八年级下册数学二次根式
人教版八年级下册数学 第16章 二次根式化简的方法和技巧

人教版八年级下册数学 第16章 二次根式化简的方法和技巧1、被开放数是小数的二次根式化简例1、化简5.1分析:被开放数是小数时,常把小数化成相应的分数,后进行求解。
解:5.1=26262223232==⨯⨯=。
评注:化简时通常分子、分母同时乘以分数的分母,使分母上数或者式子成为完全平方数或者完全平方式。
2、被开放数是分数的二次根式化简例2、化简1251 分析:因为,125=5×5×5=52×5,所以,只需分子、分母同乘以5就可以了。
解:1251=255555551=⨯⨯⨯⨯。
评注:化简时,通常分子、分母同时乘以分数分母的一个恰当因数或因式,使分母上数或者式子成为完全平方数或者完全平方式。
3、被开放数是非完全平方数的二次根式化简例3、化简48分析:因为,48=16×3=42×3, 所以,根据公式b a ab ⨯=(a≥0,b≥0),就可以把积的是完全平方数或平方式的部分从二次根号下开出来,从而实现化简的目的。
解:48=34343163162=⨯=⨯=⨯。
评注:将被开放数进行因数分解,是化简的基础。
4、被开放数是多项式的二次根式化简例4、化简3)(y x +分析:当指数是奇数时,保持底数不变,设法把指数化成是一个偶数和一个奇数的积。
解:3)(y x +=y x y x y x y x y x y x ++=+⨯+=++)()()()(22。
评注:当多项式从二次根号中开出来的时候,一定要注意添加括号。
否则,就失去意义。
5、被开放数是隐含条件的二次根式化简例5、化简a a1-的结果是: A )a B )a - C )a - D )a --分析:含字母的化简,通常要知道字母的符号。
而字母的符号又常借被开方数的非负性而隐藏。
因此,化简时要从被开方数入手。
解:∵a a 1-有意义∴a1-≥0,∴-a >0 ∴原式=a a a a a a a a a a a a a a a a--=--=--=--=---=-||)())(()()(12故选(C )。
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
数学八下二次根式

数学八下二次根式
1.定义:一般地,形如√a(a≥0)的代数式叫做二次根式,其中,a叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,在实数范围内,这样的二次根式是没有意义的。
2.最简二次根式:在二次根式的化简过程中,无论是计算还是得出最后的结果,二次
根式必须化为最简形式,即被开方数中不含能开得尽方的因数或因式。
3.二次根式的加减法:
•同类二次根式:几个二次根式化为最简二次根式后,如果被开方数相同,那么这几个二次根式就是同类二次根式。
•合并同类二次根式:将几个同类二次根式合并为一个二次根式。
•加减法则:在进行二次根式的加减运算时,首先需要将每个二次根式化为最简形式,然后找出被开方数相同的项进行合并。
4.二次根式的乘除法:
•乘法:当两个二次根式相乘时,将被开方数相乘,而根指数保持不变。
然后,将结果化为最简二次根式。
•除法:与乘法类似,当两个二次根式相除时,将被开方数相除,根指数保持不变,并将结果化为最简二次根式。
人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
人教版数学八年级下册第十六章16.1.1二次根式的定义课件

解:(1)∵ 3 6 4 的根指数是3,∴ 3 6 4 不是二次根式. (2)∵不论x为何值,都有x2+1>0,∴ x 2 1 是二次根式.
(3)当-5a≥0,即a≤0时, - 5 a 是二次根式;
当a>0时,-5a<0,则 - 5 a 不是二次根式. ∴ 不一定是二次根式.
(4) +1(a≥0)只能称为含有二次根式的式子,不能称为 二次根式.
D.x >-1且x≠3
D. 4 个
B.
【点拨】二次根式是在初始的外在形式上定义的,不能从化简结
果上判断,如 16等都是二次根式.
4. 二次根式 a从意义上说是 a 的_算__术__平__方__根___,根据算术平方 根的意义可知,只有_非__负__数___才有算术平方根,所以二次根 式 a有意义的条件就是__a_≥__0___.
再见
1
(5)当x=-3时,( x 3)2 无意义,∴
1 ( x 3)2
也无意义;
当x≠-3时,(
x
1
3 )2
>0,∴
1 ( x 3)2
是二次根式.
1
∴ ( x 3)2 不一定是二次根式.
(6)当a=4时,a-4=0, ( - a-4)2 是二次根式;
当a≠4时,-(a-4)2<0, ( - a-4)2 不是二次根式.
8. a(a≥0)既表示一个二次根式,又表示非负数 a 的__算__术____ 平方根. a具有双重非负性,即 a___≥_____0, a____≥____0.
9. 已知 y= 2x-5+ 5-2x-3,则 2xy 的值为( A )
A. -15
B. 15
C. -125
15 D. 2
10.若实数 m,n 满足等式|m-2|+ n-4=0,且 m,n 恰好是
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a
b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a
( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)
2
1
.
18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用
把
a
b
aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a
( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a
( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙
八年级数学下册二次根式二次根式的运算教学课件新版浙教版

ab
x2
xy 1 x2 y2
巩固提升:
1. 8 18 50 __0__. 2. 75 48 27 _6___3_.
3.3 2 4 1 1 8 _4__2__.
22
4. 12
1 3
11 3
__53___3_.
5. (2 2 3)2 12 =_4___3_ 2
6.( 2 3 5)( 2 3 5) =__4___2__1_0__
把下列各式化简(分母有理化):
(1)-4 2 37
(2) 2a a+b
(3) 2 3 40
解:(1)-4 2 =-4 2 • 7 =-4 14 .
3 7 3 7• 7
21
(2) 2a = a+b
2a a+b
a+b • a+b
=
2a a+b a+b
.
(3) 2 =
2
= 2 • 10 = 20 = 2 5 = 5 .
3 25x
9y2
19 = 19 = 19
16
16 4
25x 5 x
9y2
3y
注意: 如果被开方数是带 分数,应先化成假 分数再进行运算。
把分母中的根号化去,使分母变成有理数,这个过程叫做分
母有理化。
例:计算 1 3
5
2 3 2
27
3 8
2a
解:1 解法1: 3 3 3 5
5 5 55
解法2 :
5 26 5
3 6= 6
2
5
如果根号前 有系数,就 把系数相除, 仍旧作为二 次根号前的 系数
a
b
a b
a 0,b 0
商的算术平方根等于被除式的算术平方根除以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学二次根式
八年级下册数学课程中,二次根式是一个重要的知识点。
在这里,
我们将为大家详细介绍二次根式的相关内容,包括定义、性质、简化、运算和应用等方面。
一、定义
二次根式是指形如$\sqrt{a}$的式子,其中$a$是一个非负实数。
其中$\sqrt{a}$是该非负实数的二次根,也就是说,
$\sqrt{a}\times\sqrt{a}=a$。
二、性质
1. 二次根式的值为非负实数。
2. 二次根式与绝对值的运算具有相同的性质,即$|\sqrt{a}|=\sqrt{a}$。
3. 如果$a>b>0$,则$\sqrt{a}>\sqrt{b}$。
4. 如果$a>b\geq0$,则$\sqrt{a+b}<\sqrt{a}+\sqrt{b}$。
三、简化
1. 若$a$为完全平方数,则$\sqrt{a}$可被化简为一个整数。
2. 若$a$为非完全平方数,则$\sqrt{a}$需保留在根号内。
3. 要注意化简后的二次根式是否符合原式。
四、运算
1. 加减法:$\sqrt{a}\pm\sqrt{b}=\sqrt{a\pm2\sqrt{ab}+b}$。
2. 乘法:$\sqrt{a}\times\sqrt{b}=\sqrt{ab}$。
3. 除法:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$(其中$b$不能为零)。
五、应用
二次根式在各个领域中均有广泛应用,例如:
1. 数学中的勾股定理、三角函数等概念均涉及二次根式。
2. 物理中常见的速度、加速度、力等量的平方根也是二次根式。
3. 工程领域中还涉及到诸如距离、面积、体积等二次根式的运用。
以上就是关于八年级下册数学二次根式的详细介绍。
希望本文能帮助大家更好地理解这一知识点,提高数学学习成绩。