应用平衡条件解题步骤
物体的平衡和平衡条件

物体的平衡和平衡条件一、平衡状态的概念物体在受到外界作用力时,能够保持静止或匀速直线运动的状态称为平衡状态。
平衡状态分为两种:静止状态和匀速直线运动状态。
二、平衡条件的建立1.实验观察:在实验室中,通过实验观察发现,当物体受到两个力的作用时,若这两个力的大小相等、方向相反、作用在同一直线上,物体就能保持平衡状态。
2.平衡条件的得出:根据实验观察,总结出物体的平衡条件为:物体受到的两个力,大小相等、方向相反、作用在同一直线上。
三、平衡条件的应用1.力的合成:当物体受到两个力的作用时,可以根据平衡条件求出这两个力的合力。
合力的计算方法为:在力的图示中,将两个力的向量首尾相接,由起点到终点的向量即为合力向量。
2.平衡方程的建立:在已知物体受到的力的大小和方向时,可以根据平衡条件建立平衡方程,求解未知力。
平衡方程的一般形式为:ΣF = 0,ΣF表示物体受到的所有力的矢量和。
3.平衡状态的判断:判断物体是否处于平衡状态,可以通过观察物体是否保持静止或匀速直线运动来判断。
同时,也可以通过检验物体受到的力是否满足平衡条件来判断。
四、平衡条件的拓展1.多个力的平衡:当物体受到多个力的作用时,物体能够保持平衡的条件为:所有力的合力为零,即ΣF = 0。
2.非共点力的平衡:当物体受到非共点力的作用时,可以通过力的平行四边形定则求解合力,再根据平衡条件判断物体是否处于平衡状态。
3.动态平衡:物体在受到两个力的作用时,若这两个力的大小相等、方向相反、作用在同一直线上,物体将保持动态平衡状态。
动态平衡状态下的物体,速度大小和方向均不变。
物体的平衡和平衡条件是物理学中的重要知识点,掌握平衡状态的概念、平衡条件的建立、平衡条件的应用以及平衡条件的拓展,有助于我们更好地理解物体在受到力作用时的行为。
同时,平衡知识在实际生活和工作中也有着广泛的应用,如工程结构设计、机械运动分析等。
习题及方法:1.习题:一个物体质量为2kg,受到一个大小为10N的水平力和一个大小为15N的竖直力,求物体的平衡状态。
3.5共点力的平衡(教学设计)高一物理

第5节共点力的平衡教学设计思考与讨论:图甲、乙、丙、丁分别画出了重力为G 的木棒在力F1和F2的共同作用下处于平衡状态的情况,这些力都位于同一平面内。
根据每幅图中各个力作用线的几何关系,可以把上述四种情况的受力分成两类,你认为哪些情况属于同一类?你是根据什么来划分的?一、共点力平衡的条件观察与思考:(1)观察三幅图中物体有什么共同特点?(2)观察下面两幅图汽车和动车运动有什么共同特点?匀速行驶的汽车匀速行驶的动车(一)平衡状态1.定义:物体受到几个力作用时,如果保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。
2.“静止”和“v=0”的区别和联系当v=0时:(1)a=0时,静止,处于平衡状态(2)a≠0时,不静止,处于非平衡状态,如自由落体初始时刻思考与讨论:(1)根据初中所学过的二力平衡的知识,你认为受共点力作用的物体,在什么条件下才能保持平衡呢?(2)如果物体受到三个力的作用,你认为受共点力作用的物体,在什么条件下才能保持平衡呢?(3)如果物体受到三个以上的力作用,你认为受共点力作用的物体,在什么条件下才能保持平衡呢?(二)共点力平衡的条件1.条件:在共点力作用下物体平衡的条件是合力为0。
2.公式:F合=0,或F x合=0和F y合=0。
3.由平衡条件得出的三个结论:(1)二力平衡:二力等大、反向,是一对平衡力;(2)三力平衡:任两个力的合力与第三个力等大、反向;(3)多力平衡:任一力与其他所有力的合力等大、反向。
【例题1】某幼儿园要在空地上做一个滑梯,根据空地的大小,滑梯的水平跨度确定为6m。
设计时,滑板和儿童裤料之间的动摩擦因数取0.4,为使儿童在滑梯游戏时能在滑板上滑下,滑梯至少要多高?【小结】应用共点力平衡条件解题的步骤:(1)明确研究对象(物体、质点或绳的结点等)。
(2)分析研究对象所处的运动状态,判定其是否处于平衡状态。
(3)对研究对象进行受力分析,并画出受力示意图。
(4)建立合适的坐标系,应用共点力的平衡条件,选择恰当的方法列出平衡方程。
高一物理学案 平衡条件应用(一):动态平衡问题

AA /B 高一物理学案平衡条件应用(一):动态平衡问题【课前案】【学习目标】1. 知道什么是动态平衡问题。
2. 掌握动态平衡的两种处理方法——图解法、解析法、相似三角形法。
【知识梳理】1. 动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而整个过程中物体又处于一系列的平衡状态。
2. 动态平衡的处理方法(1)图解法 :通过画出不同情况下的平行四边形来判断出力的变化情况的方法。
使用条件:物体只受三个力,一个力不变,一个力方向不变,第三个力大小方向都变化。
一般步骤:①将不变的力反向延长至等长以它为对角线,②以另外两个力为邻边,做平行四边形,平行四边形的两边长即为此时两个力的大小。
③改变第三个力的方向,再次作出平行四边形,两邻边即为此时两个力的大小;④重复几次,由平行四边形不同情况下的边长即可判断两个力的变化情况。
注意事项:①不管第三个力如何变化,平行四边形对角线始终不变。
②方向变化的力若能与方向不变的力垂直,这时的平行四边形一定要作出来,此时有极值出现。
(2)解析法解析法即通过受力分析,根据平衡条件列方程,解出所求量与变量之间的关系式,根据变量的变化规律确定所求量的变化规律。
(3)相似三角形法①相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
②往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
课中案例1.如图所示,电灯悬挂于两墙壁之间,更换水平绳OA 使连接点A 向上移动,而保持O 点的位置不变,则A 点向上移动时( )A.绳OB 的拉力逐渐增大B.绳OB 的拉力逐渐减小C.绳OA 的拉力先增大后减小D.绳OA 的拉力先减小后增大O α例2.如图,在人缓慢向右运动的过程中,物体A 缓慢上升,若人对地面的压力为N ,人受到的摩擦力为f ,人拉绳的力为T ,则人在缓慢运动中( )A.N 、f 和T 都增大B.N 和f 增大,T 不变C.N 、f 和T 都减小D.N 增大,f 减小,T 不变例3.如图所示,固定在水平面上的光滑半球,球心O 的正上方固定一小定滑轮,细线一端拴一小球A ,另一端绕过定滑轮,今将小球从图中位置缓慢拉至B 点,在小球达到B 点之前过程中,小球对半球的压力N 、细线的拉力T 的大小变化情况是( )A .N 变大、T 变大B .N 变小、T 变大C .N 不变、T 变小D .N 变大、T 变小例4. 如右图所示,长为5m 的细绳,两端分别系于竖立地面相距为4m 的两杆A 、B 点。
力矩平衡条件的应用

解析:在木板上未施水平拉力F之前,木棒和木块之 间没有摩擦力,而在木板上施加水平力F后,将在木 棒和木棒之间产生一个滑动摩擦力.在木板施水平拉 力F之后木板做匀速运动,合力为零.木板在水平方 向上受到向左的摩擦力F1作用.
• 以杆OB为研究对象,受 力情况如图所示,木杆处于 平衡状态,合力矩为零,对 木棒,以O为轴,列力矩平 衡方程得
பைடு நூலகம்
L mg L sin 45 F1L cos 45 FN L sin 45 2
由动摩擦力公式得 F1 FN
解以上两式得
mg F1 6
以木板为研究对象,水平方向受两个力,分别是拉力F和 摩擦力F1 ,由于匀速拉出,由力的平衡条件得F =F1 所以拉力: F
mg 6
小结:
GA LA GB LB
即: G (l x ) G ( l x ) 4 2 3l lx 8
l l
所以,本题的正确选项应为B.
例2:如图所示,质量为m的均质木杆,上端可绕 固定水平光滑轴O转动,下端搁在木板上,木板置于 光滑水平地面,棒与竖直线成45°角,棒与木板间 的动磨擦因数为0.5.为使木板向右做匀速运动,求 水平拉力F等于多少?
注意:根据力矩平衡解题不能将研究对象看成是质点.
二、物体平衡的条件
1.一般物体的平衡条件:当物体处于平衡状态时,它所 受的合外力为零,受到过某点为转动轴的合力矩为零. 2.从力矩平衡的条件理解三力平衡原理 三个非平行的共面力作用在一个物体上,使物体处于 平衡状态时,该三力的作用线(或反向延长线)必相交 于一点. 这一点很容易证明,当该三力不相交于一点时,则必 出现三个交点,选其中任一个交点,通过该交点的两个 力的力臂为零,力矩为零,这样只有不通过该交点的另 一个力有力矩,不可能平衡.因此,三力必交于一点.
平衡力解题技巧

平衡力解题技巧平衡力作为物理学的基础概念之一,广泛应用于日常生活和科学研究中。
它是指物体所受到的合力为零时的状态,也就是物体不会发生加速度变化的状态。
平衡力解题是物理学学习中的重要部分,下面将介绍一些平衡力解题的技巧和方法。
通过掌握这些技巧,我们可以更加准确地分析和解决与平衡力有关的问题。
一、找准平衡点对于平衡力解题来说,首先要找准平衡点,即物体所受合力为零的位置。
在实际问题中,平衡点往往是问题中给出的某个物体的位置,或者是一个变量,我们需要通过分析题目中的条件来求解。
通过准确找准平衡点,能够使解题的过程更加简洁和准确。
举个例子,假设有一个杆,其质量均匀分布在整个杆上,是一个直角三角形,以杆顶的顶点为坐标原点。
问题要求求出以顶点为支点的平衡点。
在这个例子中,杆的质量分布是已知的,我们可以运用杆的质心的概念来求解。
质心可以定义为物体在空间中的一个点,其总质量在这个点上产生的合力的效果与物体在各个点上的合力的效果相同。
对于杆来说,质心位于杆的中点,我们可以通过质心的位置求解平衡点。
通过找准平衡点,并运用合适的方法求解,可以快速解决平衡力问题。
二、运用平衡条件在平衡力解题中,最重要的方法之一就是运用平衡条件。
平衡条件指的是物体所受的力在平衡状态下满足合力为零的条件。
具体运用平衡条件的方法有很多,下面列举其中几种常见的方法。
1. 平衡力和力的平衡:当物体处于平衡状态下时,所受的力满足合力为零的条件。
我们可以通过将各个力以向量的形式表示,并把它们相加,然后令合力等于零来求解问题。
这种方法适用于力的方向已知的情况。
2. 平衡力和力矩的平衡:力矩是指力在物体上产生的转动效果。
当物体处于平衡状态时,除了合力为零外,力矩也为零。
力矩可以通过力的大小、作用点到旋转中心的距离以及力和距离之间的夹角来计算。
当题目给出了物体所受的力以及物体绕某一点旋转的条件时,我们可以运用力矩的平衡来解决问题。
通过运用平衡条件,我们可以将复杂的问题简化成具有确定性的方程式,从而解决平衡力问题。
《共点力平衡条件的应用》 讲义

《共点力平衡条件的应用》讲义一、共点力平衡的概念当物体受到几个力的作用,如果这几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。
当物体在共点力的作用下处于静止或者匀速直线运动状态时,我们就说物体处于共点力平衡状态。
二、共点力平衡条件共点力平衡的条件是合力为零。
也就是说,如果物体受到多个共点力的作用而处于平衡状态,那么这些力的合力必定为零。
可以用数学表达式表示为:\(F_{合}=0\)如果将力进行正交分解,分别在 x 轴和 y 轴上投影,则有:\(F_{x合}=0\)\(F_{y合}=0\)三、共点力平衡条件的应用1、静态平衡问题(1)物体在水平面上的平衡例如,一个静止在水平地面上的物体,受到重力\(G\)、地面的支持力\(N\)和水平方向可能存在的摩擦力\(f\)。
由于物体处于静止状态,合力为零。
在竖直方向上,重力和支持力大小相等、方向相反,即\(G = N\);在水平方向上,如果没有外力作用,摩擦力\(f = 0\)。
(2)物体在斜面上的平衡当一个物体静止在斜面上时,它受到重力\(G\)、斜面的支持力\(N\)和斜面的摩擦力\(f\)。
将重力沿斜面和垂直斜面方向分解,分别为\(G_{1}\)和\(G_{2}\)。
在垂直斜面方向上,支持力\(N\)与\(G_{2}\)大小相等、方向相反,即\(N= G_{2}\);在沿斜面方向上,如果物体静止,摩擦力\(f\)与\(G_{1}\)大小相等、方向相反,即\(f = G_{1}\)。
2、动态平衡问题(1)缓慢移动问题在一些情况下,物体的位置在缓慢变化,但始终处于平衡状态。
比如,一个用绳子悬挂的物体,缓慢地从一个位置移动到另一个位置。
在这个过程中,因为移动缓慢,可以认为每个时刻物体都处于平衡状态,仍然满足合力为零的条件。
(2)多力动态平衡有些物体受到多个力的作用,且这些力的大小和方向在不断变化,但物体仍保持平衡。
例如,一个用三根绳子悬挂的重物,通过改变三根绳子的长度来改变拉力的大小和方向,使重物始终处于平衡状态。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法力学平衡问题是高考力学中比较常见的考点之一,也是比较基础的力学问题。
在解决这类问题时,我们需要运用平衡条件和受力分析的知识。
下面就让我们来看一看,解决力学平衡问题的常用方法和技巧吧。
一、受力分析受力分析是解决力学平衡问题的重要方法之一。
在解题时,我们需要先画出物体受到的力(包括重力、支持力、摩擦力等),然后逐个分析这些力对物体的影响。
例如,对于一个悬挂在细绳上的物体,我们可以画出如下受力图:在这张图中,P代表物体的重力,T代表细绳的张力。
根据牛顿第二定律,得出物体的平衡条件:P = T这就是我们常说的“绳子拉力与物体重力相等”的结论。
二、平衡条件平衡条件是解决力学平衡问题的基础。
在求解问题时,我们需要根据平衡条件来列方程、解方程,最终得出物体的状态。
常用的平衡条件包括力的平衡条件和力矩的平衡条件。
其中,力的平衡条件是指物体受到的所有力的合力等于零。
力矩的平衡条件则是指物体受到的所有力对于某个固定点的合力矩等于零。
对于力的平衡条件,我们可以列出如下公式:ΣF = 0其中,ΣF代表物体受到的所有力的合力,等于零说明受力平衡。
例如,对于如下图示的问题:x - 4cos30° = 0y + 4sin30° - 4 = 0其中,x和y分别代表M点的受力。
解出这个方程组,就可以得到M点的受力状态。
三、注意事项1. 画出受力图:在解决力学平衡问题时,一定要根据题目要求画出正确的受力图。
这样才能更加清晰地分析受力情况,便于列式求解。
2. 选择合适的坐标系:当我们采用力矩平衡条件进行求解时,需要选择合适的坐标系。
通常情况下,我们会选择某个固定点或某个受力点作为坐标系原点。
选择合适的坐标系可以简化计算,提高求解效率。
3. 仔细分析题目:在解决力学平衡问题时,需要仔细分析题目中给出的条件,根据这些条件选择正确的解题方法。
此外,要注意题目的难易程度以及所需要的知识点,有针对性地备考。
力学中的平衡问题及解题方法
力学中的平衡问题及解题方法力学是物理学的一个重要分支,研究物体的运动和相互作用。
在力学中,平衡是一个关键概念,指的是物体在外力作用下保持静止或者匀速运动的状态。
解决平衡问题是力学学习的基础,本文将重点介绍平衡问题的概念及解题方法。
一、平衡问题概述在力学中,平衡是指物体的合力与合力矩均为零的状态。
合力指的是物体受到的所有力的矢量和,合力矩是指物体受到的所有力矩之和。
当一个物体处于平衡状态时,其合力为零,即物体受到的所有力相互抵消;合力矩也为零,即力矩的总和等于零。
通过解决平衡问题,我们可以推导出物体的受力关系及各个力的大小和方向。
二、解题方法解决平衡问题的思路和方法有很多,下面将介绍几种常用的方法。
1. 通过自由体图分析自由体图是解决平衡问题的重要工具。
通过将物体从整体中分离出来,将作用在物体上的力单独画在一张图上,即可更清晰地分析受力情况。
首先,选择心理上合适的参考点,计算该点的合力和合力矩,然后利用力的平衡条件和力矩的平衡条件,推导出物体的受力关系。
在绘制自由体图时,需要标注各个力的名称、大小和方向,以便更好地进行分析。
2. 利用转动平衡条件解题当物体可以绕某个轴进行转动时,我们可以利用转动平衡条件解题。
转动平衡条件是指物体的合力矩等于零,即物体受力矩的总和等于零。
通过将每个力的力矩与其距离乘积求和,然后令其等于零,我们可以解得物体的未知量。
在利用转动平衡条件解题时,需要注意选择正确的参考点和力臂的方向。
3. 使用迭加法解题迭加法是一种常用的解决力学问题的方法。
对于一个复杂的平衡问题,我们可以将其分解为多个简单的平衡问题来处理。
将物体逐步分解,每次只考虑其中的一部分受力情况,然后根据平衡条件解题。
最后通过迭代计算,得到物体的受力关系和未知量。
4. 运用静摩擦力解决问题在某些平衡问题中,静摩擦力起到重要的作用。
静摩擦力是指物体接触面上的摩擦力,当其超过一定程度时,可以阻止物体发生滑动。
通过利用静摩擦力的性质,我们可以解决涉及摩擦力的平衡问题。
高考力学平衡问题的解题方法
高考力学平衡问题的解题方法
高考力学平衡问题是力学知识的重点和难点之一,解题方法也是备考关键。
以下是一
些解题方法的建议。
1.画出力的示意图
平衡问题是一个力的平衡,因此必须明确物体上的每个力的方向和大小。
在解题时,
画出物体上各个力的示意图,并用箭头表示各个力的方向和大小。
通过这种方式,可以清
楚地了解各个力之间的作用关系。
2.应用牛顿第一定律
平衡问题中,物体处于静止状态或匀速直线运动,因此可以应用牛顿第一定律,即物
体静止或匀速直线运动的条件是合力为零。
这样,即可列出各个力的合力方程,通过求解
可以得到未知量。
4.解题思路
解题时,应先确定物体所受的力和方向,然后再应用物体在平衡状态下的条件解题。
在确定各个力及其方向后,应根据题目的要求选择适当的物理量解题。
5.应用平衡条件
平衡条件是物体在平衡状态下所满足的条件,主要有三个方面:合力为零、力矩为零、重心在支撑物上。
应根据题目要求选择合适的平衡条件解题。
6.解题技巧
解题时要有耐心,按照一定的思路和步骤去做,不要急于求解。
同样重要的是要注意
单位的转换和计算的精度,以及注意各个物理量之间的关系。
高考力学平衡问题的解题方法需要灵活掌握,并且要善于理解题目,运用合适的解题
方法。
只有不断练习和总结,才能在高考中应对各种难度的平衡问题。
(必修1)共点力平衡条件的应用
F 0 F 0 F 0
x y
X轴 : Fx1 Fx 2 Fx 3 0 Y轴 : Fy1 Fy 2 Fy 2 0
F1
F
y N
f
F2
x
G
正交分解法
6.如图所示,质量为 m的物体放在倾角为 θ的斜面上, 它与斜面的滑动摩擦因数为μ,在水平推力的作用下, 物体沿斜面向上匀速滑动,则物体所受的摩擦力为: A.μmgcosθ B.μ(mgcosθ+Fsinθ) C.μ(mgcosθ-Fsinθ) D. Fcosθ-mgsinθ
例3: 如图示半径为r,表面光滑的半球体被固定在水平地 面上,跨过无摩擦的定滑轮,用一根轻绳下挂一个质量为m 的小球,将小球置于半球体光滑的表面上,并使定滑轮位于 半球体的正上方,现用力F斜左向下拉绳的自由端,使小球 沿光滑半球面缓慢向上滑动。在此过程中,半球体对小球的 支持力FN 和绳子的拉力F的变此情况。
②利用分解法,特别是正交分解法分析平衡问题 时,其平衡方程为Fx=0,Fy=0.
5、数学方法求解 建立平衡方物体放在倾角为θ的斜面 上,它与斜面的滑动摩擦因数为 μ,在水平推力的作 用下,物体沿斜面向上匀速滑动,则物体所受的摩擦 力为: A.μmgcosθ B.μ(mgcosθ+Fsinθ) C.μ(mgcosθ-Fsinθ) D. Fcosθ-mgsinθ
F 0 F 0 F 0
x y
⑤解方程(组),必要时验证结论。
实验1
1N
1200
1200
1200
1N 1N
2.5N
1N 实验2
1.5N 2N 1200 900 1500
2.5N
第五节 共点力的平衡条件 三.学以致用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用力的平衡条件解题步骤:
1.对研究对象进行受力分析,注意:
画出的力,既不能多也不能少;2.若研究对象受三个力作用;
(1)选择任意两力合成,根据平衡
条件,两力的合力一定与第三个大
小相等,方向相反;
(2)应用三角形知识求出未知力。
3.若研究对象受四个力以上,
(1)根据具体情况选择某些力进行正交分解,
(2)根据平衡条件,应用F x=0,F y=0求出未知力。
1.如图所示,m=1kg,物体都处于静止,取g=10m/s2,θ=37o,cos37o=0.8,sin37o=0.6。
求:两细绳分别对m的拉力。
解:对m进行受力分析,
如图所示,F1和F2的合力
与G相等,方向相反,根
据三角形知识可计算:
F1=mgsin370
=1×10×0.6N
=6N
F2=mgcos370
=1×10×0.8N
=8N
3.若研究对象受四个力以上,
(1)根据具体情况选择某些力进行正交分解,
(2)根据平衡条件,应用F x=0,F y=0求出未知力。
2.如图所
示,滑轮与绳
之间光滑,
m A=1kg,
m B=0.5kg,物体A、B都处于静止状态。
求:物体A受到地面的支持力和摩擦力。
(取g=10m/s2,sin370=0.6, cos370=0.8)
解:分别对A、B进行受力分析,如图所示,
由B物体得:F T=G B=5N
由A物体得:F T cos370-f=0 (1)
F T sin370+F N-G A=0 (2)
将数据代入(1)、(2)解得:
F N=7N
f =4N
所示,F分解为:
F
=Fcos37o=4N
F2=Fsin37o=3N
在x轴有:F1-f =0
在y轴有:F2+F N-G=0
解得:f =F1=4N
F N=G-F2=8N
所以:
(2)当拉力改为水平时,如图所示,同理,得:
所示,F分解为:
F1=Fcos37o=4N
F2=Fsin37o=3N
在x轴有:F1-f =0
在y轴有:F N-G-F2=0
解得:f =F1=4N
F N=G+F2=8N
所以:
(2)当拉力改为水平时,如图所示,同理,得:
1.解:当G B较小时,
对物体A、B进行受
力分析,A有下滑
的趋势,如图所示,
对B有:F T=G B
对A有:F N-G A cos37o=0
F T+f-
G A sin37=0
当f=μF N时,F T最小,既G B最小,解得:G B=G A(sin37o-μcos37o) = 5.6N
当G B较大时,对物
体A、B进行受力分
析,A有上滑的趋
势,如图所示,同理:
对B有:
对A有:
同理,
所以有:0.56kg≤m B≤1.84kg。