高考数学 分类题库考点41 双曲线()理 新人教版(1)
2017高考数学必考点【双曲线的标准方程及图象】整理.doc

2017高考数学必考点【双曲线的标准方程及图象】整理高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为没有掌握好考点,为了帮助大家掌握好数学考点,下面为大家带来2017高考数学必考点【双曲线的标准方程及图象】整理,希望大家用心记住这些数学考点。
高考数学知识点:双曲线的标准方程及图象双曲线的标准方程:(1)中心在原点,焦点在x轴上:,复习方法;(2)中心在原点,焦点在y轴上:。
双曲线的图像:(1)焦点在x轴上的双曲线的图像;(2)焦点在y轴上的双曲线的图像。
判断双曲线的焦点在哪个轴上:判断双曲线的焦点在哪个轴上的方法看未知数前的系数,哪一个为正,焦点就在哪一个轴上.定义法求双曲线的标准方程:求动点的轨迹方程时,可利用定义先判断动点的轨迹,再写出方程.平面几何中的定理性质在解决解析几何问题时起着简化运算的作用,一定要注意应用,根据双曲线的定义,到两个定点的距离之差的绝对值是一个常数的点的轨迹是双曲线,可以求双曲线的标准方程,待定系数法求双曲线的标准方程:在求双曲线标准方程时,可先设出其标准方程,再根据双曲线的参数a,b,c,e的取值及相互之间的关系,求出a,b的值,已知双曲线的渐近线方程,求双曲线方程时,可利用共渐近线双曲线系方程,再由其他条件求.若焦点不确定时,要注意分类讨论.利用双曲线的性质求解有关问题:要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出离心率的关系式,这里应和椭圆中a,b,c的关系区分好,即几种特殊的双曲线:等轴双曲线实轴和虚轴相等的双曲线叫做等轴双曲线.离心率两条渐近线互相垂直共轭双曲线共渐近线的双曲线2017高考数学必考点【双曲线的标准方程及图象】整理是为大家精心总结的,希望大家能够在复习数学考点的时候多下功夫,这样就能在高考数学考试中取得满意的成绩。
2020年人教版高考数学(理)一轮复习 第53讲双曲线

听课正文第53讲双曲线1.双曲线的定义平面内与两个定点F1,F2的等于常数(小于|F1F2|)的点的轨迹叫作双曲线.这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当时,P点的轨迹是双曲线;(2)当时,P点的轨迹是两条射线;(3)当时,P点不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).3.双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形(续表)标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质范围,y∈R ,x∈R对称性对称轴:坐标轴.对称中心:原点顶点A1,A2A1,A2渐近线y= y=离心率e=ca,e∈a ,b ,c的关系c 2= (c>a>0,c>b>0)实、虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|= ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|= ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长常用结论双曲线的几个常用结论: (1)与双曲线x 2a2-y 2b 2=1(a>0,b>0)有共同渐近线的双曲线系的方程为x 2a2-y 2b2=λ(λ≠0).(2)双曲线上的点P (x 0,y 0)与左(下)焦点F 1或右(上)焦点F 2之间的线段叫作双曲线的焦半径,分别记作r 1=|PF 1|,r 2=|PF 2|,则①x 2a2-y 2b 2=1(a>0,b>0),若点P 在右支上,则r 1=ex 0+a ,r 2=ex 0-a ;若点P 在左支上,则r 1=-ex 0-a ,r 2=-ex 0+a.②y 2a2-x 2b2=1(a>0,b>0),若点P 在上支上,则r 1=ey 0+a ,r 2=ey 0-a ;若点P 在下支上,则r 1=-ey 0-a ,r 2=-ey 0+a.题组一 常识题1.[教材改编] 若双曲线E :x 29-y 225=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=5,则|PF 2|= .2.[教材改编] 已知双曲线经过点P (4,-2√2)和点Q (-4√2,2√3),则该双曲线的标准方程为 .3.[教材改编] 双曲线C :4x 2-10y 2=100的离心率是 ,渐近线方程是 .题组二 常错题◆索引:忽视双曲线定义中的条件“2a<|F 1F 2|”;忽视定义中的条件“差的绝对值”;忽视双曲线焦点的位置;忽视双曲线上的点的位置.4.平面内到点F 1(5,0),F 2(-5,0)距离之差的绝对值等于10的点P 的轨迹是 .5.已知A (-5,0),B (5,0),动点P 满足|PA |-|PB |=6,则点P 的轨迹是 .6.已知双曲线的实轴长为8,离心率为2,则双曲线的标准方程为 .7.P 是双曲线x 216-y 281=1上任意一点,F 1,F 2分别是它的左、右焦点,且|PF 1|=9,则|PF 2|= .探究点一 双曲线的定义及标准方程例1 (1)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF是边长为2的等边三角形(O 为原点),则双曲线的方程为 ( )A .x 24-y 212=1B .x 212-y 24=1 C .x 23-y 2=1D .x 2-y 23=1(2)[2018·辽宁朝阳一模] 设中心在原点、焦点在x 轴上的双曲线的焦距为12,圆(x-6)2+y 2=20与该双曲线的渐近线相切,点P 在双曲线上,若点P 到焦点F 1的距离是9,则点P 到F 2的距离是 ( ) A .17或1 B .13或5 C .13 D .17[总结反思] (1)应用双曲线的定义,可判定平面内动点的轨迹是否为双曲线,进而求出曲线方程;可在“焦点三角形”中,利用正弦定理、余弦定理,并结合||PF 1|-|PF 2||=2a ,运用配方法,建立与|PF 1|·|PF 2|的联系.应用双曲线的定义时,若去掉绝对值,则点的轨迹是双曲线的一支.(2)待定系数法求双曲线方程时,一要注意焦点位置的判断,二要注意c 2=a 2+b 2,a ,b ,c 的关系不要弄错.变式题 (1)[2018·合肥三模] 已知双曲线C :y 2a 2-x 2b 2=1(a>0,b>0)的上焦点为F ,M 是双曲线虚轴的一个端点,过F ,M 的直线交双曲线的下支于A 点.若M 为AF 的中点,且|AF|=6,则双曲线C 的方程为 ( ) A .y 22-x 28=1 B .y 28-x 22=1 C .y 2-x 24=1D .y 24-x 2=1(2)双曲线C的渐近线方程为y=±2√33x,一个焦点为F(0,-√7),点A(√2,0),点P为双曲线在第一象限内的点,则当点P的位置变化时,△PAF周长的最小值为()A.8B.10C.4+3√7D.3+3√7(3)已知双曲线的虚轴长为12,离心率为54,则其方程为.探究点二双曲线的几何性质有关问题微点1已知离心率求渐近线方程例2[2018·辽宁凌源二中月考]已知圆E:(x-3)2+(y+m-4)2=1(m∈R),当m变化时,圆E上的点与原点O的最短距离与双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率相等,则双曲线C的渐近线方程为()A.y=±2xB.y=±12xC.y=±√3xD.y=±√33x[总结反思]已知离心率求渐近线方程,即e=ca ⇒c2=e2·a2=a2+b2⇒e2=1+b2a2,即得渐近线方程为y=±√e2-1x.微点2已知渐近线方程求离心率例3[2018·赣州模拟]若双曲线y2a2-x2b2=1(a,b>0)的一条渐近线方程为y=34x,则该双曲线的离心率为()A.43B.53C.169D.259[总结反思]已知渐近线方程y=±kx,若焦点位置不明确要分k=ba 和k=ab两种情况讨论.已知渐近线方程为y=±ba ·x,可由c2=a2+b2⇒c2a2=1+b2a2,从而求得离心率e=√1+(ba)2.微点3由离心率研究渐近线夹角问题例4定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90°的正角.已知双曲线E:x2 a2-y2b2=1(a>0,b>0),当其离心率e∈[√2,2]时,对应双曲线的渐近线的夹角的取值范围为()A.[0,π6]B.[π6,π3]C.[π4,π3]D.[π3,π2][总结反思]已知离心率可得出双曲线的渐近线方程,即得出渐近线的斜率,从而可解决与渐近线夹角有关的问题.微点4利用渐近线与已知直线的位置关系求离心率范围例5已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F1且与双曲线C的一条渐近线垂直的直线l与C的两条渐进线分别交于M,N两点,若|NF1|=2|MF1|,则双曲线C的离心率为.[总结反思]一般可以先求解已知直线与渐近线的交点,再结合相关条件得到关于a与b的方程(或不等式),利用c2=a2+b2,转化为关于a与c的方程(或不等式),从而得离心率的值(或范围).应用演练1.【微点1】[2018·永州模拟]双曲线x2-y2b2=1(b>0)的离心率e=√5,则双曲线的渐近线方程为 ( ) A .y=±12x B .y=±15xC .y=±2xD .y=±5x2.【微点2】[2018·合肥一模] 若双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线方程为y=-2x ,则该双曲线的离心率是 ( )A .√52B .√3C .√5D .2√33.【微点3】已知双曲线x 2a2-y 2b2=1的离心率为2√33,则双曲线的两条渐近线的夹角为 ( )A .π6B .π4C .π3D .π24.【微点4】[2018·珠海三模] 双曲线x 2a2-y 2b2=1的一条渐近线与直线x+2y-1=0垂直,则双曲线的离心率为( ) A .√52B .√5C .√3+12 D .√3+15.【微点2】已知双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的渐近线经过圆E :x 2+y 2-2x+4y=0的圆心,则双曲线C 的离心率为 ( )A .√5B .√52C .2D .√26.【微点4】过双曲线x 2a2-y 2b2=1(a>0,b>0)的右焦点F 作渐近线的垂线,垂足为P ,且该直线与y 轴的交点为Q ,若|FP|<|OQ|(O 为坐标原点),则双曲线的离心率的取值范围为 .探究点三 直线与双曲线的位置关系 例6 [2018·安阳一模] 如图8-53-1所示,在平面直角坐标系xOy 中,直线l 1:y=x 与直线l 2:y=-x 之间的阴影部分记为W ,区域W 中动点P (x ,y )到l 1,l 2的距离之积为1.(1)求点P 的轨迹C 的方程;(2)动直线l 穿过区域W ,分别交直线l 1,l 2于A ,B 两点,若直线l 与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.图8-53-1[总结反思]解决直线与双曲线的位置关系问题的常用方法:(1)将直线方程代入双曲线方程得到关于x(或y)的方程,利用根与系数的关系及整体代入的思想解题,设直线与双曲线交于A(x1,y1),B(x2,y2)两点,直线的斜率为k,则|AB|=√1+k2·|x1-x2|;(2)比较直线的倾斜角(或斜率)与渐近线的倾斜角(或斜率)的大小,得到直线与双曲线的交点情况;(3)与中点有关的问题常用点差法.变式题已知双曲线C以F1(-2,0),F2(2,0)为焦点,且过点P(7,12).(1)求双曲线C与其渐近线的方程;(2)若斜率为1的直线l与双曲线C相交于A,B两点,且OA⃗⃗⃗⃗⃗ ⊥OB⃗⃗⃗⃗⃗ (O为坐标原点),求直线l的方程.。
高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
2020版高考理科数学(人教版)一轮复习讲义:第九章 第六节 双曲线 Word版含答案

第六节双曲线1.双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于非零❶常数(小于|F 1F 2|)❷的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. 2.双曲线的标准方程和几何性质若将双曲线的定义中的“差的绝对值等于常数”中的“绝对值”去掉,则点的集合是双曲线的一支,具体是左支还是右支视情况而定.设双曲线上的点M 到两焦点F 1,F 2的距离之差的绝对值为2a ,则0<2a <|F 1F 2|,这一条件不能忽略.①若2a =|F 1F 2|,则点M 的轨迹是分别以F 1,F 2为端点的两条射线; ②若2a >|F 1F 2|,则点M 的轨迹不存在;③若2a =0,则点M 的轨迹是线段F 1F 2的垂直平分线.[熟记常用结论]1.双曲线的焦点到其渐近线的距离为b .2.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min=c -a .3.同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a ;异支的弦中最短的为实轴,其长为2a .4.若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2tan θ2,其中θ为∠F 1PF 2.5.若P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a .6.等轴双曲线(1)定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.(2)性质:①a =b ;②e =2;③渐近线互相垂直;④等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.7.共轭双曲线(1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.(2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒数的平方和等于1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( ) (4)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e22=1.()答案:(1)×(2)×(3)√(4)√二、选填题1.双曲线2x2-y2=8的实轴长是()A.2B.2 2C.4 D.4 2解析:选C双曲线2x2-y2=8的标准方程为x24-y28=1,故实轴长为4.2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为()A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D.(3,0)解析:选C∵原方程可化为x21-y212=1,∴a2=1,b2=12,∴c2=a2+b2=32,∴右焦点坐标为⎝⎛⎭⎫62,0.3.若方程x22+m-y2m+1=1表示双曲线,则m的取值范围是________.解析:因为方程x22+m-y2m+1=1表示双曲线,所以(2+m)(m+1)>0,即m>-1或m<-2.答案:(-∞,-2)∪(-1,+∞)4.若双曲线x2-y2m=1的离心率为3,则实数m=________.解析:由已知可得a=1,c=1+m,所以e=ca=1+m=3,解得m=2.答案:25.双曲线C的焦点分别为(-6,0),(6,0),且经过点(-5,2),则该双曲线的标准方程为____________________.解析:由题意得2a=|(-5+6)2+22-(-5-6)2+22|=45,所以a=25,又c=6,所以b2=c2-a2=36-20=16,所以双曲线的标准方程为x 220-y 216=1.答案:x 220-y 216=1考点一 双曲线的标准方程[基础自学过关][题组练透]1.(2019·绵阳联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,且其右焦点为(5,0),则双曲线C 的标准方程为( )A.x 29-y 216=1 B.x 216-y 29=1 C.x 23-y 24=1 D.x 24-y 23=1 解析:选B 由题意得b a =34,c 2=a 2+b 2=25,所以a =4,b =3,所以所求双曲线的标准方程为x 216-y 29=1.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线标准方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1解析:选B 法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线标准方程为x 2a 2-y 2b 2=1(a >0,b >0),因为双曲线过点P (2,1), 所以4a 2-1b2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线标准方程是x 22-y 2=1.法二:设所求双曲线标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入可得44-λ+11-λ=1, 解得λ=2(λ=-2舍去),所以所求双曲线标准方程为x 22-y 2=1.3.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 解析:选A 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1.4.经过点P (3,27),Q (-62,7)的双曲线的标准方程为____________.解析:设双曲线方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线标准方程为y 225-x 275=1.答案:y 225-x 275=15.焦点在x 轴上,焦距为10,且与双曲线y 24-x 2=1有相同渐近线的双曲线的标准方程是________________.解析:设所求双曲线的标准方程为y 24-x 2=-λ(λ>0),即x 2λ-y 24λ=1,则有4λ+λ=25,解得λ=5,所以所求双曲线的标准方程为x 25-y 220=1.答案:x 25-y 220=1[名师微点]求双曲线标准方程的2种方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. [提醒] 求双曲线的标准方程时,若焦点位置不确定,要注意分类讨论.也可以设双曲线方程为mx 2+ny 2=1(mn <0)求解.(如第4题)考点二 双曲线的定义及其应用 [师生共研过关][典例精析](1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.(3)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的一动点,则|PF |+|PA |的最小值为________.[解析] (1)如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,根据两圆外切的充要条件,得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. 因为|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2<6.这表明动点M 到两定点C 2,C 1的距离的差是常数2且小于|C 1C 2|.根据双曲线的定义知,动点M 的轨迹为双曲线的左支(点M 到C 2的距离大,到C 1的距离小),且a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),则其轨迹方程为x 2-y 28=1(x ≤-1).(2)∵由双曲线的定义有|PF 1|-|PF 2|=2a =22, |PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22, 则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.(3)因为F 是双曲线x 24-y 212=1的左焦点,所以F (-4,0),设其右焦点为H (4,0),则由双曲线的定义可得|PF |+|PA |=2a +|PH |+|PA |≥2a +|AH |=4+(4-1)2+(0-4)2=4+5=9.[答案] (1)x 2-y 28=1(x ≤-1) (2)34(3)9[解题技法]双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.(3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置.[过关训练]1.(2019·唐山模拟)已知F 1,F 2是双曲线x 24-y 2=1的两个焦点,P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为( )A .1 B.52C .2D. 5解析:选A 不妨设|PF 1|=m ,|PF 2|=n ,则由双曲线的定义可知||PF 1|-|PF 2||=|m -n |=4.又因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=(2c )2=20,即m 2+n 2=20.又||PF 1|-|PF 2||2=|m -n |2=16,所以mn =2.所以△F 1PF 2的面积为S =12mn =1,故选A.2.已知△ABC 的顶点A (-5,0),B (5,0),△ABC 内切圆的圆心在直线x =2上,则顶点C 的轨迹方程是( )A.x 24-y 221=1(x >2) B.y 24-x 221=1(y >2) C.x 221-y 24=1 D.y 24-x 22=1解析:选A 如图,△ABC 与内切圆的切点分别为G ,E ,F . |AG |=|AE |=7,|BF |=|BG |=3,|CE |=|CF |,所以|CA |-|CB |=7-3=4.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为4的双曲线的右支,方程为x 24-y 221=1(x >2).考点三 双曲线的几何性质[全析考法过关][考法全析]考法(一) 求双曲线的离心率(或范围)[例1] (1)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 作垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(2,1+2)D .(1,1+2)(2)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C 在第二象限的交点为P ,O 为原点,|OP |=|OF |,则双曲线C 的离心率为( )A .5 B. 5 C.53D.54[解析] (1)若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,|AF |=b 2a ,|FE |=a +c ,则b 2a <a +c ,即b 2<a 2+ac ,即2a 2-c 2+ac >0,则e 2-e -2<0,解得-1<e <2,又e >1,则1<e <2,故选B.(2)根据直线4x -3y +20=0与x 轴的交点F 为(-5,0),可知半焦距c =5,设双曲线C 的右焦点为F 2,连接PF 2,根据|OF 2|=|OF |且|OP |=|OF |可得,△PFF 2为直角三角形,如图,过点O 作OA 垂直于直线4x -3y +20=0,垂足为A ,则易知OA 为△PFF 2的中位线,又原点O 到直线4x -3y +20=0的距离d =4,所以|PF 2|=2d =8,|PF |=|FF 2|2-|PF 2|2=6,故结合双曲线的定义可知|PF 2|-|PF |=2a =2,所以a =1,故e =ca=5.[答案] (1)B (2)A考法(二) 求双曲线的渐近线[例2] (2019·武汉调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( )A .4x ±3y =0B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a 2=25,b 2=16,∴椭圆的离心率e = 1-b 2a 2=35, ∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A考法(三) 求双曲线的方程[例3] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1 B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1 [解析] 由离心率为2,可知a =b ,c =2a , 所以F (-2a ,0),由题意知k PF =4-00-(-2a )=42a =1,所以2a =4,解得a =22, 所以双曲线的方程为x 28-y 28=1.[答案] B[规律探求][过关训练]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x解析:选A ∵e =ca =a 2+b 2a =3, ∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5B.2C. 3D. 2解析:选C 不妨设一条渐近线的方程为y =ba x ,则F 2到y =ba x 的距离d =|bc |a 2+b 2=b . 在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-ac ,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca= 3.3.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点.若MF 1―→·MF 2―→<0,则y 0的取值范围是( )A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223D.⎝⎛⎭⎫-233,233解析:选A 由题意知a =2,b =1,c =3, 设F 1(-3,0),F 2(3,0),则MF 1―→=(-3-x 0,-y 0), MF 2―→=(3-x 0,-y 0). ∵MF 1―→·MF 2―→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线C 上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.。
高考数学 分类题库考点42 曲线与方程、圆锥曲线的综合应用理

考点42 曲线与方程、圆锥曲线的综合应用一、选择题1.(2020·山东高考理科·T8)已知双曲线22221x y a b-=(a>0,b>0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右核心为圆C 的圆心,那么该双曲线的方程为( )(A )22154x y -= (B )22145x y -=(C )221x y 36-= (D )221x y 63-= 【思路点拨】先求出圆C 的圆心坐标(3,0),半径r=2,再求出渐近线方程,由圆心到渐近线的距离等于半径即可取得a,b 的关系,再由双曲线的右核心为圆C 的圆心知c=3,即可求出结果.【精讲精析】选A.双曲线的渐近线方程为bx+ay=0和bx-ay=0,圆心为(3,0),半径r=2.由圆心到直线的距离为223r ba b +=,得4a 2=5b 2,又因为双曲线的右核心为圆C 的圆心,因此c=3,即9=a 2+b 2, 因此,a 2=5,b 2=4因此该双曲线的方程为22154x y -=. 2.(2020·福建卷理科·T7)设圆锥曲线Γ的两个核心别离为F 1,F 2,假设曲线Γ上存在点P 知足1122::PF F F PF =4:3:2,那么曲线Γ的离心率等于( )(A )1322或(B )23或2 (C )12或2 (D )2332或【思路点拨】依照1122::PF F F PF =4:3:2,设出1122PF F F PF ||,||,||,然后按曲线Γ为椭圆或双曲线,在12PF F ∆中别离利用概念求离心率. 【精讲精析】 选A.1122::PF F F PF =4:3:2,11224,||3,||2,PF k F F k PF k ∴==可设||= 其中12||23F F c k ==,32kc ∴=.假设圆锥曲线Γ为椭圆,那么12||||26PF PF a k +==,3a k ∴=,312.32∴===k c e a k 假设圆锥曲线Γ为双曲线,那么12||||22,PF PF a k -==3. (2020·福建卷文科·T11)设圆锥曲线C 的两个核心别离为F 1, F 2,假设曲线C 上存在点P 知足1PF :12F F :2PF = 4:3:2,那么曲线C 的离心率等于( )(A )1322或(B )223或 (C )122或 (D )2332或【思路点拨】依照1122::PF F F PF =4:3:2,设出1122PF F F PF ||,||,||的值,然后按曲线C 为椭圆或双曲线,在12PF F ∆中别离利用概念求离心率. 【精讲精析】选A.1122::PF F F PF =4:3:2,11224,||3,||2,PF k F F k PF k ==设||= 其中12||23F F c k ==,32kc ∴=.假设圆锥曲线C 为椭圆,那么12||||26PF PF a k +==,3a k ∴=,312,32k c e a k ∴===假设圆锥曲线C 为双曲线,那么12||||22,PF PF a k -==,∴=a k二、填空题4.(2020·山东高考文科·T15)已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的核心,且双曲线的离心率是椭圆离心率的两倍,那么双曲线的方程为 .【思路点拨】先求椭圆核心,即双曲线的核心,再由双曲线的离心率是椭圆离心率的两倍求出b ,然后写出双曲线的方程.【精讲精析】由题意知双曲线的核心为(-7,0),(7,0),即c=7,又因为双曲线的离心率为c 27e a 4==,因此a=2,故b 2=3,因此双曲线的方程为13422=-y x . 【答案】13422=-y x 5.(2020·北京高考理科·T14)曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >的点的轨迹.给出以下三个结论:①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③假设点P 在曲线C 上,那么12F PF ∆的面积不大于212a . 其中所有正确的结论的序号是 .【思路点拨】写出曲线C 的方程,再逐个验证三个结论.【精讲精析】设P(x,y)为曲线C 上任意一点,那么由212||||PF PF a ⋅=,得C:22222(1)(1)x y x y a ++⋅-+= ,把(0,0)代入方程可得21a =,与1a >矛盾,故①不正确; 当M(x,y)在曲线C 上时,点M 关于原点的对称点'(,)M x y --,也知足方程,故曲线C 关于原点对称,故②正确;122212121111||||sin sin 222F PF S PF PF F PF a F PF a ∆=∠=∠≤,故③正确. 【答案】②③ 三、解答题6.(2020·安徽高考理科·T21)假设0>λ,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点Q知足BQ QA λ=,通过点Q 与x 轴垂直的直线交抛物线于点M ,点P 知足MP QM λ=,求点P 的轨迹方程.【思路点拨】设出P点坐标,通过Q,B等中间量成立方程,消去中间量,求出点P的轨迹方程. 【精讲精析】由MP QM λ=知Q,M,P 三点在同一条垂直于x 轴的直线上,故可设P(x,y),Q(x,0y ),M(x,x 2),那么).(202x y y x -=-λ即.)1(20y x y λλ-+= ①再设),,(11y x B 由BQ QA λ=,即),1,1(),(0101y x y y x x --=--λ解得110x (1)x ,y (1)y .=+λ-λ⎧⎨=+λ-λ⎩ ② 将①式代入②式,消去0y ,得1221x (1)x ,y (1)x (1)y .=+λ-λ⎧⎨=+λ-λ+λ-λ⎩ ③ 又点B 在抛物线2x y =上,因此211x y =,再将③式代入211x y =,得因为0>λ,两边同时除以),1(λλ+得 故所求点P 的轨迹方程为12-=x y .7. (2020·新课标全国高考理科·T20)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点知足//MB OA , MA AB MB BA ⋅=⋅,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.【思路点拨】第(1)问,求M 点的轨迹,可设M 点坐标为(,)x y ,然后利用条件//MB OA 取得点B 的坐标,最后将条件MA AB MB BA ⋅=⋅转化为坐标关系,取得,x y 知足的关系式,化简整理即得C 的方程;第(2)问,设出点P 的坐标,利用导数求出切线l 的斜率,表示出l 的方程,再利用点到直线的距离公式求得O 点到l 距离的函数,然后利用函数的知识求出最值即可. 【精讲精析】(1)设M(x,y ),由已知得B(x ,-3),A(0,-1). 因此MA =(-x,-1-y ), MB =(0,-3-y), AB =(x ,-2).再由题意可知(MA +MB )• AB =0, 即(-x,-4-2y )• (x,-2)=0. 因此曲线C 的方程式为y=14x 2-2. (2)设P(x 0,y 0)为曲线C :y=14x 2-2上一点,因为y '=12x,因此l 的斜率为12x 0, 因此直线l 的方程为0001()2y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l 的距离20020|2|4y x d x -=+.又200124y x =-,因此 当20x =0时取等号,因此O 点到l 距离的最小值为2. 8.(2020·山东高考理科·T22)已知直线l 与椭圆C: 22132x y +=交于P (x 1,y 1),Q(x 2,y 2)两不同点,且△OPQ 的面积62∆=OPQ S ,其中O 为坐标原点.(1)证明x 12+x 22和y 12+y 22均为定值;(2)设线段PQ 的中点为M ,求PQ OM ⋅的最大值;(3)椭圆C 上是不是存在点D,E,G ,使得ODE ODG OEG S S S ∆∆∆===假设存在,判定△DEG 的形状;假设不存在,请说明理由.【思路点拨】此题重点考查学生的计算能力,相较较去年的圆锥曲线题目,今年的题目难度要大一些,是一道较好的选拔优秀学生的题目.(1)分斜率存在和不存在两种情形讨论.(2)利用第一问的结论,再应用大体不等式容易患出结论.(3)利用反证法,假设存在如此的点,经推理得出矛盾,从而证明原结论成立.【精讲精析】(1)当直线l 的斜率不存在时,,P Q 两点关于x 轴对称,那么1212,x x y y ==-,由()11,P x y 在椭圆上,那么2211132x y +=,而11OPQ S x y ∆==,那么111x y ==.于是22123x x +=,22122y y +=.当直线l 的斜率存在,设直线l 为y kx m =+,代入22132x y +=可得2223()6x kx m ++=,即222(23)6360+++-=k x kmx m ,由0∆>得,222236k m 4(23k )(3m 6)0-+->,化简得2232+>k m ,2121222636,2323km m x x x x k k-+=-=++.12PQ x =-==,0=l d 到的距离,1122POQS d PQ ∆=⋅⋅==, 整理得22322k m +=,知足0∆>,222221212122263(2)()2()232323km m x x x x x x k k -+=+-=--⨯=++,222222*********(3)(3)4()2333y y x x x x +=-+-=-+=,综上可知22123x x +=,22122y y +=.(2)当直线l 的斜率不存在时,由(1)知1622==⨯=OM PQ x PQ 当直线l 的斜率存在时,由(1)知12322x x km+=-, 2121231()222y y x x k k m m m m++=+=-+=,222212122229111()()(3)2242++=+=+=-x x y y k OM m m m, 22222222224(32)2(21)1(1)2(2)(23)k m m PQ k k m m+-+=+==++, 22221125(3)(2)4OMPQ m m =-+≤,当且仅当221132m m-=+,即m =综上可知OM PQ ⋅的最大值为52.(3)假设椭圆上存在三点,,D E G ,使得ODE ODG OEG S S S ∆∆∆===由(1)知2222223,3,3D E E G G D x x x x x x +=+=+=,2222222,2,2D E E G G D y y y y y y +=+=+=.解得22232D E G x x x ===,2221D E G y y y ===,因此,,D E G x x x 只能从当选取,,,D E G y y y 只能从1±当选取,因此,,D E G 只能从(1)±当选取三个不同点,而这三点的两两连线必有一个过原点,这与ODE ODG OEG S S S ∆∆∆===故椭圆上不存在三点,,D E G ,使得2ODE ODG OEG S S S ∆∆∆===. 9.(2020·山东高考文科·T22)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如下图,斜率为(0)k k >且只是原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值;(Ⅱ)假设2OG OD =·OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 可否关于x 轴对称?假设能,求出现在ABG ∆的外接圆方程;假设不能,请说明理由. 【思路点拨】此题重点考查学生的计算能力,相较较去年的圆锥曲线题目,今年的题目难度要大一些,是一道较好的选拔优秀学生的题目.(I )设直线:(0)l y kx n n =+≠,联立方程,再由韦达定理得出中点E 的坐标,由三点共线,可知OE k K =OD ,k 解得1m k=,由大体不等式得出最小值.(II )(i )注意先求出k 和n 的关系,再由交点直线系方程得出l 过定点. (ii )可先假设对称,然后通过运算验证如此的圆是不是存在. 【精讲精析】(Ⅰ)由题意:设直线:(0)l y kx n n =+≠,由22y=kx x 13+⎧⎪⎨+=⎪⎩n y 消y 得:222(13)6330k x knx n +++-=, 2222364(13)3(1)∆=-+-k n k n ×2212(31)0k n =+->,设A 11(,)x y ,B 22(,)x y ,AB 的中点E 00(,)x y ,那么由韦达定理得:12x x +=2613kn k -+,即02313kn x k -=+,002313kn y kx n k n k -=+=⨯+=+213nk+, 因其中点E 的坐标为23(,13kn k -+2)13nk +,因为O ,E ,D 三点在同一直线上,因此OE k K =,OD k 即133mk -=-, 解得1m k=, 因此22m k +=2212k k+≥,当且仅当1k =时取等号, 即22m k +的最小值为2.(Ⅱ)(i )证明:由题意知:n>0,因为直线OD 的方程为3my x =-, 因此由得交点G 的纵坐标为223G m y m =+又因为213E n y k=+,D y m =,且2OG OD =·OE ,因此222313m n m m k =⋅++, 又由(Ⅰ)知: 1m k=,因此解得k n =,因此直线l 的方程为:l y kx k =+, 即有:(1)l y k x =+,x=-得y=0,与实数k无关,令1因此直线l 过定点(-1,0).(ii )假设点B ,G 关于x 轴对称,那么有△ABG 的外接圆的圆心在x 轴上, 又在线段AB 的中垂线上, 由(i )知点G 23(,3m -+2)3m m +,因此点B 23(,3m -+2)3m m -+,又因为直线l 过定点(-1,0),因此直线l 的斜率为223313mm k m -+=-++,又因为1m k=,因此解得21m =或26m =, 又因为230m ->,因此26m =舍去,即21m =, 现在k=1,m=1,E (31,44-),31(,)22G -. AB 的中垂线为2x+2y+1=0, 圆心坐标为1(,0)2-,圆半径为52,圆的方程为2215()24x y ++=. 综上所述, 点B ,G 关于x 轴对称,现在△ABG 的外接圆的方程为: 2215()24x y ++=. 10.(2020·辽宁高考理科·T20)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D . (I )设12e =,求BC 与AD 的比值; (II )当e 转变时,是不是存在直线l ,使得BO ∥AN ,并说明理由.【思路点拨】(I )先利用离心率相同设出21,C C 的方程和直线l 的方程)(a t t x <=,再求出B A ,的坐标,然后计算BC 与AD 的长度就可求出比值;(II )先考虑直线过原点的情形,再考虑直线只是原点的情形,现在利用斜率相等(即BO k =AN k )成立等式关系,再考虑a t <的因素,可取得关于e 的不等式,求讲解明即可.【精讲精析】(Ⅰ)因为21,C C 的离心率相同,故依题意可设1C :1222=+b y a x ,2C :122422=+ax a y b ,()0>>b a , 设直线l :)(a t t x <=,别离与1C ,2C 的方程联立,求得 当21=e 时,a b 23=,别离用B A y y ,表示A ,B 的纵坐标,可知 BC :AD =432222==ab y y AB .(Ⅱ)0=t 时,l 不符合题意.0≠t 时,BO ∥AN 当且仅当BO 的斜率BO k 与AN 的斜率AN k 相等,即=-t t a a b 22at ta ba --22, 解得222b a ab t --= a e e ⋅--=221, 因为a t <,又10<<e ,因此1122<-e e ,解得122<<e , 因此当220≤<e 时,不存在直线l ,使得BO ∥AN ;当122<<e 时,存在直线l , 使得BO ∥AN .11.(2020·湖南高考理科·T21)如下图,椭圆,23)0(122221的离心率为:>>=+b a by a x C x 轴被曲线2C :2x y =-b 截得的线段长等于1C 的长半轴长.(Ⅰ)求21,C C 的方程;(Ⅱ)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A ,B ,直线MA ,MB 别离与1C 相交于点D ,E.(i )证明:MD ME ⊥;(ii )记MDE MAB ,∆∆的面积别离为21,SS .问:是不是存在直线l ,使得321721=S S ?请说明理由.【思路点拨】此题以椭圆和抛物线为载体,考查两曲线的大体知识.题中第一问通过求曲线的方程考查两曲线的大体知识点的关系.第二问通过证明考查逻辑思维能力和探讨参数的存在.解决此题需要较强的综合运用知识的能力.考查了数形结合思想、等价转化思想和方程思想. 【精讲精析】(I)由题意知2c e a ==,从而2a b =,又a =,解得2,1a b ==. 故1C ,2C 的方程别离为2221,14x y y x +==-. (II )(i )由题意知,直线l 的斜率存在,设为k ,那么直线l 的方程为y kx =.由2,1,=⎧⎨=-⎩y kx y x 得210x kx --=, 设1122(,),(,)A x y B x y ,那么12,x x 是上述方程的两个实根,于是1212,1x x k x x +==-. 又A ,B 在直线上,∴y 1=kx 1,y 2=kx 2, 又点M 的坐标为(0,1)-,因此 故MA MB ⊥,即MD ME ⊥.(ii )设直线MA 的斜率为1k ,那么直线的方程为11y k x =-,由121,1,=-⎧⎨=-⎩y k x y x 解得0,1,=⎧⎨=-⎩x y 或121,1,=⎧⎨=-⎩x k y k 那么点A 的坐标为211(,1)k k -,点M 的坐标为(0,-1).又直线MB 的斜率为11k -,同理可得点B 的坐标为21111(,1)k k --.于是211111111||||||||.22||k S MA MB k k k +=⋅=-= 由1221,440,=-⎧⎨+-=⎩y k x x y 得2211(14)80k x k x +-=,解得0,1,=⎧⎨=-⎩x y 或12121218,1441,14⎧=⎪+⎪⎨-⎪=⎪+⎩k x k k y k 那么点D 的坐标为2112211841(,)1414k k k k -++; 又直线ME 的斜率为11k -,同理可得点E 的坐标211221184(,),44--++k k k k于是2112221132(1)||1||||2(14)(4)k k S MD ME k k +⋅=⋅=++.因此21122114(417)64=++S k S k . 由题意知,21211417(417)6432++=k k ,解得214k = 或2114k =. 又由点,A B 的坐标可知,21211111111k k k k k k k -==-+,因此3.2k =± 故知足条件的直线l 存在,且有两条,其方程别离为32y x =和32y x =-. 12.(2020·湖南高考文科T21)已知平面内一动点P 到点F(1,0)的距离与点P 到y 轴的距离的差等于1. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 作两条斜率存在且相互垂直的直线l 12l ,,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD EB ·的最小值.【思路点拨】此题考查求曲线的方程,考查利用代数方式研究几何问题的大体方式,考查数形结合思想.考查运算能力,考查分析问题、解决问题的能力. 【精讲精析】(I )设动点P 的坐标为(,)x y ,由题意知22(1)|| 1.x y x -+-=化简得222||,y x x =+当20,4;0x y x x ≥=<时当时,y=0.因此动点P 的轨迹C 的方程为2,4(0)0)y x x x =≥<和y=0(. (II )由题意知,直线1l 的斜率存在且不为0,设为k ,那么1l 的方程为(1)y k x =-.由得2222(24)0.k x k x k -++=∴21616k 0,k R∆=+>∈即设1122(,),(,),A x y B x y 则12,x x 是上述方程的两个实根,于是1212242,1x x x x k +=+=. 因为12l l ⊥,因此2l 的斜率为1k-. 设那么同理可得2343424,1x x k x x +=+=,当且仅当221k k =时,即1k =±时,AD EB •取最小值16. 13.(2020·陕西高考理科·T17)如图,设P 是圆2225x y +=上的动点,点D 是P 在x 轴上投影, M 为PD 上一点,且4||||5MD PD =. (Ⅰ)当P 在圆上运动时,求点M 的轨迹C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的长度. 【思路点拨】(Ⅰ)动点M 通过点P 与已知圆相联系,因此把点P 的坐标用点M 的坐标表示,然后代入已知圆的方程即可;(Ⅱ)直线方程和椭圆方程组成方程组,能够求解,也能够利用根与系数的关系,结合两点的距离公式计算.【精讲精析】(Ⅰ)设点M 的坐标是(,)x y ,点P 的坐标是(,)p p x y , 因为点D 是P 在x 轴上投影, M 为PD 上一点,且4||||5MD PD =,因此p x x =,且54p y y =, ∵P 在圆2225x y +=上,∴225()254x y +=,整理得2212516x y +=, 即C 的方程是2212516x y +=. (Ⅱ)过点(3,0)且斜率为45的直线方程是4(3)5y x =-, 设此直线与C 的交点为11(,)A x y ,22(,)B x y ,将直线方程4(3)5y x =-代入C 的方程2212516x y +=得:22(3)12525x x -+=,化简得2380x x --=,∴1x =,2x =,因此线段AB 的长度是||AB ==415==,即所截线段的长度是415.。
新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。
2024年高考真题分类专项(解析几何)(学生版)

2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。
2024年新高考版数学专题1_9.3 双曲线及其性质(分层集训)

A. 22
2
B. 4 10
5
答案 D
C. 7
D. 10
4.(2017课标Ⅲ理,5,5分)已知双曲线C:
x a
2 2
-
y2 b2
=1(a>0,b>0)的一条渐近线方
程为y= 5 x,且与椭圆 x2 + y2 =1有公共焦点,则C的方程为 ( )
2
12 3
A. x2 - y2 =1
8 10
B. x2 - y2 =1
C.互为共轭的双曲线的离心率为e1、e2,则e1e2≥2
D.互为共轭的双曲线的4个焦点在同一圆上
答案 CD
7.(多选)(2021广东揭阳4月联考,9)已知一组直线x±2y=0,则以该组直线为
渐近线的双曲线的方程可能是 ( )
A.x2-4y2=1 B.4y2-x2=1
C.x2- y2 =1
4
答案 ABD
y
k1
x2 y2 16
x
1 2
m,
1(x 1),
得
(16-
k12
)x2+(
k12
-2k1m)x-
1 4
k12
+k1m-m2-16=0,
设A(x1,y1),B(x2,y2),
则x1+x2=
k12 2k1m k12 16
,x1x2=
1 4
k12
m2 k1m k12 16
16
,
则|TA|=
设其方程为 x2 - y2 =1(a>0,b>0,x≥a),
a2 b2
则2a=2,2c=2 17 ,解得a=1,c= 17 ,
则b2=c2-a2=( 17 )2-12=16,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点41 双曲线一、选择题
1.(2012·浙江高考理科·T8)如图,F1,F2分别是双曲线C
:
22
22
1
x y
a b
-=
(a,b>0)的左、右焦点,B
是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则C的离心率
是( )
(A)23
3(B)
6
2 (C)2 (D)3
【解题指南】关键是通过中垂线的性质与坐标间的关系建立
,,
a b c的等式.
【解析】选B.由可解得
,
ac bc
x y
c a c a
==
--,即
(,)
ac bc
Q
c a c a
--.
由可解得
,
ac bc
x y
c a c a
=-=
++,即
(,)
ac bc
P
c a c a
-
++.
∴PQ的中点
22
2222
(,)
a c bc
N
c a c a
--
而
(3,0)
M c∴
1
MN
b
k
c
⋅=-
,即
2
23
43
bc c
a c c b
=-
-,整理得32
23
c a c
=,即
2
3
2
e=
,解得
6
e=
.
2.(2012·湖南高考文科·T6)与(2012·湖南高考理科·T5)相同
已知双曲线C:
2
2
x
a-
2
2
y
b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为()
(A)220x -25y =1 (B)25x -220y =1 (C)280x -220
y =1 (D)220x -280y =1
【解题指南】根据双曲线的性质,由焦距为10可以求出c=5,再将P (2,1)代入渐近线求出方程中的参数.
【解析】选A. 由焦距为10,知2c=10,c=5.将P (2,1)代入y=b
x a 得a=2b.
2222222,525,5,420a b c b b a b +=====,所以方程为22
1
205x y -=.
3.(2012·福建高考理科·T8)已知双曲线22
214x y b -=的右焦点与抛物线
2
12y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) (A)5
(B)42
(C)3
(D)5
【解题指南】利用抛物线的标准形式来求解焦点,可将一次项系数直接除4获得数值;对于双曲线的标准方程,只要注意到c 最大,同时也满足一个平方关系式即可,同时要熟识渐近线的方程,焦点在x 轴上时,
方程是
b
y x a =±
.
【解析】选A.
212y x =的焦点(3,0),由题意知,249b +=,25b =,双曲线的焦点到其渐近线的距离为5b =.
4.(2012·福建高考文科·T5)已知双曲线22
2
15x y a -=的右焦点为(3,0),则该双曲线的离心率等于( ) (A)314
14
(B)324
(C)32 (D)4
3
【解题指南】对于双曲线的标准方程,只需注意到c 最大,而且也满足一个平方关系式即可,同时还要明
确离心率
c e a =
.
【解析】选C . 由题意知2
59a +=,解得2a =,
32c e a =
=.
5.(2012·新课标全国高考文科·T10)与(2012·新课标全国高考理科·T8)相同
等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线2
16y x =的准线交于A ,B 两点,43
AB =
则C 的实轴长为( )
(A)2 (B)22 (C)4 (D)8
【解题指南】注意到双曲线为等轴双曲线,可先设出曲线C 的方程,然后利用AB 的长及抛物线的准线方程,得到A 、B 两点的坐标,代入所设的曲线C 方程,可求得曲线C 的方程,最后求得实轴长.
【解析】选C.设双曲线的方程为22
221x y a a -=(a>0),抛物线的准线为4x =-,且43AB =,故可得
()(
)4,23,4,23
A B ---,将点A 坐标代入双曲线方程得2
4a
=,故2a =,故实轴长为4.
二、填空题
6.(2012·辽宁高考文科·T15)已知双曲线x 2
- y 2
=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若P F 1⊥PF 2,则∣P F 1∣+∣P F 2∣的值为___________________. 【解题指南】利用双曲线定义得122,
PF PF a -=利用已知条件12PF PF ⊥,由勾股定理得2
2
2
2
1212(2)PF PF F F c +==,即可解得
12
,PF PF .
【解析】不妨设12
PF PF >.由双曲线方程22
1x y -=知1,2a b c ===
由双曲线定义得
1222,
PF PF a -==
由已知条件12PF PF ⊥及勾股定理得2
2
2
21
2
12(2)8
PF PF F F c +===, 上述两式联立,解得1231,31
PF PF =+=-,故
1223
PF PF +=.
【答案】23
7.(2012·湖北高考理科·T14)如图,双曲线的
两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D.则 (1)双曲线的离心率e=______;
(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值
1
2
S S =__________. 【解题指南】本题主要考查双曲线的基本性质,解答本题(1)可利用22
OF B V 的面积求解;本题(2)中可
将所求面积的比值转化成离心率的关系.
【解析】(1)
化简得: 220a ac c +-=,即2
10e e --=.又1e >,
则
15e +=
.
(2)由题意知: S 1=2bc,在22
OF B V 中连接OA ,则A F 2=b, 矩形ABCD 边长
AD=2
ab c
AB=22
a c ,S 2=43
2a b c
,则
【答案】(1)15+ (2)25
+
8.(2012·江苏高考·T8)在平面直角坐标系xOy 中,若双曲线22
21
4x y m m -=+5m
的值为 .
【解题指南】应从焦点的位置入手,确定长半轴长.
【解析】由题意,双曲线的焦点在x 轴上,所以24
5
++=
=m m e m
,所以2=m .
【答案】2。