长的正整数,称为勾股 数.请你写出一组勾股数: 。
16. 若三角形三条边长a 、b 、c 满足2a 512c 130b -+-+-=(),则△ABC 是三角形。
人教版八年级下《二次根式》与《勾股定理》综合测试A卷(含答案)

《二次根式》和《勾股定理》综合测试A一、选择(每小题3分,共36分)1.使有意义的x的取值范围是()A. x≥1B. x≥0C. x>1D. x≠12.下列二次根式中能与合并的二次根式是()A. B. C. D.3.以下列各组数为边长的三角形是直角三角形的是()A. 1、2、3B. 9、12、15C. 1、1、D. 6、7、84.如果,那么x取值范围是()A. x≤2B. x<2C. x≥2D. x>25.若是正整数,最小的整数n是()A. 6B. 3C. 48D. 26.下列运算和化简,不正确的是()A. =0.5B.C.D.7.计算﹣的结果正确的是()A. B. C. D. 08.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m,若公园到超市的距离为500m,则公园在医院的()A. 北偏东75°的方向上B. 北偏东65°的方向上C. 北偏东55°的方向上D. 无法确定10.设,则代数式a2+2a﹣10的值为()A. B. C. ﹣3 D. ﹣411.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米12.如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A. 11cmB. 12cmC. 13cmD. 14cm二、填空(每小题3分,共18分)13.要使式子在实数范围内有意义,则x的取值范围是.14.化简:= .15.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.16.计算:(+)2﹣= .17.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为.18.如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.三、解答(8个小题,共66分)19.(6分)计算:(1);(2)﹣6+2.20.(8分)图①和图②均是边长为1的正方形网络,按要求用实线画出顶点在格点上的图形.(1)在图①中画出一个等腰三角形ABC,使其腰长是;(2)在图②中画出一个正方形ABCD,使其面积是5.21.(8分)计算:5+﹣×+÷.22.(8分)已知:如图,在△ABC,BC=2,S△ABC=3,∠ABC=135°,求AC、AB的长.23.(8分)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)24.(9分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.25.(9分)阅读下列解题过程:,,请回答下列回题:(1)观察上面的解答过程,请直接写出= ;(2)根据上面的解法,请化简:.26.(10分)已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为;(2)在图2中,当BA=BD=10m时,△ABD的周长为;(3)在图3中,当DA=DB时,求△ABD的周长.参考答案一、1. A 2.C 3.B 4.A 5.B 6.D 7.A 8.C 9.B 10.D 11.B 12.C二、13. x>3 14.-1 15.76 16.5 17.或3 18.7三、19. 解:(1)原式=3×5÷=15÷=15.(2)原式=2=220.解:(1)、(2)如图所示:21.解:原式=+﹣+3÷=2﹣1+3=2+2.22.解:如图,过点A作AD⊥BC交CB的延长线于D,在△ABC中,∵S△ABC=3,BC=2,∴AD===3,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴AB=AD=3,BD=AD=3,在Rt△ADC中,CD=2+3=5,由勾股定理得,AC===.23.解:设改造后正方形绿地的边长为a米,则改造前长方形绿地的长为(a+)米,宽为(a﹣)米,由题意得,a2=2(a+)(a﹣),整理,得a2=68,a=2(取正).答:改造后正方形绿地的边长为2米.24.解:如图,连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.25.解:(1)=﹣;(2)+++…++,=﹣1+﹣+﹣+…+﹣+﹣,=﹣1,=10﹣1,=9.26.解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,∴△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。
八年级数学下 二次根式 勾股定理 练习题
3.当 a<0,b<0 时, - a 2 ab b 可变形为( A. ( a b ) 2 B.
- ( a - b )2
D. ( - a - - b ) 2 )
4.已知 a、b、c 为△ABC 三边,且满足 (a 2 b 2 )(a 2 b 2 c 2 ) 0 ,则它的形状为( A.直角三角形 B.等腰三角形 C.等腰直角三角形
1 5
50 -4
1 ; 2
(2)(5+2 6 )(2 6 -5).
3 (3) ( a b - b +2
a
b a+
ab )÷
b a.
(4)
12.化简并求值:
1 1 1 a 2 2 ,其中 a= + 2 a 5 a
13.已知 a=2- 2 ,b=2+ 2 ,求
Байду номын сангаас
a 3b a 2 b 2 a 2 ab ÷ 的值. a 2 2ab b 2 a2 b2
3
21.边长为 8 和 4 的矩形 OABC 的两边分别在直角坐标系的 X 轴和 Y 轴上,若沿对角线 AC 折叠后,点 B 落在第四象限 B1 处,设 B1C 交 X 轴于点 D,求:B1 点坐标。
22.在平面坐标系中, 已知 A(-4,8),B(-1,4): (1) 求线段 AB 的长度; (2) 在 x 轴上找出一点 P, 使 PA+PB 的长度最短时,点 P 的坐标为多少?并求出点 P 的坐标; (3)在 x 轴、y 轴分别找出一点 M,N,使四边 形 ABMN 的周长最小时,求直线 MN 的解析式。
23.如图为一棱长为 3cm 的正方体,把所有面都分为 9 个小正方形,其边长都是 1cm,假设一只蚂蚁每秒 爬行 2cm,则它从下地面 A 点沿表面爬行至右侧面的 B 点,最少要花几秒钟?
人教版八年级数学下册第十七章-勾股定理综合训练练习题(无超纲)
人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,5==,8AB ACBC=,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.4个B.3个C.2个D.1个2、如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣B. 5 C D.20﹣3、如图,有一个长、宽、高分別为2m、3m、1m的长方体,现一只蚂蚁沿长方体表面从A点爬到B点,那么最短的路径是()A.3√2m B.√3m C.√2m D.2√5m4、如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm5、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B'处,点B C'=,则AM的长为()A的对应点为点A',3A.1.8 B.2 C.2.3 D6、如图,一圆柱高12cm,底面半径为3cm,一只蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程(π取3)是()A.15cm B.21cm C.24cm D7、下列是勾股数的一组是()A.6,8,10 B.2,3,4 C.1,2,3 D.5,7,118、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得5AC=米,在点C正上方找一点D (即DC BCCDB∠=︒,30⊥),测得60∠=︒,则景观池的长AB为()ADCA.5米B.6米C.8米D.10米9、下列条件中,能判断△ABC是直角三角形的是()cA.a:b:c=3:4:4 B.a=1,bC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:510、如图,一只蚂蚁沿着边长为4的正方体表面从点A出发,爬到点B,如果它运动的路径是最短的,则AC的长为()A.B.4 C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=,PQ M、N分别在边AB、BC上,∠=_______.(1)PBQ(2)当四边形PQNM的周长最小时,(MP+MN+NQ)2=_______.2、如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为 _____.3、如图,在ABC ∆中,90C ∠=︒,15B ∠=︒,3AC =,AB 的垂直平分线l 交BC 于点D ,连接AD ,则BC 的长为__________.4、如图,一个圆柱形工艺品高为16厘米,底面周长12厘米,现在需要从下底的A 处绕侧面一周,到上底B (A 的正上方)处镶嵌一条金丝,则金丝至少____厘米.5、如图,正方形OABC 的边OC 落在数轴上,OC =2,以O 为圆心,OB 长为半径作圆弧与数轴交于点D ,则点D 表示的数是 _______.三、解答题(5小题,每小题10分,共计50分)1、图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1.图中点A ,B ,C 均在格点上,请分别在给定的网格中画出格点M ,使点M 满足相应的要求.(1)在图①中画出格点M ,连结MA ,使MA =5.(2)在图②中画出格点M,连结MA,MB,MC,使MA=MB=MC.2、在△ABC中,AB、BC、AC这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.3、如图,已知线段a,h.(1)尺规作图:作等腰ABC,使底边BC长为a,BC上的高为h.(2)若10a =,12h =,求ABC ∆的周长.4、如图,在△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,若点P 从点A 出发,以每秒4厘米的速度沿折线A ﹣C ﹣B ﹣A 运动(运动一周回到点A 时停止运动),设运动时间为t 秒(>0).(1)点P 在AC 上运动时,是否存在点P ,使得PA =PB ?若存在,求出t 的值;若不存在,说明理由;(2)若点P 运动到BC 上某点时使△ACP 的面积为16cm 2,求此时t 的值.5、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.---------参考答案-----------一、单选题1、B【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE 的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【详解】解:如图:过A作AE⊥BC于E,∵在△ABC中,AB=AC=5,BC=8,∴当AE⊥BC,EB=EC=4,∴AE3,∵D是线段BC上的动点(不含端点B,C).若线段AD的长为正整数,∴3⩽AD<5,∴AD=3或AD=4,当AD =4时,在靠近点B 和点C 端各一个,故符合条件的点D 有3点.故选B .【点睛】本题主要考察了等腰三角形的性质,勾股定理的应用,解题的关键是熟练掌握等腰三角形的性质,勾股定理的计算.2、A【分析】过点A 作AF ⊥BC 于点F ,由题意易得2BF CF ==,再根据点D ,E 是边BC 的两个黄金分割点,可得2BE CD ===,根据勾股定理可得AF =28DE DF ==,然后根据三角形的面积计算公式进行求解.【详解】解:过点A 作AF ⊥BC 于点F ,如图所示:∵3AB AC ==,4BC =,∴2BF CF ==,∴在Rt △AFB 中,AF∵点D ,E 是边BC 的两个黄金分割点,∴2BE CD ===,∵4EF BE BF =-=,4DF CD CF =-=,∴DF =EF ,∴28DE DF ==,∴()1181022ADE S DE AF ==-△ 故选:A【点睛】 本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键.3、A【分析】将图形分三种情况展开,利用勾股定理求出两种情况下斜边的长进行比较,其值最小者即为正确答案..【详解】解:如图(1),AB =√(2+3)2+12=√26(m );如图(2),AB =√22+(1+3)2=√20=2√5(m );如图(3),AB =√32+(2+1)2=3√2(m ),∵3√2<2√5<√26,∴最短的路径是3√2m.故选:A.【点睛】本题主要考查了勾股定理的应用,两点之间线段最短,解题的关键在于能够把长方体展开,利用勾股定理求解.4、D【分析】当铅笔不垂直于底面放置时,利用勾股定理可求得铅笔露出笔筒部分的最小长度;考虑当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度是露出的最大长度;从而可确定答案.【详解】=,则铅笔在笔筒外部分的最小长度为:15(cm)18−15=3(cm);当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度为18−12=6(cm),即铅笔在笔筒外面最长不超过6cm,从而铅笔露出笔筒部分的长度不短于3cm,不超过6cm.所以前三项均符合题意,只有D选项不符合题意;故选:D【点睛】本题考查了勾股定理的实际应用,关键是把实际问题抽象成数学问题,分别考虑两种极端情况,问题即解决.5、B【分析】连接BM,MB′,由于CB′=3,则DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.【详解】解:连接BM,MB′,设AM=x,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵折叠,∴MB=MB′,∴AB2+AM2= MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B.【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解.6、A【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解.【详解】解:如图,∵圆柱高12cm,底面半径为3cm,∴2312cm,392BC ACππ⨯====,∴在Rt△ACB中,由勾股定理得15cmAB=,∴蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程为15cm;故选A.【点睛】本题主要考查勾股定理,熟练掌握勾股定理求最短路径问题是解题的关键.7、A【分析】根据勾股数的定义逐项分析即可.【详解】解:A 、∵62+82=102,∴此选项符合题意;B 、∵22+32≠42,∴此选项不符合题意;C 、∵12+22≠32,∴此选项不符合题意;D 、∵52+72≠112,∴此选项不符合题意.故选:A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.8、D【分析】利用勾股定理求出CD 的长,进而求出BC 的长,AB BC AC =- 即可求解.【详解】解:∵DC BC ⊥,∴90DCB ∠=︒ ,∵30ADC ∠=︒,5AC =,∴210AD AC == ,∴CD =,∵60CDB ∠=︒,∴30B ∠=︒ ,∴2BD CD ==,∴15BC = ,∴15510m AB BC AC =-=-= ,故选:D .【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理.9、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180︒是解题关键.10、C【分析】将正方体展开,右边的正方形与前面正方形放在一个面上,此时AB 最短,根据三角形中位线,求出CN 的长,利用勾股定理求出AC 的长即可.【详解】解:将正方体展开,右边的正方形与前面正方形放在一个面上,展开图如图所示,此时AB 最短, ∵AN =MN ,CN ∥BM∴CN =12BM =2,在Rt △ACN 中,根据勾股定理得:AC故选:C . .【点睛】本题考查了平面展开-最短路径问题,涉及的知识有:三角形中位线,勾股定理,熟练求出CN 的长是解本题的关键.二、填空题1、45°【分析】作点P 关于AB 的对称点P ',点Q 关于BC 的对称点Q ',连接P Q ''交AB 于M ,交BC 于N ,此时四边形PQNM的周长最小,过点P 作PH BQ ⊥于H ,由勾股定理求出BH =PH BH =45PBQ ∠=︒,再求出150P BQ ∠''=︒,过点Q '作Q K P B '⊥'于K ,在Rt BKQ ∆'中,30KBQ ∠'=︒,BQ BQ '==则KQ '=BK =,在Rt △P Q K ''中,由勾股定理得222P Q ''=+【详解】解:(1)如图,作点P 关于AB 的对称点P ',点Q 关于BC 的对称点Q ',连接P Q ''交AB 于M ,交BC 于N ,此时四边形PQNM 的周长最小,过点P 作PH BQ ⊥于H ,22222PH PB BH PQ HQ ∴=-=-,22222)BH BH ∴-=-,解得:BH =2422PH ∴=-=,PH ∴=PH BH ∴==45PBQ ∴∠=︒,(2)ABP ABP ∠=∠',CBQ CBQ ∠=∠',2()2150P BQ ABC PBQ PBQ ABC PBQ ∴∠''=∠-∠+∠=∠-∠=︒,过点Q '作Q K P B '⊥'于K ,在Rt BKQ ∆'中,18015030KBQ ∠'=︒-︒=︒,BQ BQ '==12KQ BQ ∴'='=,BK在Rt △P Q K ''中,2KP BP BK '='+=KQ '=222(222P Q ∴''=+=+22()22MP MN NQ P Q ∴++=''=+【点睛】本题考查轴对称最短问题、勾股定理、含30角的直角三角形的性质、轴对称的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,由直角三角形解决问题.2、10【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可得出AS 的长.【详解】解:如图所示,∵AB =12×16=8,BS =12BC =6,∴AS 10.故答案为:10.【点睛】本题考查的是平面展开一最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.3、6+【分析】由线段垂直平分线的性质定理得AD=BD,从而有∠DAB=∠B=15゜,由三角形外角性质可得∠ADC=30゜,由含30度角的直角三角形的性质及勾股定理即可求得AD与CD的长,最后可求得BC的长.【详解】∵直线l是线段AB的垂直平分线∴AD=BD∴∠DAB=∠B=15゜∴∠ADC=∠DAB+∠B=30゜∵90AC=∠=︒,3C∴AD=2AC=6∴BD=AD=6由勾股定理得:CD==∴6=+=+BC BD CD故答案为:6+【点睛】本题考查了线段垂直平分线的性质定理,等腰三角形的性质,含30度角的直角三角形的性质及勾股定理,熟练运用这些知识是关键.4、20【分析】将圆柱的侧面展开,得到一个矩形,然后利用两点之间线段最短可得AB'的长即是金丝的最短路线长,然后由勾股定理求解即可.【详解】解:解:沿AB 剪开可得矩形,如图所示:∵圆柱的高为16厘米,底面圆的周长为12厘米,∴A B ''=AB =16厘米,AA '=12厘米,在Rt AA B ''△中,2222121620AB A A A B ''''=+=+=,即金丝的最短路线长是:20厘米.故答案为:20.【点睛】本题考查了平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.5、﹣【分析】根据勾股定理求出OB 的长,即OD 的长,再根据两点间的距离求出点D 对应的数.【详解】解:由勾股定理知:OB =∴OD =∴点D 表示的数为﹣故答案为:﹣【点睛】此题考查了正方形的性质,勾股定理和实数与数轴,得出OD 的长是解题的关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)根据勾股定理解答;(2)连接AB、BC,分别作其垂直平分线,两平分线交点即为所求点M.【详解】解:如图,由勾股定理得5AM=;(2)如图,点M即为所求.【点睛】此题考查了网格中作图,勾股定理的应用,线段垂直平分线的性质,正确理解线段垂直平分线的性质是解题的关键.2、(1)3.5;(2)见解析,3;(3)62【分析】(1)根据网格特点,由长方形的面积减去长方形内除所求三角形以外三个三角形面积即可求解;(2)根据三边的长度,利用勾股定理在网格中画出相应的三角形,利用(1)中方法求解面积即可;(3)先利用正方形的面积求出PR、RQ、PQ,根据构图法求出△PQR的面积,将七个图形面积加起来即可求得该六边形的面积.【详解】解:(1)根据网格,S△ABC=3×3﹣12×2×1﹣12×2×3﹣12×1×3=9﹣1﹣3﹣32=3.5,故答案为:3.5;(22212,∴利用构图法画出相应的△DEF,如图所示,∴S△DEF=2×4﹣12×2×1﹣12×2×2﹣12×1×4=8﹣1﹣2﹣2=3;(3)∵正方形PRBA,RQDC,QPFE的面积分别为13,10,17,∴PRRQ QP构造△PQR,如图所示,∴S△PQR=3×4﹣12×3×1﹣12×2×3﹣12×1×4=12﹣32﹣3﹣2=112,∵△PQR、△BCR、△DEQ、△AFP的面积相等,∴该六边形的面积为13+10+17+4×112=62.【点睛】本题考查网格作图、勾股定理、二次根式的应用、正方形的面积公式、三角形的面积公式、长方形的面积公式,理解构图法的原理,借助网格法和割补法求解图形面积是解答的关键.3、(1)见解析;(2)36.【分析】(1)先在射线BP 上截取BC a =,再作BC 的垂直平分线l 交BC 于D ,然后在直线l 上截取DA h =,则ABC ∆满足条件;(2)先根据等腰三角形的性质得到5BD CD ==,再利用勾股定理计算出13AB =,然后计算ABC ∆的周长.【详解】解:(1)如图,ABC ∆为所作;(2)ABC ∆为等腰三角形,AD BC ⊥,152BD CD BC ∴===,在Rt ABD ∆中,13AB =,ABC ∴∆的周长为:13131036AB AC BC ++=++=.【点睛】本题考查等腰三角形的性质以及勾股定理,掌握等腰三角形的性质是解题的关键.4、(1)2516t =;(2)3t = 【分析】(1)如图所示,连接PB ,则4cm PB PA t ==,先由勾股定理求出8cm AC =,最后在直角△BCP 中利用勾股定理求解即可;(2)根据题意可得()48cm CP t =-,再由21=16cm 2ACP S AC CP =⋅△进行求解求解. 【详解】解:(1)假设存在,如图所示,连接PB ,由题意得:4cm PA t =,∴4cm PB PA t ==,∵∠ACB =90°,AB =10cm ,BC =6cm ,∴8cm AC ,∴()84cm PC AC PA t =-=-,∵222PB PC BC =+,∴()()2224846t t =-+, 解得2516t =, ∵2584216t =<÷=, ∴2516t =符合题意, ∴当2516t =时,存在点P ,使得PA =PB ;(2)由题意得:()48cm CP t =-, ∵21=16cm 2ACP S AC CP =⋅△, ∴()1848=162t ⨯-,∴3t =.【点睛】本题主要考查了勾股定理,解题的关键在于能够熟练掌握勾股定理.5、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ; 定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.。
初中八年级数学下册第十七章勾股定理单元复习试题二(含答案) (67)
初中八年级数学下册第十七章勾股定理单元复习试题二(含答案)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”=尺)这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈10的正方形,在水池正中央长有一根芦苇,芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为__________.【答案】222x x+=+5(1)【解析】试题解析:设由题意可得:222+=+.5(1)x x故答案为222+=+.5(1)x x82.如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE 绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为_____.【答案】【解析】【分析】过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出ME的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【详解】过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∴EM DE,∵BE平分∠DBC,EM⊥BD,∴EM=EC,设EM=EC=x,∵CD=2,∴DE=2﹣x,(2﹣x),∴x=2解得x=﹣2,∴EM=﹣2,由旋转的性质可知:CF=CE=﹣2,∴BF=BC+CF=2=.故答案为:.【点睛】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段CF的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.三、解答题83.《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?请解答上述问题.【答案】原处还有4.55尺高的竹子.【解析】【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为-尺.利用勾股定理解题即可.(10)x【详解】解:设竹子折断处离地面x尺,则斜边为(10)x-尺,根据勾股定理得:222+=-3(10)x xx=.解得: 4.55答:原处还有4.55尺高的竹子.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.84.如图,已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,求BE的长.【答案】BE=4-【解析】【分析】根据正方形的性质得到CD=2,BD=,∠EBD=45°,根据折叠的性质得到DC′=DC=2,∠DC′E=∠C=90°,由等腰直角三角形的性质即可得到结论.【详解】∵在正方形ABCD中,AD=AB=2,∠A=90°,∴BD=∠EBD=45°,∵将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD 上,∴C′D=CD=2,∠DC′E=∠C=90°,∴CE=C′E=CB=2,∴2)4=-=-本题考查了正方形中的折叠问题,熟练掌握正方形,等腰直角三角形及折叠的性质是解题的关键.,宽b85.已知长方形长a①求长方形的周长;①求与长方形等面积的正方形的周长,并比较长方形周长与正方形周长大小关系.【答案】①②正方形的周长为,长方形的周长大于正方形的周长.【解析】【分析】①根据长方形的周长公式列出算式,然后根据二次根式混合运算的运算法则进行计算即可;②先求出正方形的边长,然后利用周长公式进行求解即可.【详解】①长方形的周长为2×=2×=②=6,,∴此正方形的周长为,∴∴,则长方形的周长大于正方形的周长.本题考查了二次根式的混合运算,实数大小比较等,熟练掌握相关知识和运算法则以及求解方法是解题的关键.86.如图,一架梯子长2.5米,斜靠在一面墙上,梯子底端离墙0.7米,如果梯子的顶端下滑0.4米,那么梯子的底部在水平方向上滑动了多少米?【答案】梯子的底部在水平方向上滑动了0.8米.【解析】【分析】根据梯子长度不会变这个等量关系,我们可以根据BC求AC,根据AD、AC求CD,根据CD计算CE,根据CE,BC计算BE,即可解题.【详解】解:由题意知AB=DE=2.5米,BC=0.7米,AD=0.4米,∵在直角△ABC中,AC为直角边,∴AC=2.4米,已知AD=0.4米,则CD=2.4﹣0.4=2(米),∵在直角△CDE中,CE为直角边∴CE= 1.5(米),BE=1.5米﹣0.7米=0.8米.答:梯子的底部在水平方向上滑动了0.8米.【点睛】考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求CE的长度是解题的关键.87.如图,P是等边三角形ABC内的一点,连结PA、PB、PC,以BP为边作等边三角形BPM,连结CM.(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;(2)若△PMC的形状,并说明理由.【答案】(1)AP=CM;(2)∴PMC是直角三角形.【解析】【分析】(1)通过观察应该是相等关系,可通过证三角形APB和BMC全等来实现,这两个三角形中已知的条件有:AB=BC,BP=BM,只要再得出这两组对应边的夹角相等即可得出全等的结论,我们发现∠ABP和∠MBC都是60°-∠PBC,因此这两个角相等,也就凑成了三角形全等的所有条件.因此可得两三角形全等,也就证明了AP=CM;(2)根据AP=CM,BP=PM,我们可将题中给出的比例关系式写成CM:PM:PC=1PMC是直角三角形.【详解】解:(1)AP=CM.证明:因为△ABC 是等边三角形,所以AB=BC,∠ABC =60°,而△PBM 也是等边三角形,所以PB=MB,∠PBM =60°,则∠ABP =∠MBC.所以△ABP ≌△CBM .所以AP =CM.(2) △PMC 是直角三角形.因为PA:PB:PC=1:设PA=k, PB=k, PC=k.因为△PBM 是等边三角形,所以k.又因为由(1)知AP=CM,所以CM=PA=k.则,PM 2=2k 2,CM 2=k 2,PC 2=3k 2,且2k 2+k 2=3k 2,即CM 2+PM 2=PC 2.所以△PMC 是直角三角形.且∠PMC =90°.【点睛】本题主要考查了全等三角形的判定,等边三角形的判定以及直角三角形的判定.通过全等三角形得出线段相等是本题的解题关键.88.如图,某居民楼A 与公路MN 相距60m (AB=60m ),在公路MN 上行驶的汽车在距居民楼A100m 的点P 处就可使其受到噪音的影响,求在公路上以10m/s 的速度行驶的汽车给居民楼A 的居民带来多长时间的噪音影响.【答案】16秒【解析】试题分析:设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.由勾股定理得到AP的长,然后求得PP′长,利用速度路程时间之间的关系求得时间即可.试题解析:如图,设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.∵由勾股定理得到:==80,∴PP′=2PB=2×80=160米,∴影响时间为160÷10=16秒,答:影响时间为16秒.89.如图,两条公路1l、2l交予点O,在公路2l旁有一学校A,与O点的距离为170m,点A(学校)到公路1l的距离AM为80m.一大货车从O点出发,行驶在公路1l上,汽车周围100m范围内有噪音影响.(1)货车开过学校是否受噪音影响?为什么?km h,则学校受噪音影响多少秒钟?(2)若汽车速度为180/【答案】(1)货车开过时,学校会受噪音影响,证明见解析.(2)学校受噪音影响2.4s .【解析】【分析】(1)根据80100AM m m =<,即可判断货车开过学校会受噪音影响.(2)以点A 为圆心,半径为100m 画圆,与直线1l 交于B 、C 两点,连接AB 、AC ,根据勾股定理求出CM 、BM 的长,即可得到BC 的长,即可求解学校受噪音影响的时间.【详解】(1)∵80100AM m m =<∴货车开过学校会受噪音影响.(2)以点A 为圆心,半径为100m 画圆,与直线1l 交于B 、C 两点,连接AB 、AC .∵AM MO ⊥∴90AMO AMB ==︒∠∠∴60CM m ==,60BM m ===∴6060120BC CM BM m =+=+= ∵180000180//50/3600km h m s m s == ∴12050 2.4s ÷=故若汽车速度为180/km h ,则学校受噪音影响2.4s .【点睛】本题考查了勾股定理的实际应用,掌握勾股定理的性质以及解法是解题的关键.90.如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x 轴和y轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBC是直角三角形?若存在请直接写出P点坐标,不存在请说明理由;,点M是y轴上一(3)如图2,点Q是线段BC上一点,且CQ=3个动点,求△AQM的最小周长.【答案】(1)y =21462x x -+;(2)存在,点P 的坐标为(4,﹣2)或(4,10)或(4,P (4,3);(3)【解析】【分析】(1)求得点A 的坐标,根据抛物线过点A 、B 、C 三点,从而可以求得抛物线的解析式;(2))△ABP 为直角三角形时,分别以三个顶点为直角顶点讨论:根据直角三角形的性质和勾股定理列方程解决问题;(3)求出点Q 的坐标为(108,33),在x 轴上取点G (﹣2,0),连接QG 交y 轴于点M ,则此时△AQM 的周长最小,求出QG +AQ 的值即可得出答案.【详解】解:(1)∵抛物线y =ax 2+bx +c 与x 轴交于点A 、B 两点,对称轴为直线x =4,∴点A 的坐标为(2,0).∵抛物线y =ax 2+bx +c 过点A (2,0),B (6,0),C (0,6),4203660,6a b c a b c c ++=⎧⎪∴++=⎨⎪=⎩解得a =12,b =﹣4,c =6. ∴抛物线的解析式为:y =21462x x -+; (2)设P (4,y ),∵B (6,0),C (0,6),∴BC 2=62+62=72,PB 2=22+y 2,PC 2=42+(y ﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3±.∴P(4,3+P(4,3.综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,)或P(4,3).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=3,∴CH=QH=10, 323=∴OH=108 6,33 -=∴点Q的坐标为(108,33),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ3=QG==∴AQ+QG=∴△AQM的最小周长为【点睛】本题考查的是用待定系数法求解二次函数的解析式,勾股定理的应用,一元二次方程的解法,利用轴对称求三角形周长的最小值,掌握以上知识点是解题的关键.。
新人教版数学八年级下册期中测试卷C及参考答案-二次根式勾股定理平行四边形
第 一 页新人教版数学八年级下册期中测试卷C 及参考答案二次根式勾股定理平行四边形一.选择题(每小题3分,共30分) 1.要使x -3+121-x 有意义,则x 的取值范围是( )A.321≤≤x B.3≤x 且x ≠21 C.21 <x <3 D. 21<x ≤3 2.下列二次根式是最简二次根式的是( )A.3a 2B.x 82C.y 3D.4b3.已知m,n 是两个连续的自然数(m <n ),且q=mn,设 p=m q n q -++,则p 为( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数4.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( )A.8 B.10 C.27 D.10或275.下列命题的逆命题成立的是( )A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等 6.如图是一张直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将△ABC 折叠,使B 点与A 点重合,折痕为DE ,则BE 的长为( )A.4㎝B.5㎝C.6㎝D.10㎝ 7.已知四边形ABCD 是平行四边形,下列结论中,错误的是( )A.AB=CDB.AC=BDC.当AC ⊥BD 时,它是菱形D.当∠ABC=90°时,它是矩形 8.如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DE 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A.23B.33C.4D.439.如图,在△ABC 中,BD,CE 是△ABC 的中线,BD 与CE 相交于O ,点F,G 分别是BO,CO 的中点,连接AO ,若AO=6㎝,BC=8㎝,则四边形DEFG 的周长是( )A.14㎝B.18㎝C.24㎝D.28㎝10.如图,将矩形ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12第 二 页㎝,EF=16㎝,则AD 的长为( ) A.12㎝ B.16㎝ C.20㎝ D.28㎝ 二.填空题(每小题3分,共24分)11.在实数范围内分解因式:x 5-9x= .12.如图,它是一个数值转换机,若输入的a 值为2,则输出的结果应为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b 八年级下二次根式与勾股定理综合测试题
一、填空题:
1、等式2)1(-x =1-x 成立的条件是_____________.
2、当=x 时,二次根式1+x 取最小值,其最小值为
3、实数a 、b
在数轴上的对应点如图所示,化简
-
的结果是
4、直角三角形两直角边的长为8和6,则斜边长为 ,斜边上的高为 .
5、木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这
个桌面 (填”合格”或”不合格”).
6、如图所示,一个梯子AB 长2.5米,顶端A 靠墙AC 上,这时梯子下端B 与墙角C
距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A
下落了 米.
7、等腰三角形的腰长为13,底边长为10,则顶角的平分线为__
8、一个直角三角形的三边长的平方和为200,则斜边长为_________________
9、已知a ,b 为有理数,
m,n 分别表示5
且2
1amn bn +=,则2a b +=
二、选择题:
1、下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有( )个。
A . 1 个 B. 2个 C. 3个 D. 4个
2、下列二次根式中,是最简二次根式的是( )
A.xy 2
B.2ab
C.
213、下列各式中,一定成立的是( ) (A )2)(b a +=a +b (B )22)1(+a =a 2+1 (C )12-a =1+a ·1-a (D )
b a =b 1ab
4、下列运算正确的是( ) A.235=- B.312914
=
()52522-=-
5
能够合并,那么a 的值为( )
A.2
B.3
C.4
D.5
6、已知
, 则2xy 的值为( )
A .15-
B .15
C .152- D.152
7n 的最小值是( )A .2 B .3 C .4 D .5
8、已知点P (x ,y 的结果是( ) A. 2xy
B. -2xy
C. 2
D. -2
9、一直角三角形的两边长分别为3和4,则第三边的长为( )
A .5
B
C .6
D .5
10、如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,
AD ,则BC 的长为( )
A.3-1
B.3+1
C.5-1
D.5+1
11、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形
面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的
值是( )A . 4 B . 6 C . 8 D . 10
12、长方形的一条对角线的长为10cm ,一边长为6cm ,则它的面积为( )
A .60cm 2
B . 64cm 2
C . 24cm 2
D .48cm 2
13、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点 B 与点D 重合,折痕为EF ,则△ABE 的面积为( )
A . 3cm 2
B . 4cm 2
C . 6cm 2
D . 12cm 2 14、知a <b ,化简二次根式
b a 3-的正确结果是( ) A .ab a -- B .ab a - C .ab a D .ab a -
15、当a <0,b <0时,把b
a 化为最简二次根式,得( ) (A )a
b b 1 (B )-ab b 1 (C )-ab b
-1 (D )ab b 16、当a <0时,化简|2a -2a |的结果是( )
(A )a (B )-a (C )3a (D )-3a
17、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行
走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距 离为( ) A .600米 B. 800米 C. 1000米 D. 1400米
18、如下图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( )A.5m B.6m C.7m D.8m
19、如下图,在底面周长为12,高为8的圆柱体上有A,B 两点,则AB 之间的最短距离是( )
A.10 B.8 C.5 D.4
三:解答题:
1、计算:(1
)(2
)1).
2、在数轴上作出表示10
-及13的点.
3、已知x=
2
5
1
-
,求x2-x+5的值.
4、已知y
x2
-+8
2
3-
+y
x=0,求(x+y)x的值.
5、实数a在数轴上的位置如图所示,化简
|2|
a-
6、观察下列等式:
①1
2
)1
2
)(
1
2
(
1
2
1
2
1
-
=
-
+
-
=
+
;②2
3
)2
3
)(
2
3
(
2
3
2
3
1
-
=
-
+
-
=
+
;③3
4
)3
4
)(
3
4
(
3
4
3
4
1
-
=
-
+
-
=
+
;……
回答下列问题:
(1)利用你观察到的规律,化简:
11321+
(2)计算:1031
(231)
321
211
++++++++
7、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
8、小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算
这个矩形鱼池的周长,你能帮助小明算一算吗?
9、如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是
受台风影响的区域.
(1) A 城是否受到这次台风的影响?为什么?
(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
10、如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B 到点C 的
距离是5厘米,自A 至B 在长方体表面的连线距离最短是多少?
A E
E A B。