2020小学数学解题思路大全-推荐

合集下载

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

小学数学中的解题思路总结

小学数学中的解题思路总结

小学数学中的解题思路总结数学作为一门学科,对于学生来说可能是一门既喜欢又害怕的学科。

尤其是在小学阶段,数学解题对于学生来说可能是一个挑战。

然而,只要我们能够掌握一些解题思路和方法,数学解题将变得更加容易和有趣。

在本文中,我将总结出一些小学数学中常见的解题思路和方法,希望能够帮助学生们更好地解题。

1. 读题理解在解决数学问题之前,我们首先要仔细阅读题目,并确保我们理解题目的要求。

要学会提取关键信息,并确保了解问题的条件以及要求求解的内容。

可以在纸上画图、标记关键词等方式来帮助理解题意。

2. 建立数学模型在理解题目后,我们需要将题目中的问题转化为数学模型,即将题目中的文字描述转化为数学符号和公式。

数学模型可以帮助我们更好地理解问题,并提供了一个解决问题的框架。

3. 列方程求解对于一些数学问题,我们可以通过列方程来求解。

例如,在代数问题中,可以使用字母来代表未知数,然后建立方程并解方程求解未知数的值。

通过列方程求解问题,可以让问题变得更加具体和明确,从而更容易解决。

4. 利用辅助图形在解决几何问题时,我们可以运用一些辅助图形来帮助解题。

例如,通过画图来辅助理解和计算,或者通过构造相似三角形、利用平行四边形性质等方法来求解几何问题。

辅助图形的运用可以帮助我们更好地可视化问题,并提供更直观的解题思路。

5. 利用逻辑推理有些数学问题需要通过逻辑推理来解决。

例如,通过列举可能的情况或者使用逻辑推理的方法来求解排列组合等问题。

逻辑推理能够让我们更好地分析问题,并找到解决问题的有效路径。

6. 运用数学规律和性质在数学学科中存在着一些基本规律和性质,我们可以利用这些规律和性质来解决问题。

例如,利用数字的奇偶性来判断整数的性质,利用数字的特点来推导等等。

熟悉数学规律和性质可以加快解题的速度,并提高解题的准确性。

7. 反证法反证法是一种常用的解题方法。

当我们试图证明一个命题时,我们可以假设该命题不成立,然后通过逻辑推理得出矛盾,从而证明该命题是正确的。

小学数学常用解题思路(11种)

小学数学常用解题思路(11种)

小学数学常用的十一种解题思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有AB AC AD AE AF AG共6条。

(2)左端点是B的线段有哪些?有BC、BD、BE、BF、BG共5条。

小学数学10种经典问题的巧妙方法

小学数学10种经典问题的巧妙方法

小学数学10种经典问题的巧妙方法1、鸡兔同笼问题:所有兔子抬起两条腿题目:笼子里有鸡兔若干,数头有35,数脚有94,问有鸡和兔各多少?巧妙思路1:命令所有兔子抬起两条腿,那么地上有35×2=70条腿,抬起了94-70=24条腿,这24条腿是所有兔子抬起的,每只兔子抬起两条腿,24条腿就有12只兔子。

巧妙思路2:命令所有动物都抬起两条腿,那么一共抬起了70条腿,剩下24条腿,这24条腿是兔子多出来的,每只腿子多两条腿,所以兔子数是12。

总结:这两种思路也叫抬腿法,其实就是假设法的直观理解。

2、空瓶换酒问题题目:一瓶汽水3元钱,6个空瓶可以换一瓶汽水,五一班有50名同学,需要花多少钱刚好每人喝到一瓶汽水?巧妙思路:同学们只喝汽水,不要空瓶,所以花钱最终是花在了喝水上,空瓶的钱不算。

一瓶汽水=3元 6个空瓶=1瓶汽水=3元所以每个空瓶=0.5元一瓶汽水=一个空瓶一份汽水所以一份汽水=3-0.5=2.5元全班有50人,需要50×2.5=125元总结:喝的是水,付钱买水,和瓶子无关。

3、和差问题题目:甲乙两仓库共存米60吨,从甲仓库运6吨米到乙仓库,两仓库米正好相等,求原来两个仓库各存米多少吨?这是一道和差问题,常规方法先找到两仓库的和与差,通过公式:多=(和差)÷2; 少=(和-差)÷2方法一: 两仓库的和是60,两仓库的差是12。

甲=(60 12)÷2=36乙=(60-12)÷2=24方法二:逆向思维。

既然现在相等了,那现在两仓库都是30吨,甲仓库是运出6吨变成30吨,所以甲仓库原来是36吨,乙仓库是得到6吨后变成30吨,所以原来是24吨。

4、盈亏问题题目:花园小学学生春游,如果每辆车坐60个学生,则有15人上不了车,如果每辆车坐65人,就恰好多出一辆车,问有多少学生多少辆车?这是典型的盈亏问题:巧妙思维一:第一种方案,每辆车坐60人,有15人坐不下,第二种方案,每辆车坐65人,正好多出一辆车,也就是说如果这辆车也坐65人的话,就可以多坐65人。

数学不再难小学数学解题思路分享

数学不再难小学数学解题思路分享

数学不再难小学数学解题思路分享数学不再难:小学数学解题思路分享在学习数学的过程中,我们常常会遇到一些难以理解或解决的问题。

然而,通过一些简单的解题思路和方法,我们可以轻松地应对这些难题。

本文将分享一些小学数学解题的思路,希望能给同学们带来一些帮助。

一、加减法问题加减法是数学中最基础、最常见的运算之一。

对于小学生来说,掌握好加减法解题的思路非常重要。

首先,我们要仔细阅读问题,理解问题所求。

然后,根据问题中的条件和要求,确定所需要进行的运算。

在计算过程中,我们可以采用列式计算的方法,将数字竖排,按位进行计算,最后得出结果。

例如,有一个问题如下:小明有10个棒棒糖,他吃掉了3个,这时还剩下几个棒棒糖?解题思路:首先,我们要找到问题中的关键信息,即小明原本有10个棒棒糖,吃掉了3个。

然后,我们可以通过减法计算得到答案。

10减去3等于7。

所以,小明还剩下7个棒棒糖。

二、乘法问题乘法是数学中比较复杂的运算之一。

对于小学生来说,乘法解题可以通过几种方法来进行。

首先,我们可以采用列式计算的方法,将乘数、被乘数竖排,然后按位进行计算。

最后将每位计算结果进行相加,得出最终的乘积。

这种方法对于较小的乘数和被乘数比较适用。

另外,我们还可以利用倍数关系进行计算。

例如,我们要计算4乘以5的结果,可以快速计算4的倍数,即4、8、12、16、20,然后选择第5个数20作为乘积。

这种方法对于较大的乘数和被乘数非常有效。

三、除法问题除法是数学中较为复杂的运算之一。

在解决除法问题时,我们需要掌握一些简便的计算方法。

首先,我们可以通过列式计算的方法,将除数、被除数竖排,按位进行计算。

然后将每位计算结果进行相加,得出商和余数。

另外,我们还可以通过倍数关系进行计算。

例如,我们要计算24除以6的结果,可以快速计算6的倍数,即6、12、18、24,然后选择第4个数4作为商。

这种方法对于较大的被除数和较小的除数非常有效。

四、整数运算问题在解决整数运算问题时,我们需要注意正负数的运算规则。

如何快速解决小学数学应用题以及解题思路

如何快速解决小学数学应用题以及解题思路

如何快速解决小学数学应用题以及解题思路小学数学应用题是很多小朋友失分最多的题,但其实,小学数学的知识点也不是很多,所以,平时家长们可以多让孩子读题目,理解题意。

这里给大家分享一些小学数学应用题的解题思路,希望对大家有所帮助。

小学数学应用题解题思路1、简单应用题(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

(2) 解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。

读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。

从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。

如果发现错误,马上改正。

2、复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

答案:根据计算的结果,先口答,逐步过渡到笔答。

( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

小学数学八大思维方法

小学数学八大思维方法

小学数学八大思维方法1.分类思维:将问题中的对象、概念、现象按照其中一种特征或规则进行归类,进而发现问题的本质,找到问题的解题方法。

2.比较思维:将两个或多个对象或概念相互比较,找出其相同点和不同点,从中发现问题的规律和特点。

3.推理思维:根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

4.分析思维:将问题分解为几个小问题,逐步进行分析和解决。

通过分析每个小问题的解决过程,最终得出整个问题的解答。

5.逆向思维:从问题的结果出发,逆向推导出解决问题的方法和过程。

逆向思维常常能够突破传统思维的局限,找出解决问题的新途径。

6.归纳思维:从具体的事物、现象中归纳出一般的规律或结论。

通过对具体事物的观察和总结,总结出普遍规律,应用于解决类似的问题。

7.演绎思维:根据已有的规律或定理,运用逻辑关系进行推导和演绎。

从已知条件出发,通过演绎得出结论,运用于解决问题。

8.反证思维:采用假设反向地证明问题。

假设问题不成立,然后推导出矛盾的结论,从而得出问题的正向解答。

这八大思维方法在小学数学教学中都有着重要的应用和意义。

帮助学生培养和提高逻辑思维能力,激发对数学的兴趣,同时也促进他们解决实际问题的能力和创新能力的发展。

分类思维是指将问题中的对象、概念、现象按照其中一种特征或规则进行整合和归类。

通过将问题进行分组和分类,可以更加清晰地看到问题的本质和规律。

例如,当学生遇到类似于求面积或体积的问题时,可以根据几何形状的不同将问题按照圆、矩形、三角形等进行分类,然后应用相应的公式进行求解。

比较思维是将两个或多个对象或概念进行对比,找出其相同点和不同点。

通过比较,可以更好地理解问题的特点和规律。

例如,当学生学习数字大小比较时,可以通过比较数字的大小顺序,找出其中规律和特点。

推理思维是根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

通过推理,可以从已有的信息中推导出新的信息,进而解答问题。

小学生数学解题思路

小学生数学解题思路

小学生数学解题思路在小学阶段,数学是一门重要的学科,培养学生解题思维对他们日后学习和生活都具有重要意义。

下面我将介绍小学生在解数学题时应该采取的一些思路。

一、理解题目解题的第一步是理解题目。

小学生应该仔细阅读题目,了解题目所给的条件和要求。

在理解题目时,可以使用以下思路:1. 仔细读题:多读几遍题目,确保自己完全理解题目的意思。

2. 标记关键词:识别题目中的关键词,例如“多少”,“比例”,“分数”等。

这样有助于我们确定解题的方向。

3. 建立数学模型:根据题目的要求,将问题抽象成一个数学模型。

通过这个模型,我们可以更好地理解问题,并解决它。

二、分析解题方法一旦理解了题目,小学生应该考虑使用哪种解题方法。

以下是一些常用的解题方法:1. 分析类比:查找与题目类似的已解题例子,进行类比。

将已解题例子中的解题思路应用到当前问题上,可以帮助我们更好地解决问题。

2. 基本运算:对于简单的数学题目,可以直接使用基本的加减乘除运算进行解答。

3. 推理法:通过逻辑推理,运用已知条件推导出未知条件。

4. 反证法:通过假设一个错误答案,然后通过推理推出矛盾,进而排除错误答案。

5. 利用图形:对于与图形相关的问题,可以通过绘制图形,用图形来解决问题。

三、逐步求解一旦选择了合适的解题方法,小学生应该按照步骤一步一步地求解问题。

以下是一些逐步求解的常用方法:1. 分步计算:将复杂的问题分解成若干个简单的子问题,进行逐步计算。

2. 试错法:如果一种方法不起作用,可以尝试另一种方法。

通过不断尝试,找到解决问题的最佳方法。

3. 反复检查:在解题过程中,反复检查计算的过程和结果,确保无误。

四、总结思考在解决数学问题后,小学生应该总结思考解题的过程和方法。

以下是一些建议:1. 回顾解题思路:回顾解题思路,思考解决问题的过程中有哪些有效的方法和技巧。

2. 判断解决方法的可行性:总结解题方法的优点和不足,思考在什么情况下使用哪种方法更为合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.想数码例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。

某同学的答数是16246。

试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。

思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。

相应位数两数码之和,个、十、百、千位分别是17、13、11、15。

所以该同学的加法做错了。

正确答案是思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。

这样个位上的两个数码,8+9=16是不可能的。

不要把“数码调换了位置”误解为“数码顺序颠倒了位置。

”2.尾数法例1比较 1222×1222和 1221×1223的大小。

由两式的尾数2×2=4,1×3=3,且4>3。

知 1222×1222>1221×1223例2二数和是382,甲数的末位数是8,若将8去掉,两数相同。

求这两个数。

由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。

由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。

甲数是348,乙数是34。

例3请将下式中的字母换成适当的数字,使算式成立。

由3和a5乘积的尾数是1,知a5只能是7;由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为142857×3=428571。

3.从较大数想起例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?思路一:较大数不可能取5或比5小的数。

取6有6+5;取7有7+4,7+5,7+6;…………………………………………取10有九种 10+1,10+2,……10+9。

共为 1+3+5+7+9=25(种)。

思路二:两数不能相同。

较小数为1的只有一种取法1+10;为2的有2+9,2+10;……较小数为9的有9+10。

共有取法1+2+3+4+5+4+3+2+1=25(种)这是从较小数想起,当然也可从9或8、7、……开始。

思路三:两数和最大的是19。

两数和大于10的是11、12、 (19)和是11的有五种1+10,2+9,3+8,4+7,5+6;和是11~19的取法5+4+4+3+3+2+2+1+1=25(种)。

4.想大小数之积用最大与最小数之积作内项(或外项)的积,剩的相乘为外项(或内项)的积,由比例基本性质知交换所得比例式各项的位置,可很快列出全部的八个比例式。

5.由得数想例如,思考题:在五个0.5中间加上怎样的运算符号和括号,等式就成立?其结果是0,0.5,1,1.5,2。

从得数出发,想:两个相同数的差,等于0;一个数加上或减去0,仍等于这个数;一个因数是0,积就等于0;0除以一个数(不是0),商等于0;两个相同数的商为1;1除以0.5,商等于2;……解法很多,只举几种:(0.5-0.5)×0.5×0.5×0.5=00.5-0.5-(0.5-0.5)×0.5=0(0.5+0.5+0.5)×(0.5-0.5)=0\(0.5+0.5-0.5-0.5)×0.5=0(0.5-0.5)×0.5×0.5+0.5=0.50.5+0.5+0.5-0.5-0.5=0.5(0.5+0.5)×(0.5+0.5—0.5)=0.5(0.5+0.5)×0.5+0.5-0.5=0.5(0.5-0.5)×0.5+0.5+0.5=10.5÷0.5+(0.5-0.5)×0.5=1(0.5-0.5)÷0.5+0.5+0.5=1(0.5+0.5)÷0.5-(0.5+0.5)=10.5-0.5+0.5+0.5÷0.5=1.5(0.5+0.5)×0.5+0.5+0.5=1.50.5+0.5+0.5+0.5-0.5=1.50.5÷0.5+0.5÷0.5-0.5=1.50.5÷0.5÷0.5+0.5-0.5=2(0.5+0.5)÷0.5+0.5-0.5=2(0.5+0.5+0.5-0.5)÷0.5=2[(0.5+0.5)×0.5+0.5]÷0.5=2.想平均数思路一:由“任意三个连续自然数的平均数是中间的数”。

设第一个数为“1”,则中间数占知这三个数是14、15、16。

二、一个数分别为16-1=15,15-1=14 或16-2=14。

若先求第一个数,则思路三:设第三个数为“1”,则第二、三个数,知是15、16。

思路四:第一、三个数的比是7∶8,第一个数是2÷(8-7)×7=14。

若先求第三个数,则2÷(8-7)×8=16。

7.想奇偶数例1思考题:在1、2、3、4、5、6、7、8、9九个数字中,不改变它们的顺序、在它们中间添上加、减两种符号,使所得的结果都等于100。

例如1+23-4+5+6+78-9=100123+45-67+8-9=100你还能想出不同的添法吗?1+2+3+4+5+6+7+8+9=45。

若去掉7和8间的“+”,式左为1+2+3+4+5+6+78+9,比原式和增大了78-(7+8)=63,即1+2+3+4+5+6+78+9=45+63=108。

为使其和等于100,式左必须减去8。

加4改为减4,即可1+2+3-4+5+6+78+9=100。

“减去4”可变为“减1、减3”,即-1+2-3+4+5+6+78+9=100二年级小学生没学过负“-1”,不能介绍。

如果式左变为12+3+4+5+6+7+89。

[12-(1+2)]+[89-(8+9)]=81。

即 12+3+4+5+6+7+89=45+81=100+26。

要将“+”变为“-”的数和为13,在3、4、5、6、7中有6+7,3+4+6,因而有12+3+4+5-6-7+89=100,12-3-4+5-6+7+89=100,同理得12+3-4+5+67+8+9=100,1+23-4+56+7+8+9=100,1+2+34-5+67-8+9=100,123-4-5-6-7+8-9=100,123+4-5+67-89=100,123-45-67+89=100。

为了减少计算。

应注意:(1)能否在1、23、4、5、6、7、89中间添上加、减(不再去掉某两数间的加号),结果为100呢?1、23、5、7、89的和或差是奇数,4、6的和或差是偶数,奇数±偶数=奇数,结果不会是100。

(2)有一个是四位数,结果也不可能为100。

因为1234减去余下数字组成(按顺序)的最大数789,再减去余下的56,差大于100。

例2 求59~199的奇数和。

由从1开始的连续n个奇数和、等于奇数个数n的平方1+3+5+7+……+(2n-1)=n2奇数比它对应的序数2倍少1。

用n表示任意一个自然数,它对应的奇数为2n-1。

例如,32对应奇数2×32-1=63。

奇数199,从1起的连续奇数中排列在100(2n-1=199,n=100)的位置上。

知1~199的奇数和是1002=10000。

此和包括59,2n-1=57、n=29、1~57的奇数和为292=841。

所求为 10000-841=9159。

或者 59=30×2-1,302=900,10000-900+59=9159。

例1 思考题:在1、2、3、4、5、6、7、8、9九个数字中,不改变它们的顺序、在它们中间添上加、减两种符号,使所得的结果都等于100。

例如1+23-4+5+6+78-9=100123+45-67+8-9=100你还能想出不同的添法吗?1+2+3+4+5+6+7+8+9=45。

若去掉7和8间的“+”,式左为1+2+3+4+5+6+78+9,比原式和增大了78-(7+8)=63,即1+2+3+4+5+6+78+9=45+63=108。

为使其和等于100,式左必须减去8。

加4改为减4,即可1+2+3-4+5+6+78+9=100。

“减去4”可变为“减1、减3”,即-1+2-3+4+5+6+78+9=100二年级小学生没学过负数“-1”,不能介绍。

如果式左变为12+3+4+5+6+7+89。

[12-(1+2)]+[89-(8+9)]=81。

即 12+3+4+5+6+7+89=45+81=100+26。

要将“+”变为“-”的数和为13,在3、4、5、6、7中有6+7,3+4+6,因而有12+3+4+5-6-7+89=100,12-3-4+5-6+7+89=100,同理得12+3-4+5+67+8+9=100,1+23-4+56+7+8+9=100,1+2+34-5+67-8+9=100,123-4-5-6-7+8-9=100,123+4-5+67-89=100,123-45-67+89=100。

为了减少计算。

应注意:(1)能否在1、23、4、5、6、7、89中间添上加、减(不再去掉某两数间的加号),结果为100呢?1、23、5、7、89的和或差是奇数,4、6的和或差是偶数,奇数±偶数=奇数,结果不会是100。

(2)有一个是四位数,结果也不可能为100。

因为1234减去余下数字组成(按顺序)的最大数789,再减去余下的56,差大于100。

例2 求59~199的奇数和。

由从1开始的连续n个奇数和、等于奇数个数n的平方1+3+5+7+……+(2n-1)=n2奇数比它对应的序数2倍少1。

用n表示任意一个自然数,它对应的奇数为2n-1。

例如,32对应奇数2×32-1=63。

奇数199,从1起的连续奇数中排列在100(2n-1=199,n=100)的位置上。

知1~199的奇数和是1002=10000。

此和包括59,2n-1=57、n=29、1~57的奇数和为292=841。

所求为 10000-841=9159。

或者 59=30×2-1,302=900,10000-900+59=9159。

8.约倍数积法任意两个自然数的最大公约数与最小公倍数的积,等于这两个自然数的积。

证明:设M、N(都是自然数)的最大公约数为P,最小公倍数为Q、且M、N不公有的因数各为a、b。

那么 M×N=P×a×P×b。

而 Q=P×a×b,所以 M×N=P×Q。

例1 甲乙两数的最大公约数是7,最小公倍数是105。

甲数是21,乙数是多少?例2 已知两个互质数的最小公倍数是155,求这两个数。

相关文档
最新文档