小学数学应用题解题技巧大全

合集下载

小学数学应用题解题技巧分析

小学数学应用题解题技巧分析

小学数学应用题解题技巧分析小学数学应用题通常需要学生通过对题目进行分析和理解,将题目中提供的信息和数据转化为数学模型,并最终求解问题。

以下是一些解题技巧,帮助学生更好地应对小学数学应用题。

1. 读懂题目小学数学应用题的第一步是读懂题目。

学生需要认真阅读题目中的各种信息和要求,理解题目所涉及的概念和条件,掌握题目所给数据的含义和单位。

2. 画图辅助对于一些需要考虑几何图形的应用题,学生可以通过画图来帮助自己理解和解决问题。

画图对于判断题目信息的有效性以及找到规律有很大的帮助。

3. 少设未知量尽可能减少未知量的数量,可以帮助学生更好地理解题目和求解问题。

通过简化问题的形式,可以使问题更加清晰明确,并且更容易找到解决方案及其过程。

4. 分步骤求解对于复杂的应用题,分步骤求解是非常必要的,这可以使问题变得更容易处理。

学生可以在解题过程中分步骤处理,先进行一些简单的计算和推理,然后逐步进行更深的问题分析和求解。

5. 掌握常见模型小学数学应用题眼种常见的模型,如“比例运算”、“面积和周长”、“速度、时间、距离”等等,学生需要掌握这些常见模型的问题分析和求解方法。

在日常练习中,可以对这些模型进行大量练习,以提高对这些模型的理解和记忆。

6. 实际思考对于一些实际场景的数学应用题,学生需要在解题过程中考虑到实际情况。

分析问题背后的实际情况和条件可以更好地帮助学生理解问题,并找到最佳的解决方案。

7. 看清单位在应用题中,单位通常也很重要。

学生通常需要将题目中给出的数据进行转换,以便计算得出正确的答案。

例如,需要将距离换算成米或公里,将时间换算成小时或分钟。

总之,对小学数学应用题的成功解决,需要学生认真阅读题目,画图辅助,少设未知量,分步骤求解,掌握常见模型,实际思考,并注意看清单位。

通过这些技巧,可以让学生更加熟练地处理数学应用题,并提高他们的数学技能水平。

学好小学生数学应用题的技巧

学好小学生数学应用题的技巧

学好小学生数学应用题的技巧数学应用题是小学生学习数学的一部分重要内容。

它不仅考查了学生对数学知识的掌握程度,还锻炼了学生解决实际问题的能力。

因此,掌握一些解题技巧对于学好小学生数学应用题至关重要。

本文将介绍一些学好小学生数学应用题的技巧,希望能对广大学生有所帮助。

一、阅读题目关键信息阅读题目时,首先要注意题目中的关键信息。

有时候题目中的关键信息可能会被掩盖在大量文字中,我们需要仔细地辨别出来。

关键信息包括要求解的问题、已知条件和需要求解的未知数等。

确保理解题目后,可以将关键信息在脑海中形成一个清晰的思维模型。

二、画图辅助思考数学应用题往往与实际问题相关。

为了更好地理解题目,我们可以尝试将问题中的情景进行图示化。

画图可以帮助我们更直观地分析问题和找到解题思路。

比如,对于几何问题可以绘制几何图形,对于时间和距离问题可以绘制时间轴或距离图等。

通过画图,我们能够更好地把握问题的本质,从而更容易找到解题方法。

三、归纳总结解题思路在解题过程中,有时会遇到相似的问题。

我们可以通过归纳总结相同类型问题的解题思路。

例如,遇到与比例相关的应用题时,可以运用“平行线法”、“同比例法”等常用解题方法。

通过总结解题思路,我们能够快速找到解题的突破口,并且能够更好地应对类似类型的题目。

四、列方程求解对于一些较为复杂的数学应用题,我们可以尝试列方程来求解。

列方程是将题目中的条件和未知数用代数式表示,从而转化为一个数学问题。

通过列方程,我们能够更清晰地把握问题的逻辑关系,更有针对性地解决问题。

因此,学会运用列方程的方法将极大地提高解题的效率。

五、多做练习加深理解掌握解题技巧需要不断的练习。

通过多做练习,我们能够更加熟练地应用解题方法,对解题思路更加敏锐。

因为大量的练习可以帮助我们积累经验,提高解题的准确性和速度。

同时,通过练习还能够发现自己在某些知识点上的不足之处,及时进行补充和复习。

总结:通过学习小学生数学应用题解题技巧,我们能够更加容易地应对各种数学应用题。

小学数学应用题解答方法公式整理汇总大全

小学数学应用题解答方法公式整理汇总大全

小学数学应用题解答方法公式整理汇总大全(一)整数和小数的应用1简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2)解题步骤:a审题理解题意:了解应用题的内容,知道应用题的条件和问题。

读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。

从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。

如果发现错误,马上改正。

2复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

答案:根据计算的结果,先口答,逐步过渡到笔答。

( 7 )解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(8 )解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法30类典型应用题:1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少元2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

4、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?5、小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?6、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2 小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

7、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?8、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

小学数学应用题解题技巧

小学数学应用题解题技巧

小学数学应用题解题技巧数学是一门让人们学习思考和逻辑推理的学科,而应用题则是数学知识在实际生活中的应用。

小学阶段,应用题的解题技巧对于学生的数学学习和思维能力的培养非常重要。

下面将介绍一些解题技巧,帮助小学生更加轻松地应对数学应用题。

一、理清题意,分析问题在解决任何数学应用题之前,首先要仔细阅读题目,理解题目所提供的信息和要求。

通过分析题目信息,确定题目的求解目标和方法。

例如,一道题目可能在描述一种场景或者给出一些条件,通过分析这些信息,学生就能够理清问题的思路,并且能够更好地找到解决问题的方法和策略。

二、建立数学模型应用题往往需要将实际问题转化为数学问题进行求解。

建立数学模型是解决应用题的关键步骤,它能把问题实质转化为数学计算的形式。

在建立模型时,我们可以使用图表、表格等工具,将问题可视化。

在小学阶段,常见的模型包括比例模型、面积模型、实物模型等。

建立模型有助于学生理解问题,从而更好地进行推理和计算。

三、运用合适的计算方法通过模型的建立,我们就能够根据题目要求使用合适的计算方法进行求解。

小学应用题常见的计算方法包括四则运算、比例运算、面积运算等。

学生可以根据题目的条件和问题的要求运用相应的计算方法进行计算。

同时,也要注重计算的准确性,避免粗心错误或计算错误对整个问题的解答产生不良影响。

四、多维度思考,辅助求解有时,一道应用题可能需要多个步骤和方法来解决。

在解题过程中,学生可以采用多维度的思考方式,综合运用不同的解题方法。

例如,对于一个文字题目,学生可以尝试画图,帮助自己更好地理解问题。

或者通过列式计算、逻辑推理等方式辅助求解。

多维度思考能够培养学生的综合思维能力,提高解题的效率和准确性。

五、巩固练习,善于总结解决应用题需要反复的练习和思考。

学生需要通过大量的练习题来提高自己的解题能力。

在解题过程中,可以将解题思路和方法进行总结和归纳。

例如,可以将涉及比例的题目分为几类,总结相应的解题方法。

通过总结,学生可以在解题过程中更快地找到问题的突破口和解题思路。

小学数学应用题解题方法六法

小学数学应用题解题方法六法
× × × × × ×
例2 。甲 乙 丙三人共有糖192块,第一次甲把自己的糖分给乙 丙二人,谁有多少就分 给谁多少块;第二次乙把自己的糖分给甲 丙二人,也是谁有多少就分给谁多少;第三次 丙用同样的方法把糖分给甲 乙二人,最后三人的糖数正好相等,问他们原来各有多少 糖块?
解:可从反面来进行思考,采用列表倒推的方法,由于最后每人的糖块都相等,故每 人的糖块数为:192÷3=64(块) 由此可列出下表:
四、逆向思维法
当某一思路出现障碍时,能够迅速地转移到另一思路上去,从而使问题得到解决的思维 过程。 例1 有一个4行6列共4*6=24个方格的木箱,每一个方格可放置一瓶牛奶,现在有18瓶 牛奶分放进去,但要求横数为偶数,竖数也为偶数,这件事能办到吗? 解:从反面来思考,将不放牛奶的空格打上“×”,这样只要保证横、竖都为偶数即 可.如下图即是一种放法.
例2:甲、乙、丙、丁与小强五位同学一起比赛象棋,到现在为止,甲已经赛了四 盘,乙赛了三盘,丙赛了两盘,丁赛了一盘,问小强赛了几盘?

4
3
乙 丙 丁
小 强
2
1
解:以五个点分别表示甲、乙、丙、丁和小强五个人,若两人之间比 赛过,则连结该两点, 这样,根据题意可得到右边的关系图,由图易知,小强共赛了2盘。
例2 一只青蛙在一个30米深的井底,它沿井壁每跳一次能跳3米高,但当休息时, 又沿井壁下滑2米,如果它每跳一下,都休息一会儿,问跳几次能跳到井口?
解:从最简单的情况如手来考虑问题: 1.当井深不超过3米时,青蛙跳一次就能跳到井口。 2.当井深为4米时,跳一次,实际上升一米,这时青蛙距离井口3米,再跳一次就到 了井口,因此井深4米时,只跳2次就到了井口,而不是4次。 3.当井深5米时,跳一次,实际上升一米,这时青蛙距离井口4米,由(2)知,青蛙还要 跳2次,故一共跳3次就到了井口。 同样的道理,当井深是6米时,青蛙跳4次就到了井口.由此可得,青蛙从30米深的 井底,需跳28次,才能跳到井口.

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法
以下是小学数学应用题13种类型解题方法:
1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”
2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”
3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”
4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”
5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”
6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”
7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”
8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”
9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”
11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”
13. 百分比类型:确定一个数值的百分比,例如“如果一个物品原价是120元,打8折后的价格是多少?”。

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版小学数学是数学学习的基础,应用题占据着小学数学的一大部分,而解题思路和方法则是应用题解答的关键。

本文将为大家总结一些小学应用题解题思路和方法的精华版,希望能够帮助大家更好地完成小学数学应用题。

1. 阅读题目首先,我们要认真阅读题目,弄清楚题目的意思。

如果题目的描述较长,我们可以先将问题简化,提炼出题目的核心内容,从而更好地理解问题。

同时,还要注意观察题目中的数据和图表,确定它们与问题的关联。

2. 确定问题类型在理解了题目的意思之后,我们要根据问题的类型选取合适的解题方法。

小学应用题的类型较为丰富,常见的有比例、面积、体积、图形与分数等。

我们要根据问题所涉及的概念和知识点,确定问题的类型,并选择相应的解题方法。

3. 建立数学模型解决应用题,最主要的就是建立数学模型。

将问题转化为数学问题,建立相应的方程或者不等式,从而得到所需的答案。

建立数学模型的方法包括比例、方程、代数式、几何图形等等。

4. 验证答案的合理性我们在解题的过程中,往往得到一些结果,需要通过一些方法来确定这些结果是否合理。

比如,我们要检验得到的答案是否与题目中所给的条件相符合,或者是否能够通过近似计算来确定答案是否正确等等。

5. 深入思考同时,我们也要多进行深入思考。

不要局限于应用题,去了解应用题背后的数学思想,从而开拓自己的数学思维,在日常生活中更好地应用数学知识。

以上就是小学数学应用题解题思路和方法的精华版。

相信通过这些方法的运用,大家可以迅速解决应用题,提高数学解题的效率。

同时也能够更好地掌握数学知识,更好地应用数学知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题解题技巧大全小升初应用题大全,可分为一般应用题与典型应用题。

1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。

例2小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。

例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。

3和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。

例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。

由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。

4和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。

例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。

例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。

把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。

例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。

那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。

5差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。

例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?解(1)杏树有多少棵?124÷(3-1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。

例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。

例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。

例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。

把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。

6倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍?3700÷100=37(倍)(2)可以榨油多少千克?40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。

例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍?48000÷300=160(倍)(2)共植树多少棵?400×160=64000(棵)列成综合算式400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。

例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解(1)800亩是4亩的几倍?800÷4=200(倍)(2)800亩收入多少元?11111×200=2222200(元)(3)16000亩是800亩的几倍?16000÷800=20(倍)(4)16000亩收入多少元?2222200×20=44444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。

相关文档
最新文档